\square

Question Paper Code : 91573

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

First Semester
Civil Engineering MA 2111/MA 12/080030001 - MATHEMATICS - I

(Common to all Branches)

(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. If λ be an eigenvalue of a non-singular matrix A, show that λ^{-1} is an eigenvalue of A^{-1}.
2. Find the eigenvalues of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
3. Find the centre and radius of the sphere $a\left(x^{2}+y^{2}+z^{2}\right)+2 u x+2 v y+2 w z+d=0$.
4. Find the equation of the plane containing the line $\frac{x-1}{2}=\frac{y+1}{7}=\frac{z-2}{1}$ and parallel to the line $\frac{x}{1}=\frac{y-2}{2}=\frac{z-3}{3}$.
5. Find the envelope of the family of circles $(x-\alpha)^{2}+y^{2}=4 \alpha$, where α is the parameter.
6. Find the curvature of the curve $2 x^{2}+2 y^{2}+5 x-2 y+1=0$.
7. If $u=(x-y)^{4}+(y-z)^{4}+(z-x)^{4}$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
8. Find $\frac{\partial(x, y)}{\partial(r, \theta)}$, if $x=r \cos \theta, y=r \sin \theta$.
9. Evaluate $\int_{0}^{4} \int_{0}^{x^{2}} e^{\frac{y}{x}} d y d x$.
10. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} d x d y d z$.

PART B- $(5 \times 16=80$ marks $)$
11. (a) (i) Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.
(ii) Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$ and show that A satisfies the equation. Hence evaluate A^{-1}.

Or

(b) Through an orthogonal transformation, reduce the quadratic form $x_{1}^{2}+5 x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}+6 x_{3} x_{1}$ to a canonical form.
12. (a) (i) Find the centre and radius of the sphere whose equation is $x^{2}+y^{2}+z^{2}-2 x-4 y-6 z-2=0$. Show that the intersection of this sphere and the plane $x+2 y+2 z-20=0$ is a circle whose centre is the point $(2,4,5)$ and find the radius of the circle.
(ii) Find the equation of the plane passing through the line of intersection of the planes $2 x+y+3 z-4=0$ and $4 x-y+5 z-7=0$ and is perpendicular to the plane $x+3 y-4 z+6=0$.

Or
(b) (i) Find the equation of the right circular cylinder of radius 2 and whose axis is the line $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-3}{2}$.
(ii) Find the equation of the cone whose vertex is the origin and guiding curve is $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{9}=1, x+y+z=1$.
13. (a) (i) Find the equation of the evolute of the parabola $y^{2}=4 a x$.
(ii) Find the equation of the circle of curvature at (c, c) on $x y=c^{2}$.

Or

(b) (i) Show that the radius of curvature at any point of the catenary $y=c \cosh (x / c)$ is y^{2} / c. Also find ρ at $(0, c)$.
(ii) Considering the evolute as the envelope of the normals, find the evolute of the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
14. (a) (i) If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, find $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.
(ii) Expand $e^{x} \log (1+y)$ in powers of x and y upto terms of third degree.

Or

(b) (i) A rectangular box, open at the top, is to have a volume of $32 c c$. Find the dimensions of the box, that requires the least material for its construction.
(ii) Find $\frac{d u}{d x}$, if $u=\sin \left(x^{2}+y^{2}\right)$, where $a^{2} x^{2}+b^{2} y^{2}=c^{2}$.
15. (a) Evaluate $\iint(x+y)^{2} d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Or
(b) (i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{\left(1-x^{2}-y^{2}\right)}} x y z d x d y d z$.
(ii) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.

