Reg. No. : \square

Question Paper Code : 51295

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

First Semester
Civil Engineering
MA 1101 - MATHEMATICS - I

(Common to All Branches)
(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. If the eigen values of the matrix A of order 3×3 are 2,3 and 1 , then find the eigen values of adjoint of A.
2. Find the nature of the quadratic form $x^{2}+y^{2}+z^{2}$ in four variables, without reducing into canonical form.
3. Find the equation of the sphere having the points $(0,0,0)$ and $(2,-2,4)$ as ends of the diameter.
4. If $\frac{x}{3}=\frac{y}{4}=\frac{z}{k}$ is a generator of the cone $x^{2}+y^{2}-z^{2}=0$, then find the value of k.
5. What is the radius of curvature of the circle $x^{2}+y^{2}=25$ at any point on it?
6. Find the envelope of the family of curves $y=m x+\frac{1}{m}$, where m is the parameter.
7. If $x^{3}+y^{3}=3 a x y$, then find $\frac{d y}{d x}$.
8. If $x=r \cos \theta, y=r \sin \theta$, then find $\frac{\partial(r, \theta)}{\partial(x, y)}$.
9. Solve the deferential equation $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=0$.
10. Convert the given variable coefficient differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=x^{2}$ a constant coefficient differential equation.

$$
\text { PART B- }(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the eigen values and eigen vectors of $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.
(ii) Verify Cayley-Hamilton theorem for $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$, hence use it to find A^{-1}.

Or
(b) Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ into a canonical form by orthogonal reduction.
12. (a) (i) Find the equation to the right circular cylinder with radius 5 and whose axis is $\frac{x}{2}=\frac{y}{3}=\frac{z}{6}$.
(ii) Find center and radius of the circle given by $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0$ and $x+2 y+2 z+7=0$.

Or
(b) (i) Find the equation to the sphere having the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0 ; 2 x+3 y+4 z=8$ as a great circle .
(ii) Show that the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=y-4=\frac{z-5}{3}$ are coplanar. Find the plane containing them.
13. (a) (i) Find the centre of curvature of the parabola $y^{2}=4 a x$ at any point using parametric equations.
(ii) Find the radius of curvature at any point of $y=\cosh \left(\frac{x}{c}\right)$.

Or
(b) Find circle of curvature of the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at the point $\left(\frac{\alpha}{4}, \frac{a}{4}\right)$.
14. (a) (i) Expand $e^{x} \log (1+y)$ in powers of x and y up to terms of third degree.
(ii). If $w=f(y-z, z-x, x-y)$, show that $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}=0$.

Or

(b) (i) Discuss the maxima and minima of the function $f(x, y)=x^{3} y^{2}(12-x-y)$.
(ii) If $x=u(1-v), y=u v$, compute J and J^{\prime} and prove $J J^{\prime}=1$.
15. (a) (i) Solve $\left(D^{2}-4 D+3\right) y=e^{-3 x}+2 x^{2}$.
(ii) Solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$ using variation of parameters.
(b) (i) Solve $\left(x^{2} D^{2}-x D+1\right) y=\left(\frac{\log x}{x}\right)^{2}$
(ii) Solve $\left(D^{2}+4\right) y=\cos ^{2} x$.

