ANNA UNIVERSITY, CHENNAI

REGULATIONS 2013

(Common to all B.E. / B.Tech. Degree (8 Semesters) Full – Time Programmes of Affiliated Institutions)

CREDIT SYSTEM

AFFILIATED COLLEGES

DEGREE OF BACHELOR OF ENGINEERING / BACHELOR OF TECHNOLOGY

This Regulations is applicable to the students admitted to B.E/B.Tech. Programmes at all Engineering Colleges affiliated to Anna University, Chennai (other than Autonomous Colleges) and to all the University Colleges of Engineering of Anna University, Chennai from the academic year 2013-2014.

1. PRELIMINARY DEFINITIONS AND NOMENCLATURE

In these Regulations, unless the context otherwise requires:

- I) "Programme" means Degree Programme, that is B.E./B.Tech. Degree Programme.
- II) "**Discipline**" means specialization or branch of B.E./B.Tech. Degree Programme, like Civil Engineering, Textile Technology, etc.
- III) "**Course**" means a theory or practical subject that is normally studied in a semester, like Mathematics, Physics, etc.
- IV) "Director, Academic Courses" means the authority of the University who is responsible for all academic activities of the Academic Programmes for implementation of relevant rules of this Regulations pertaining to the Academic Programmes.
- V) "Chairman" means the Head of the Faculty.
- VI) "Head of the Institution" means the Principal of the College.
- VII) "Head of the Department" means head of the Department concerned.
- VIII) **"Controller of Examinations"** means the authority of the University who is responsible for all activities of the University Examinations.
- IX) "University" means ANNA UNIVERSITY, CHENNAI.

2. ADMISSION

2.1 Candidates seeking admission to the first semester of the eight semester B.E. / B.Tech.

Degree Programme:

Should have passed the Higher Secondary Examinations of (10+2) Curriculum (Academic Stream) prescribed by the Government of Tamil Nadu with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III or any examination of any other University or authority accepted by the Syndicate of Anna University as equivalent thereto.

(OR)

Should have passed the Higher Secondary Examination of Vocational stream (Vocational groups in Engineering / Technology) as prescribed by the Government of Tamil Nadu.

2.2 Lateral entry admission

(i) The candidates who possess the Diploma in Engineering / Technology awarded by the State Board of Technical Education, Tamilnadu or its equivalent are eligible to apply for Lateral entry admission to the third semester of B.E. / B.Tech. in the branch corresponding to the branch of study.

(OR)

(ii) The candidates who possess the Degree in Science (B.Sc.,) (10+2+3 stream) with Mathematics as a subject at the B.Sc. Level are eligible to apply for Lateral entry admission to the third semester of B.E. / B.Tech.

Such candidates shall undergo two additional Engineering subject(s) in the third and fourth semesters as prescribed by the University.

3. PROGRAMMES OFFERED

B.E. / B.Tech. Programmes under the Faculty of Civil Engineering, Faculty of Mechanical Engineering, Faculty of Electrical Engineering, Faculty of Information and Communication Engineering and Faculty of Technology.

4. STRUCTURE OF PROGRAMMES

- 4.1 Every Programme will have curricula with syllabi consisting of theory and practical courses such as:
 - (i) General core courses comprising Mathematics, Basic sciences, Engineering sciences, Humanities and Management.
 - (ii) Core courses of Engineering/Technology.
 - (iii) Elective courses for specialization in related fields.
 - (iv) Workshop Practice, Computer Practice, Engineering Graphics, Laboratory work, Industrial Training, Seminar presentation, Project work, Educational tours, Camps etc.
 - (v) NCC / NSS / NSO / YRC activities for character development

There shall be a certain minimum number of core courses and sufficient number of elective courses that can be opted by the students. The blend of different courses shall be so designed that the student, at the end of the programme, would have been trained not only in his / her relevant professional field but also would have developed as a socially conscious human being.

- 4.2 Each course is normally assigned a certain number of credits with 1 credit per lecture period per week, 1 credit per tutorial period per week, 1 credit for 2 periods of laboratory or practical or seminar or project work per week (2 credits for 3 or 4 periods of practical).
- 4.3 Each semester curriculum shall normally have a blend of lecture courses not exceeding 7 and practical courses not exceeding 4. However, the total number of courses per semester shall not exceed 10.
- 4.4 For the award of the degree, a student has to earn certain minimum total number of credits specified in the curriculum of the relevant branch of study.
- 4.5 The medium of instruction is English for all courses, examinations, seminar presentations and project / thesis / dissertation reports except for the programmes offered in Tamil Medium.

5. DURATION OF THE PROGRAMME

- 5.1 A student is ordinarily expected to complete the B.E. / B.Tech. Programme in 8 semesters (four academic years) but in any case not more than 14 Semesters for HSC (or equivalent) candidates and not more than 12 semesters for Lateral Entry Candidates.
- 5.2 Each semester shall normally consist of 90 working days or 450 periods of 50 minutes each. The Head of the Institution shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus and that the teacher teaches the full content of the specified syllabus for the course being taught.
- 5.3 The Head of the Institution may conduct additional classes for improvement, special coaching, conduct of model test etc., over and above the specified periods. But for the purpose of calculation of attendance requirement for writing the end semester examinations (as per clause 6) by the students, following method shall be used.

Percentage of Attendance = $\frac{\text{Total no. of periods attended in all the courses per semester}}{(\text{No. of periods / week as prescribed in the curriculum}) x 15} X 100$ taken together for all courses of the semester

The University Examination will ordinarily follow immediately after the last working day of the semester as per the academic schedule prescribed from time to time.

5.4 The total period for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5.1 irrespective of the period of break of study (vide clause 18.4) in order that he/she may be eligible for the award of the degree (vide clause 15).

6. ATTENDANCE REQUIREMENTS FOR COMPLETION OF THE SEMESTER

6.1 A Candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester.

Ideally every student is expected to attend all classes and secure 100% attendance. However, in order to give provision for certain unavoidable reasons such as Medical / participation in sports, the student is expected to attend atleast 75% of the classes.

Therefore, he/she shall **secure not less than 75%** (after rounding off to the nearest integer) of overall attendance as calculated as per clause 5.3.

- 6.2 However, a candidate who <u>secures overall attendance between 65% and 74%</u> in the current semester due to medical reasons (prolonged hospitalization / accident / specific illness) / Participation in Sports events may be permitted to appear for the current semester examinations subject to the condition that the candidate shall submit the medical certificate / sports participation certificate attested by the Head of the Institution. The same shall be forwarded to the Controller of Examinations for record purposes.
- 6.3 Candidates who secure less than 65% overall attendance and candidates who do not satisfy the clause 6.1 and 6.2 shall not be permitted to write the University examination at the end of the semester and not permitted to move to the next semester. They are required to repeat the incomplete semester in the next academic year, as per the norms prescribed.

7. CLASS ADVISOR

There shall be a class advisor for each class. The class advisor will be one among the (course-instructors) of the class. He / She will be appointed by the HoD of the department concerned. The class advisor is the ex-officio member and the Convener of the class committee. The responsibilities for the class advisor shall be:

- To act as the channel of communication between the HoD and the students of the respective class.
- To collect and maintain various statistical details of students.
- To help the chairperson of the class committee in planning and conduct of the class committee meetings.
- To monitor the academic performance of the students including attendance and to inform the class committee.
- To attend to the students' welfare activities like awards, medals, scholarships and industrial visits.

8. CLASS COMMITTEE

- 8.1. Every class shall have a class committee consisting of teachers of the class concerned, student representatives and a chairperson who is not teaching the class. It is like the 'Quality Circle' (more commonly used in industries) with the overall goal of improving the teaching-learning process. The functions of the class committee include
 - Solving problems experienced by students in the class room and in the laboratories.
 - Clarifying the regulations of the degree programme and the details of rules therein particularly (clause 5 and 6) which should be displayed on college Notice-Board.
 - Informing the student representatives, the academic schedule including the dates of assessments and the syllabus coverage for each assessment.
 - Informing the student representatives the details of Regulations regarding weightage used for each assessment. In the case of practical courses (laboratory / drawing / project work / seminar etc.) the breakup of marks for each experiment / exercise / module of work, should be clearly discussed in the class committee meeting and informed to the students.
 - Analyzing the performance of the students of the class after each test and finding the ways and means of solving problems, if any.
 - Identifying the weak students, if any, and requesting the teachers concerned to provide some additional help or guidance or coaching to such weak students.
- 8.2 The class committee for a class under a particular branch is normally constituted by the Head of the Department. However, if the students of different branches are mixed in a class (like the first semester which is generally common to all branches), the class committee is to be constituted by the Head of the Institution.
- 8.3 The class committee shall be constituted within the first week of each semester.
- 8.4 At least 4 student representatives (usually 2 boys and 2 girls) shall be included in the class committee.
- 8.5 The Chairperson of the class committee may invite the Class adviser(s) and the Head of the Department to the class committee meeting.
- 8.6 The Head of the Institution may participate in any class committee of the institution.
- 8.7 The chairperson is required to prepare the minutes of every meeting, submit the same to Head of the Institution within two days of the meeting and arrange to circulate it among the students and teachers concerned. If there are some points in the minutes requiring action by the management, the same shall be brought to the notice of the Management by the Head of the Institution.

8.8 The first meeting of the class committee shall be held within one week from the date of commencement of the semester, in order to inform the students about the nature and weightage of assessments within the framework of the Regulations. Two or three subsequent meetings may be held in a semester at suitable intervals. <u>The Class Committee Chairman shall put on the Notice Board the cumulative attendance particulars of each student at the end of every such meeting to enable the students to know their attendance details to satisfy the clause 6 of this Regulation. During these meetings the student members representing the entire class, shall meaningfully interact and express the opinions and suggestions of the other students of the class in order to improve the effectiveness of the teaching-learning process.</u>

9. COURSE COMMITTEE FOR COMMON COURSES

Each common theory course offered to more than one discipline or group, shall have a "Course Committee" comprising all the teachers teaching the common course with one of them nominated as Course Coordinator. The nomination of the Course Coordinator shall be made by the Head of the Department / Head of the Institution depending upon whether all the teachers teaching the common course belong to a single department or to several departments. The 'Course committee' shall meet in order to arrive at a common scheme of evaluation for the test and shall ensure a uniform evaluation of the tests. Wherever feasible, the course committee may also prepare a common question paper for the internal assessment test(s).

10. SYSTEM OF EXAMINATION

- 10.1 Performance in each course of study shall be evaluated based on (i) continuous internal assessment throughout the semester and (ii) University examination at the end of the semester.
- 10.2 Each course, both theory and practical (including project work & viva voce Examinations) shall be evaluated for a maximum of 100 marks.

For all theory and practical courses including project work, the continuous internal assessment will carry **20 marks** while the End - Semester University examination will carry **80 marks**.

- 10.3 Industrial training and seminar shall carry 100 marks and shall be evaluated through internal assessment only.
- 10.4 The University examination (theory and practical) of 3 hours duration shall ordinarily be conducted between October and December during the odd semesters and between April and June during the even semesters.
- 10.5 The University examination for project work shall consist of evaluation of the final report submitted by the student or students of the project group (of not exceeding 4 students) by an external examiner and an internal examiner, followed by a viva-voce examination conducted separately for each student by a committee consisting of the external examiner, the supervisor of the project group and an internal examiner.
- 10.6 For the University examination in both theory and practical courses including project work the internal and external examiners shall be appointed by the Controller of Examinations.

11. PROCEDURE FOR AWARDING MARKS FOR INTERNAL ASSESSMENT

For all theory and practical courses (including project work) the continuous assessment shall be for a maximum of 20 marks. The above continuous assessment shall be awarded as per the procedure given below:

11.1(a) Theory Courses

Three tests each carrying 100 marks shall be conducted during the semester by the Department / College concerned. The total marks obtained in all tests put together out of 300, shall be proportionately reduced for 20 marks and rounded to the nearest integer (This also implies equal weightage to all the three tests).

(b) Practical Courses:

The maximum marks for Internal Assessment shall be 20 in case of practical courses. Every practical exercise / experiment shall be evaluated based on conduct of experiment / exercise and records maintained. There shall be at least one test. The criteria for arriving at the Internal Assessment marks of 20 is as follows: 75 marks shall be awarded for successful completion of all the prescribed experiments done in the Laboratory and 25 marks for the test. The total mark shall be reduced to 20 and rounded to the nearest integer.

(c) Theory Courses with Laboratory Component:

If there is a theory course with Laboratory component, there shall be three tests: the first two tests (each 100 marks) will be from theory portions and the third test (maximum mark 100) will be for laboratory component. The sum of marks of first two tests shall be reduced to 60 marks and the third test mark shall be reduced to 40 marks. The sum of these 100 marks may then be arrived at for 20 and rounded to the nearest integer.

- **11.2**(a) The seminar / Case study is to be considered as purely INTERNAL (with 100% internal marks only). Every student is expected to present a minimum of 2 seminars per semester before the evaluation committee and for each seminar, marks can be equally apportioned. The three member committee appointed by Head of the Institution will evaluate the seminar and at the end of the semester the marks can be consolidated and taken as the final mark. The evaluation shall be based on the seminar paper (40%), presentation (40%) and response to the questions asked during presentation (20%).
 - (b) The Industrial / Practical Training, Summer Project, Internship shall carry 100 marks and shall be evaluated through internal assessment only. At the end of Industrial / Practical training / internship / Summer Project, the candidate shall submit a certificate from the organization where he / she has undergone training and a brief report. The evaluation will be made based on this report and a Viva-Voce Examination, conducted internally by a three member Departmental Committee constituted by the Head of the Institution. The certificates (issued by the organization) submitted by the students shall be attached to the mark list sent by the Head of the Institution to the Controller of Examinations.

11.3 Project Work:

Project work may be allotted to a single student or to a group of students not exceeding 4 per group.

The Head of the Institutions shall constitute a review committee for project work for each branch of study. There shall be three reviews during the semester by the review committee. The student shall make presentation on the progress made by him / her before the committee. The total marks obtained in the three reviews shall be **reduced for 20 marks** and rounded to the nearest integer (as per the scheme given in 11.3.1).

11.3.1 The project report shall carry a maximum 30 marks. The project report shall be submitted as per the approved guidelines as given by Director, Academic Courses. Same mark shall be awarded to every student within the project group for the project report. The viva-voce examination shall carry 50 marks. Marks are awarded to each student of the project group based on the individual performance in the viva-voce examination.

Review	Review	Review	End semester Examinations					
I	II	III	The	esis	Viva-Voce (50)			
			Submis	sion (30)				
5	7.5	7.5	Internal	External	Internal	External	Supervisor	
			15	15	15 20 15			

- **11.3.2** If a candidate fails to submit the project report on or before the specified deadline, he/she is deemed to have failed in the Project Work and shall re-enroll for the same in a subsequent semester.
- **11.4** Internal marks approved by the Head of the Institution shall be displayed by the respective HODs within 5 days from the last working day.

11.5 Attendance Record

Every teacher is required to maintain an 'ATTENDANCE AND ASSESSMENT RECORD' which consists of attendance marked in each lecture or practical or project work class, the test marks and the record of class work (topic covered), separately for each course. This should be submitted to the Head of the department periodically (at least three times in a semester) for checking the syllabus coverage and the records of test marks and attendance. The Head of the department will put his signature and date after due verification. At the end of the semester, the record should be verified by the Head of the Institution who will keep this document in safe custody (for five years). The University or any inspection team appointed by the University may verify the records of attendance and assessment of both current and previous semesters.

12. REQUIREMENTS FOR APPEARING FOR UNIVERSITY EXAMINATIONS

A candidate shall normally be permitted to appear for the University Examinations of the current semester if he/she has satisfied the semester completion requirements (subject to Clause 6) and has registered for examination in all courses of the semester. Registration is mandatory for current semester examinations as well as arrear examinations, failing which the candidate will not be permitted to move to the higher semester.

A candidate who has already appeared for any subject in a semester and passed the examination is not entitled to reappear in the same subject for improvement of grades.

13. PASSING REQUIREMENTS

- 13.1 A candidate who secures not less than 50% of total marks prescribed for the course [Internal Assessment + End semester University Examinations] with a minimum of 45% of the marks prescribed for the end-semester University Examination, shall be declared to have passed the course and acquired the relevant number of credits. This is applicable for both theory and practical courses (including project work).
- 13.2 If a candidate fails to secure a pass in a particular course, it is mandatory that he/she shall register and reappear for the examination in that course during the subsequent semester when examination is conducted in that course; he/she should continue to register and reappear for the examinations in the failed subjects till he / she secures a pass.
- 13.3 The internal assessment marks obtained by the candidate in the first appearance shall be retained and considered valid for all subsequent attempts till the candidate secure a pass. However, from the third attempt onwards if a candidate fails to obtain pass marks (IA + End Semester Examination) as per clause 13.1, then the candidate shall be declared to have passed the examination if he/she secure a minimum of 50% marks prescribed for the university end semester examinations alone.

14. AWARD OF LETTER GRADES

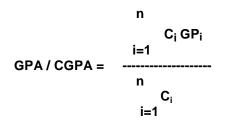
14.1.1 All assessments of a course will be done on absolute marks basis. However, for the purpose of reporting the performance of a candidate, letter grades, each carrying certain number of points, will be awarded as per the range of total marks (out of 100) obtained by the candidate in each subject as detailed below:

Letter grade	Grade Points	Marks Range
S	10	91 – 100
А	9	81 – 90
В	8	71 – 80
С	7	61 – 70
D	6	57 – 60
E	5	50 – 56
U	0	< 50
		(or 50 but not satisfying clause 13.1)
W	0	

A student is deemed to have passed and acquired the corresponding credits in a particular course if he/she obtains any one of the following grades: "S", "A", "B", "C", "D", "E".

'SA' denotes shortage of attendance (as per clause 6.3) and hence prevention from writing the end semester examination. 'SA' will appear only in the result sheet.

"U" denotes **Reappearance** (RA) is required for the examination in the course. "W" denotes **withdrawal** from the exam for the particular course. (The grades U and W will figure both in Marks Sheet as well as in Result Sheet)


Grade sheet

After results are declared, Grade Sheets will be issued to each student which will contain the following details:

- The college in which the candidate has studied
- The list of courses enrolled during the semester and the grade scored.
- The Grade Point Average (GPA) for the semester and
- The Cumulative Grade Point Average (CGPA) of all courses enrolled from first semester onwards.

GPA for a semester is the ratio of the sum of the products of the number of credits for courses acquired and the corresponding points to the sum of the number of credits for the courses acquired in the semester.

CGPA will be calculated in a similar manner, considering all the courses registered from first semester. "U", and "W" grades will be excluded for calculating GPA and CGPA.

where C_i is the number of Credits assigned to the course

GP_i is the point corresponding to the grade obtained for each course

 ${\bf n}$ is number of all courses successfully cleared during the particular semester in the case of GPA and during all the semesters in the case of CGPA

15. ELIGIBILITY FOR THE AWARD OF THE DEGREE

15.1 A student shall be declared to be eligible for the award of the Degree if he/she has

 Successfully gained the required number of total credits as specified in the Curriculum corresponding to his/her Programme within the stipulated time.

- No disciplinary action is pending against him/her.
- The award of the degree must be approved by the Syndicate.
- Successfully completed any additional courses prescribed by the Director, Academic Courses, whenever any candidate is readmitted under Regulations other than R – 2013 (clause 18.2).

16. CLASSIFICATION OF THE DEGREE AWARDED

16.1 FIRST CLASS WITH DISTINCTION

A candidate who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction.

- Should have passed the End semester examination in all the courses of all the eight semesters (six semesters in the case of lateral entry) in his/her First Appearance within four years (three years in the case of lateral entry). Withdrawal from examination (vide Clause 17) will not be considered as an appearance. One year authorized break of study (if availed of) is permitted in addition to four years (three years in the case of lateral entry) for award of First class with Distinction.
- Should have secured a CGPA of not less than 8.50.

16.2 FIRST CLASS

A candidate who satisfies the following conditions shall be declared to have passed the examination in First class.

- Should have passed the End semester examination in all the courses of all the eight semesters (six semesters in the case of lateral entry) within five years (four years in the case of lateral entry). One year authorized break of study (if availed of) or prevention from writing the End Semester examination due to lack of attendance (if applicable) is included in the duration of five years (four years in the case of lateral entry) for award of First class.
- Should have secured a CGPA of not less than 6.50.

16.3 SECOND CLASS

All other candidates (not covered in clauses 16.1 and 16.2) who qualify for the award of the degree (vide Clause 15) shall be declared to have passed the examination in **Second Class**.

16.4 A candidate who is absent in semester examination in a course / project work after having registered for the same shall be considered to have appeared in that examination for the purpose of classification. (subject to clause 17 and 18)

16.5 Photocopy / Revaluation

A candidate can apply for photocopy of his/her semester examination answer paper in a theory course, within 2 weeks from the declaration of results, on payment of a prescribed fee through proper application to the Controller of Examinations through the Head of Institutions. The answer script is to be valued and justified by a faculty member, who handled the subject and recommend for revaluation with breakup of marks for each question. Based on the recommendation, the candidate can register for the revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for the revaluation and the results will be intimated to the candidate concerned through the Head of the Institutions. Revaluation is not permitted for practical courses and for project work.

A candidate can apply for revaluation of answer scripts for not exceeding 5 subjects at a time.

16.6 Review

Candidates not satisfied with Revaluation can apply for Review of his/ her examination answer paper in a theory course, within the prescribed date on payment of a prescribed fee through proper application to Controller of Examination through the Head of the Institution.

Candidates applying for Revaluation only are eligible to apply for Review.

17. PROVISION FOR WITHDRAWAL FROM END-SEMESTER EXAMINATION

- 17.1 A candidate, may for valid reasons and on prior application, be granted permission to withdraw from appearing for the examination of any one course or consecutive examinations of more than one course in a semester examination.
- 17.2 Such withdrawal shall be permitted **only once during the entire period** of study of the degree programme.
- 17.3 Withdrawal application is valid only if it is made within 10 days prior to the commencement of the examination in that course or courses and recommended by the Head of the Institution and approved by the Controller of Examinations.
- 17.3.1 Notwithstanding the requirement of mandatory TEN days notice, applications for withdrawal for special cases under extraordinary conditions will be considered on the merit of the case.
- 17.4 Withdrawal shall not be construed as an appearance for the eligibility of a candidate for First Class with Distinction.
- 17.5 Withdrawal from the End Semester Examination is <u>NOT</u> applicable to arrears subjects of previous semesters.
- 17.6 The candidate shall reappear for the withdrawn courses during the examination conducted in the subsequent semester.
- 17.7 Withdrawal shall not be permitted in the final semester examinations.

18. PROVISION FOR AUTHORISED BREAK OF STUDY

- 18.1 Break of Study shall be granted only once for valid reasons for a maximum of one year during the entire period of study of the degree programme. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for break of study. If a candidate intends to temporarily discontinue the programme in the middle of the semester for valid reasons, and to rejoin the programme in a subsequent year, permission may be granted based on the merits of the case provided he / she applies to the Director, Student Affairs in advance, but not later than the last date for registering for the end semester examination of the semester in question, through the Head of the Institution stating the reasons therefore and the probable date of rejoining the programme.
- 18.2 The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance, shall be governed by the Curriculum and Regulations in force at the time of rejoining. The students rejoining in new Regulations shall apply to the Director, Academic Courses in the prescribed format through Head of the Institution at the beginning of the readmitted semester itself for prescribing additional courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- 18.3 The authorized break of study will not be counted towards the duration specified for passing all the courses for the purpose of classification (vide Clause 16.1).
- 18.4 The total period for completion of the Programme reckoned from, the commencement of the first semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5.1 irrespective of the period of break of study in order that he/she may be eligible for the award of the degree.

18.5 If any student is prevented for want of required attendance, the period of prevention shall not be considered as authorized 'Break of Study' (Clause 18.1)

19. INDUSTRIAL VISIT

Every student is required to undergo one Industrial visit for every theory course offered, starting from the third semester of the Programme. Every teacher shall take the students at least for one industrial visit in a semester.

20. PERSONALITY AND CHARACTER DEVELOPMENT

All students shall enroll, on admission, in any one of the personality and character development programmes (the NCC / NSS / NSO / YRC) and undergo training for about 80 hours and attend a camp of about seven days. The training shall include classes on hygiene and health awareness and also training in first-aid.

National Cadet Corps (NCC) will have about 20 parades.

National Service Scheme (NSS) will have social service activities in and around the College / Institution.

National Sports Organization (NSO) will have sports, Games, Drills and Physical exercises.

Youth Red Cross (YRC) will have activities related to social services in and around college / institutions.

While the training activities will normally be during weekends, the camp will normally be during vacation period.

Every student shall put in a minimum of 75% attendance in the training and attend the camp compulsorily. The training and camp shall be completed during the first year of the programme. However, for valid reasons, the Head of the Institution may permit a student to complete this requirement in the second year.

21. DISCIPLINE

- 21.1 Every student is required to observe disciplined and decorous behavior both inside and outside the college and not to indulge in any activity which will tend to bring down the prestige of the University / College. The Head of Institution shall constitute a disciplinary committee consisting of Head of Institution, Two Heads of Department of which one should be from the faculty of the student, to enquire into acts of indiscipline and notify the University about the disciplinary action recommended for approval. In case of any serious disciplinary action which leads to suspension or dismissal, then a committee shall be constituted including one representative from Anna University, Chennai. In this regard, the member will be nominated by the University on getting information from the Head of the Institution.
- 21.2 If a student indulges in malpractice in any of the University / internal examination he / she shall be liable for punitive action as prescribed by the University from time to time.

22. REVISION OF REGULATIONS, CURRICULUM AND SYLLABI

The University may from time to time revise, amend or change the Regulations, Curriculum, Syllabus and scheme of examinations through the Academic Council with the approval of Syndicate.

ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

R-2013

B.E. COMPUTER SCIENCE AND ENGINEERING I TO VIII SEMESTER CURRICULUM AND SYLLABUS

SEMESTER I

SL.	COURSE	COURSE TITLE		т	Р	С		
No.	CODE	COOKSE IIILE	L	•	F	C		
THEO	THEORY							
1.	HS6151	<u>Technical English – I</u>	3	1	0	4		
2.	MA6151	Mathematics – I	3	1	0	4		
3.	PH6151	Engineering Physics – I	3	0	0	3		
4.	CY6151	Engineering Chemistry – I	3	0	0	3		
5.	GE6151	Computer Programming	3	0	0	3		
6.	GE6152	Engineering Graphics	2	0	3	4		
PRAC	TICALS							
7.	GE6161	Computer Practices Laboratory	0	0	3	2		
8.	GE6162	Engineering Practices Laboratory	0	0	3	2		
9.	GE6163	Physics and Chemistry Laboratory - I	0	0	2	1		
		TOTAL	17	2	11	26		

SEMESTER II

SL. No.	COURSE CODE	COURSE TITLE	L	т	Р	С
THEO	RY					
1.	HS6251	Technical English – II	3	1	0	4
2.	MA6251	Mathematics – II	3	1	0	4
3.	PH6251	Engineering Physics – II	3	0	0	3
4.	CY6251	Engineering Chemistry – II	3	0	0	3
5.	CS6201	Digital Principles and System Design	3	0	0	3
6.	CS6202	Programming and Data Structures I	3	0	0	3
PRAC	TICALS					
7.	GE6262	Physics and Chemistry Laboratory - II	0	0	2	1
8.	CS6211	Digital Laboratory	0	0	3	2
9.	CS6212	Programming and Data Structures	0	0	3	2
		Laboratory I	0	0	3	2
		TOTAL	18	2	8	25

SEMESTER III

SL. No.	COURSE CODE	COURSE TITLE	L	т	Р	С		
THEOF	THEORY							
1.	MA6351	Transforms and Partial Differential Equations	3	1	0	4		
2.	CS6301	Programming and Data Structure II	3	0	0	3		
3.	CS6302	Database Management Systems	3	0	0	3		
4.	CS6303	Computer Architecture	3	0	0	3		
5.	CS6304	Analog and Digital Communication	3	0	0	3		
6.	GE6351	Environmental Science and Engineering	3	0	0	3		
PRAC	TICAL							
7.	CS6311	Programming and Data Structure Laboratory II	0	0	3	2		
8.	CS6312	Database Management Systems Laboratory	0	0	3	2		
		TOTAL	18	1	6	23		

SEMESTER IV

SL. No.	COURSE CODE	COURSE TITLE	L	т	Р	С
THEOF	λY			1	1	
1.	MA6453	Probability and Queueing Theory	3	1	0	4
2.	CS6551	Computer Networks	3	0	0	3
3.	CS6401	Operating Systems	3	0	0	3
4.	CS6402	Design and Analysis of Algorithms	3	0	0	3
5.	EC6504	Microprocessor and Microcontroller	3	0	0	3
6.	CS6403	Software Engineering	3	0	0	3
PRAC	TICAL			•	•	
7.	CS6411	Networks Laboratory	0	0	3	2
8.	CS6412	Microprocessor and Microcontroller Laboratory	0	0	3	2
9.	CS6413	Operating Systems Laboratory	0	0	3	2
		TOTAL	18	1	9	25

SEMESTER V

SL.	COURSE	COURSE TITLE	1	т	Р	С				
No.	CODE		-	•	•					
THEOF	THEORY									
1.	MA6566	Discrete Mathematics	3	1	0	4				
2.	CS6501	Internet Programming	3	1	0	4				
3.	CS6502	Object Oriented Analysis and Design	3	0	0	3				
4.	CS6503	Theory of Computation	3	0	0	3				
5.	CS6504	Computer Graphics	3	0	0	3				
PRAC	TICAL									
6.	CS6511	Case Tools Laboratory	0	0	3	2				
7.	CS6512	Internet Programming Laboratory	0	0	3	2				
8.	CS6513	Computer Graphics Laboratory	0	0	3	2				
		TOTAL	15	2	9	23				

SEMESTER VI

SL.	COURSE	COURSE TITLE		т	Р	С
No.	CODE	COORSE IIILE	Ŀ	I	Г	C
THEO	RY					
1.	CS6601	Distributed Systems	3	0	0	3
2.	IT6601	Mobile Computing	3	0	0	3
3.	CS6660	Compiler Design	3	0	0	3
4.	IT6502	Digital Signal Processing	3	1	0	4
5.	CS6659	Artificial Intelligence	3	0	0	3
6.		Elective I	3	0	0	3
PRAC	TICAL					
7.	CS6611	Mobile Application Development Laboratory	0	0	3	2
8.	CS6612	Compiler Laboratory	0	0	3	2
9.	GE6674	Communication and Soft Skills - Laboratory	0	0	4	2
		Based	0	0	4	2
		TOTAL	18	1	10	25

SEMESTER VII

SL. No.	COURSE CODE	COURSE TITLE		L	т	Р	С		
	THEORY								
1.	CS6701	Cryptography and Network Security		3	0	0	3		
2.	CS6702	Graph Theory and Applications		3	0	0	3		
3.	CS6703	Grid and Cloud Computing		3	0	0	3		
4.	CS6704	Resource Management Techniques		3	0	0	3		
5.		Elective II		3	0	0	3		
6.		Elective III		3	0	0	3		
PRAC	FICAL			•					
7.	CS6711	Security Laboratory		0	0	3	2		
8.	CS6712	Grid and Cloud Computing Laboratory		0	0	3	2		
			TOTAL	18	0	6	22		

SEMESTER VIII

SL.	COURSE	COURSE TITLE		т	Р	С			
No.	CODE		-	•	F	C			
THEOF	THEORY								
1.	CS6801	Multi – Core Architectures and Programming	3	0	0	3			
2.		Elective IV	3	0	0	3			
3.		Elective V	3	0	0	3			
PRAC	FICAL								
4.	CS6811	Project Work	0	0	12	6			
		TOTAL	9	0	12	15			

TOTAL NO. OF CREDITS: 184

LIST OF ELECTIVES

SEMESTER VI – Elective I

S.NO.	CODE	COURSE TITLE	L	Т	Ρ	С
	NO.					
1.	CS6001	C# and .Net programming	3	0	0	3
2.	GE6757	Total Quality Management	3	0	0	3
3.	IT6702	Data Warehousing and Data Mining	3	0	0	3
4.	CS6002	Network Analysis and Management	3	0	0	3
5.	IT6004	Software Testing	3	0	0	3
6.	GE6084	Human Rights	3	0	0	3

SEMESTER VII – Elective II

S.NO.	CODE NO.	COURSE TITLE	L	т	Р	С
7.	CS6003	Ad hoc and Sensor Networks	3	0	0	3
8.	CS6004	Cyber Forensics	3	0	0	3
9.	CS6005	Advanced Database Systems	3	0	0	3
10.	BM6005	Bio Informatics	3	0	0	3
11.	IT6801	Service Oriented Architecture	3	0	0	3

SEMESTER VII – Elective III

S.NO	CODE NO.	COURSE TITLE	L	Т	Р	С
12.	IT6005	Digital Image Processing	3	0	0	3
13.	EC6703	Embedded and Real Time Systems	3	0	0	3
14.	CS6006	Game Programming	3	0	0	3
15.	CS6007	Information Retrieval	3	0	0	3
16.	IT6006	Data Analytics	3	0	0	3

SEMESTER VIII – Elective IV

S.NO.	CODE NO.	COURSE TITLE	L	Т	Р	С
17.	CS6008	Human Computer Interaction	3	0	0	3
18.	CS6009	Nano Computing	3	0	0	3
19.	IT6011	Knowledge Management	3	0	0	3
20.	CS6010	Social Network Analysis	3	0	0	3
21.		Foundation Skills in Integrated Product	3	0	0	3
	CS6013	Development				

SEMESTER VIII – Elective V

S.NO.	CODE NO.	COURSE TITLE	L	Т	Р	С
22.	MG6088	Software Project Management	3	0	0	3
23.	GE6075	Professional Ethics in Engineering	3	0	0	3
24.	CS6011	Natural Language Processing	3	0	0	3
25.	CS6012	Soft Computing	3	0	0	3
26.	GE6083	Disaster Management	3	0	0	3

6

TECHNICAL ENGLISH – I

OBJECTIVES:

HS6151

- To enable learners of Engineering and Technology develop their basic communication skills in • English.
- To emphasize specially the development of speaking skills amongst learners of Engineering • and Technology.
- To ensure that learners use the electronic media such as internet and supplement the learning • materials used in the classroom.
- To inculcate the habit of reading and writing leading to effective and efficient communication. •

UNIT I

Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds); Speaking - Speaking about one's place, important festivals etc. - Introducing oneself, one's family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one's leisure time activities, hometown, etc.): Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II

Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette; Reading - Critical reading - Finding key information in a given text - Sifting facts from opinions: Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions -Recommendations - Instructions; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures -Picture-based activities.

UNIT III

Listening - Listening to specific task - focused audio tracks; Speaking - Role-play - Simulation -Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing -Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) - Paraphrasing; Grammar -Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary -Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables for interpretations.

UNIT IV

Listening - Watching videos / documentaries and responding to guestions based on them; Speaking -Responding to questions - Different forms of interviews - Speaking at different types of interviews; Reading - Making inference from the reading passage - Predicting the content of a reading passage; Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing - Different types of essays; Grammar - Adverbs - Tenses - future time reference; Vocabulary - Single word substitutes -Use of abbreviations and acronyms; E-materials - Interactive exercises for Grammar and Vocabulary -Sample interviews - film scenes - dialogue writing.

9+3

9+3

9+3

9+3

LT P C 3104

UNIT V

Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials - Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents - Interpreting posters.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Learners should be able to:

- Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- Read different genres of texts adopting various reading strategies.
- Listen/view and comprehend different spoken discourses/excerpts in different accents.

TEXTBOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012.
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011.

REFERENCES:

- 1. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011
- 2. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006
- 3. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 4. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001
- 5. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008

EXTENSIVE Reading (Not for Examination)

1. Kalam, Abdul. Wings of Fire. Universities Press, Hyderabad. 1999.

WEBSITES:

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like self introduction, peer introduction, group poster making, grammar and vocabulary games, etc.
- Discussions
- Role play activities
- Short presentations
- Listening and viewing activities with follow up activities like discussion, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc.

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Reviews
- Creative writing
- Poster making, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual speaking activities, Pair work activities like role play, Interview, Group discussions
- Reading assessment: Reading passages with comprehension questions graded from simple to complex, from direct to inferential
- ✓ Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content.

End Semester Examination: 80%

MA6151

MATHEMATICS – I

L	Т	Ρ	С
3	1	0	4

OBJECTIVES:

- To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
- To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of eigenvalues and eigenvectors – Statement and applications of Cayley-Hamilton Theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

UNIT II SEQUENCES AND SERIES

Sequences: Definition and examples – Series: Types and Convergence – Series of positive terms – Tests of convergence: Comparison test, Integral test and D'Alembert's ratio test – Alternating series – Leibnitz's test – Series of positive and negative terms – Absolute and conditional convergence.

9+3

UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes - Evolute as envelope of normals.

UNIT IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES

Limits and Continuity – Partial derivatives – Total derivative – Differentiation of implicit functions – Jacobian and properties – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

UNIT V MULTIPLE INTEGRALS

Double integrals in cartesian and polar coordinates – Change of order of integration – Area enclosed by plane curves – Change of variables in double integrals – Area of a curved surface - Triple integrals – Volume of Solids.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• This course equips students to have basic knowledge and understanding in one fields of materials, integral and differential calculus.

TEXT BOOKS:

- Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012).
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, PEARSON Publishing, 2011.

PH6151

ENGINEERING PHYSICS – I

OBJECTIVES:

• To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)-Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

9+3

9+3

9+3

L T P C 3 0 0 3

UNIT II **PROPERTIES OF MATTER AND THERMAL PHYSICS**

Elasticity- Hooke's law - Relationship between three modulii of elasticity (qualitative) - stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever -Young's modulus by uniform bending- I-shaped girders

Modes of heat transfer- thermal conductivity- Newton's law of cooling - Linear heat flow - Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel)

UNIT III **QUANTUM PHYSICS**

Black body radiation - Planck's theory (derivation) - Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves - G.P. Thomson experiment -Schrödinger's wave equation - Time independent and time dependent equations - Physical significance of wave function - Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber-Fechner law - Sabine's formula- derivation using growth and decay method - Absorption Coefficient and its determination -factors affecting acoustics of buildings and their remedies.

Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications - Sonogram

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion -Einstein's A and B coefficients derivation. Types of lasers - Nd:YAG, CO, , Semiconductor lasers (homojunction & heterojunction)-

Industrial and Medical Applications.

Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) - attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TOTAL: 45 PERIODS

OUTCOMES:

The students will have knowledge on the basics of physics related to properties of matter, optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications

TEXT BOOKS:

- 1. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 2. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009
- 3. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Mani P. Engineering Physics I. Dhanam Publications, 2011.
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 4. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.
- 5. Rajagopal K. Engineering Physics. PHI, New Delhi, 2011.
- 6. Senthilkumar G. Engineering Physics I. VRB Publishers, 2011.

9

9

To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.

To make the student acquire sound knowledge of second law of thermodynamics and second law

To acquaint the student with concepts of important photophysical and photochemical processes

To acquaint the students with the basics of nano materials, their properties and applications. •

UNIT I POLYMER CHEMISTRY

and spectroscopy.

Introduction: Classification of polymers - Natural and synthetic; Thermoplastic and Thermosetting. Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tg, Tacticity, Molecular weight – weight average, number average and polydispersity index. Techniques of polymerization; Bulk, emulsion, solution and suspension, Preparation, properties and uses of Nylon 6,6, and Epoxy resin.

UNIT II CHEMICAL THERMODYNAMICS

Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van't Hoff isotherm and isochore(problems).

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY

Photochemistry: Laws of photochemistry - Grotthuss-Draper law, Stark-Einstein law and Lambert-Beer Law. Quantum efficiency - determination- Photo processes - Internal Conversion, Inter-system crossing. Fluorescence, Phosphorescence, Chemiluminescence and Photo-sensitization. Spectroscopy: Electromagnetic spectrum - Absorption of radiation - Electronic, Vibrational and rotational transitions. UV-visible and IR spectroscopy – principles, instrumentation (Block diagram only).

UNIT IV PHASE RULE AND ALLOYS

Phase rule: Introduction, definition of terms with examples, One Component System- water system -Reduced phase rule - Two Component Systems- classification - lead-silver system, zinc-magnesium system. Alloys: Introduction- Definition- Properties of alloys- Significance of alloying, Functions and effect of alloying elements- Ferrous alloys- Nichrome and Stainless steel - heat treatment of steel; Non-ferrous alloys – brass and bronze.

UNIT V NANOCHEMISTRY

Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties. nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrodeposition, chemical vapour deposition, laser ablation: Properties and applications

TOTAL: 45 PERIODS

ENGINEERING CHEMISTRY - I

To make the students conversant with basics of polymer chemistry.

based derivations of importance in engineering applications in all disciplines.

•

•

•

OBJECTIVES:

9

9

9

9

OUTCOMES:

• The knowledge gained on polymer chemistry, thermodynamics. spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010.
- 2. Kannan P., Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009.

REFERENCES:

- 1. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008.
- 3. Gowariker V.R., Viswanathan N.V. and Javadev Sreedhar, "Polymer Science", New Age International P (Ltd.,), Chennai, 2006.
- 4. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.

GE6151

COMPUTER PROGRAMMING

L T PC 3 0 0 3

OBJECTIVES:

The students should be made to:

- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C. •

UNIT I INTRODUCTION

Generation and Classification of Computers- Basic Organization of a Computer -- Number System --Binary - Decimal - Conversion - Problems. Need for logical analysis and thinking - Algorithm -Pseudo code - Flow Chart.

UNIT II C PROGRAMMING BASICS

Problem formulation – Problem Solving - Introduction to 'C' programming –fundamentals – structure of a 'C' program - compilation and linking processes - Constants, Variables - Data Types -Expressions using operators in 'C' - Managing Input and Output operations - Decision Making and Branching – Looping statements – solving simple scientific and statistical problems.

UNIT III **ARRAYS AND STRINGS**

Arrays - Initialization - Declaration - One dimensional and Two dimensional arrays. String- String operations – String Arrays. Simple programs- sorting- searching – matrix operations.

8

10

2. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009.

Write and execute C programs for simple applications

At the end of the course, the student should be able to:

3. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.

(India) Pvt. Ltd., Pearson Education in South Asia, 2011.

REFERENCES:

OUTCOMES:

TEXTBOOKS:

1. Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2006.

1. Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Dorling Kindersley

- 2. Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint, 2007.
- 3. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006.

OBJECTIVES:

 To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products

ENGINEERING GRAPHICS

• To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves, Scales: Construction of Diagonal and Vernier scales.

Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT IV FUNCTIONS AND POINTERS

Function – definition of function – Declaration of function – Pass by value – Pass by reference – Recursion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays- Example Problems.

UNIT V STRUCTURES AND UNIONS

Design C Programs for problems.

Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

TOTAL: 45 PERIODS

9

9

L T P C 2 0 3 4

5+9

UNIT II **PROJECTION OF POINTS. LINES AND PLANE SURFACES**

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

PROJECTION OF SOLIDS UNIT III

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids - Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

ISOMETRIC AND PERSPECTIVE PROJECTIONS UNIT V

Principles of isometric projection - isometric scale -Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

COMPUTER AIDED DRAFTING (Demonstration Only)

Introduction to drafting packages and demonstration of their use.

OUTCOMES:

On Completion of the course the student will be able to:

- Perform free hand sketching of basic geometrical constructions and multiple views of objects.
- Do orthographic projection of lines and plane surfaces.
- Draw projections and solids and development of surfaces.
- Prepare isometric and perspective sections of simple solids.
- Demonstrate computer aided drafting.

TEXT BOOK:

1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.

REFERENCES:

- 1. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 2. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 3. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 5. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 6. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

3

TOTAL:75 PERIODS

5+9

5+9

6+9

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

GE6161

COMPUTER PRACTICES LABORATORY

LT P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- Be familiar with the use of Office software.
- Be exposed to presentation and visualization tools.
- Be exposed to problem solving techniques and flow charts.
- Be familiar with programming in C.
- Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:

- 1. Search, generate, manipulate data using MS office/ Open Office
- 2. Presentation and Visualization graphs, charts, 2D, 3D
- 3. Problem formulation, Problem Solving and Flowcharts
- 4. C Programming using Simple statements and expressions
- 5. Scientific problem solving using decision making and looping.
- 6. Simple programming for one dimensional and two dimensional arrays.
- 7. Solving problems using String functions
- 8. Programs with user defined functions Includes Parameter Passing
- 9. Program using Recursive Function and conversion from given program to flow chart.
- 10. Program using structures and unions.

OUTCOMES:

At the end of the course, the student should be able to:

- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos.

(or)

Server with C compiler supporting 30 terminals or more.

TOTAL: 45 PERIODS

GE6162

ENGINEERING PRACTICES LABORATORY

9

13

OBJECTIVES:

• To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.

- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:

Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- (a) Study of the joints in roofs, doors, windows and furniture.
- (b) Hands-on-exercise:

Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:

- (a) Preparation of arc welding of butt joints, lap joints and tee joints.
- (b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays, funnels, etc.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

- (a) Smithy operations, upsetting, swaging, setting down and bending. Example Exercise Production of hexagonal headed bolt.
- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and vee fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

Ш ELECTRICAL ENGINEERING PRACTICE

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
- 2. Study of logic gates AND, OR, EOR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

OUTCOMES:

- Ability to fabricate carpentry components and pipe connections including plumbing works.
- Ability to use welding equipments to join the structures. •
- Ability to fabricate electrical and electronics circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL

 Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and 				
other fittings.	15 Sets.			
2. Carpentry vice (fitted to work bench)	15 Nos.			
3. Standard woodworking tools	15 Sets.			
4. Models of industrial trusses, door joints, furniture joints	5 each			
5. Power Tools: (a) Rotary Hammer	2 Nos			
(b) Demolition Hammer	2 Nos			
(c) Circular Saw	2 Nos			
(d) Planer	2 Nos			
(e) Hand Drilling Machine	2 Nos			
(f) Jigsaw	2 Nos			
MECHANICAL				
MECHANICAL				
 Arc welding transformer with cables and holders Welding booth with exhaust facility Welding accessories like welding shield, chipping hammer, 	5 Nos. 5 Nos.			
wire brush, etc.	5 Sets.			
Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2 Nos.			
5. Centre lathe	2 Nos.			
17				

TOTAL: 45 PERIODS

10

Hearth furnace, anvil and smithy tools	2 Sets.
7. Moulding table, foundry tools	2 Sets.
8. Power Tool: Angle Grinder	2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner	One each.
ELECTRICAL	

1. Assorted electrical components for house wiring	15 Sets			
2. Electrical measuring instruments	10 Sets			
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each				
4. Megger (250V/500V)	1 No.			
5. Power Tools: (a) Range Finder	2 Nos			
(b) Digital Live-wire detector	2 Nos			

ELECTRONICS

1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power	

supply

REFERENCES:

- 1. Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Puplishing House Pvt.Ltd, (2006)
- 3. Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, (2007).
- 4. Rajendra Prasad A. & Sarma P.M.M.S., "Workshop Practice", Sree Sai Publication, (2002).
- 5. Kannaiah P. & Narayana K.L., "Manual on Workshop Practice", Scitech Publications, (1999).

GE6163

PHYSICS AND CHEMISTRY LABORATORY – I L T P C 0 0 2 1

PHYSICS LABORATORY – I

OBJECTIVES:

To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1 (a) Determination of Wavelength, and particle size using Laser
 - (b) Determination of acceptance angle in an optical fiber.
- 2. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 3. Determination of wavelength of mercury spectrum spectrometer grating
- 4. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- 5. Determination of Young's modulus by Non uniform bending method
- 6. Determination of specific resistance of a given coil of wire Carey Foster's Bridge

OUTCOMES:

The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Diode laser, lycopodium powder, glass plate, optical fiber.
- 2. Ultrasonic interferometer
- 3. Spectrometer, mercury lamp, grating
- 4. Lee's Disc experimental set up
- 5. Traveling microscope, meter scale, knife edge, weights
- 6. Carey foster's bridge set up

(vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY-I LIST OF EXPERIMENTS

(Any FIVE Experiments)

OBJECTIVES:

- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by vacometry.
- 1. Determination of DO content of water sample by Winkler's method.
- 2. Determination of chloride content of water sample by argentometric method
- 3. Determination of strength of given hydrochloric acid using pH meter
- 4. Determination of strength of acids in a mixture using conductivity meter
- 5. Estimation of iron content of the water sample using spectrophotometer
- 6. (1,10- phenanthroline / thiocyanate method)
- 7. Determination of molecular weight of polyvinylalcohol using Ostwald viscometer
- 8. Conductometric titration of strong acid vs strong base

TOTAL: 30 PERIODS

OUTCOMES:

The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New Yor (2001).
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry", LBS Singapore (1994).
- 3. Jeffery G.H., Bassett J., Mendham J.and Denny vogel's R.C, "Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.

4. Kolthoff I.M., Sandell E.B. et al. "Quantitative chemical analysis", Mcmillan, Madras 1980.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	lodine flask	-	30 Nos
2.	pH meter	-	5 Nos
3.	Conductivity meter	-	5 Nos
4.	Spectrophotometer	-	5 Nos

5. Ostwald Viscometer - 10 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (each 30 Nos.)

(greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using 'emoticons' as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. 'can') - Homophones (e.g. 'some', 'sum'): E-materials - Interactive exercise on Grammar and vocabulary - blogging: Language Lab -Listening to different types of conversation and answering questions.

UNIT II

Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one's friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary -Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students' dialogues.

UNIT III

Listening - Listening to the conversation - Understanding the structure of conversations; Speaking -Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information – expressing feelings (affection, anger, regret, etc.); Reading - Speed reading – reading passages with time limit - Skimming; Writing - Minutes of meeting - format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles - elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. 'rock', 'train', 'ring'); E-materials - Interactive exercise on Grammar and vocabulary -Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials Attending a meeting and writing minutes.

UNIT IV

Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned scanning: Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary -

To equip them with writing skills needed for academic as well as workplace contexts.

To make them acquire language skills at their own pace by using e-materials and language lab components

TECHNICAL ENGLISH II

To help them develop their reading skills by familiarizing them with different types of reading

UNIT I

Listening - Listening to informal conversations and participating; Speaking - Opening a conversation

OBJECTIVES:

strategies.

HS6251

To make learners acquire listening and speaking skills in both formal and informal contexts.

LTPC 3104

9+3

9+3

9+3

20

Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V

Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener; Speaking - Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading; Writing – Checklist - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL: 60 PERIODS

OUTCOMES:

Learners should be able to:

- Speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
- Write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- Read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- Listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

TEXTBOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008
- 2. Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011
- 3. Riordan, Daniel. G. Technical Communication. Cengage Learning, New Delhi. 2005
- 4. Sharma, Sangeetha & Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2009
- 5. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007

EXTENSIVE Reading (Not for Examination)

1. Khera, Shiv. You can Win. Macmillan, Delhi. 1998.

Websites

- 1. http://www.englishclub.com
- 2. http://owl.english.purdue.edu

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
 - Assignment
 - Report
 - Creative writing, etc.

All the four skills are to be tested with equal weightage given to each.

- Speaking assessment: Individual presentations, Group discussions
- Reading assessment: Reading passages with comprehension questions graded following Bloom's taxonomy
- Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.
- Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom's taxonomy.

End Semester Examination: 80%

MA6251

MATHEMATICS – II

L T P C 3 1 0 4

OBJECTIVES:

- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

COMPLEX INTEGRATION

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

OUTCOMES:

UNIT V

The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXT BOOKS:

- 1. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012).
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics" Volume II, Second Edition, PEARSON Publishing 2011.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

TOTAL: 60 PERIODS

9+3

9+3

9+3

24

OBJECTIVES:

• To enrich the understanding of various types of materials and their applications in engineering and technology.

ENGINEERING PHYSICS – II

UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High T_c superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications

OUTCOMES:

The students will have the knowledge on physics of materials and that knowledge will be used by them in different engineering and technology applications

TEXT BOOKS:

- 1. Arumugam M., Materials Science. Anuradha publishers, 2010
- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009

REFERENCES:

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011.
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.
- 3. Mani P. Engineering Physics II. Dhanam Publications, 2011.
- 4. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.

TOTAL: 45 PERIODS

9 ith

9

9

9

CY6251

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and • water treatment techniques.
- Principles of electrochemical reactions, redox reactions in corrosiion of materials and methods for corrosion prevention and protection of materials.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.

UNIT I WATER TECHNOLOGY

Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement-boiler corrosion-priming and foaming- desalination of brackish water -reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

Electrochemical cell - redox reaction, electrode potential- origin of electrode potential- oxidation potential- reduction potential, measurement and applications - electrochemical series and its significance - Nernst equation (derivation and problems). Corrosion- causes- factors- types-chemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - electrochemical protection - sacrificial anode method and impressed current cathodic method. Paints- constituents and function. Electroplating of Copper and electroless plating of nickel.

UNIT III ENERGY SOURCES

Introduction- nuclear energy- nuclear fission- controlled nuclear fission- nuclear fusion- differences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generatorclassification of nuclear reactor- light water reactor- breeder reactor- solar energy conversion- solar cells- wind energy. Batteries and fuel cells: Types of batteries- alkaline battery- lead storage batterynickel-cadmium battery- lithium battery- fuel cell H₂ -O₂ fuel cell- applications.

ENGINEERING MATERIALS **UNIT IV**

Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties - refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cementwaterproof and white cement-properties and uses. Glass - manufacture, types, properties and uses.

UNIT V FUELS AND COMBUSTION

Fuel: Introduction- classification of fuels- calorific value- higher and lower calorific values- coalanalysis of coal (proximate and ultimate)- carbonization- manufacture of metallurgical coke (Otto Hoffmann method) - petroleum- manufacture of synthetic petrol (Bergius process)- knocking- octane number - diesel oil- cetane number - natural gas- compressed natural gas(CNG)- liquefied petroleum gases(LPG)- producer gas- water gas. Power alcohol and bio diesel. Combustion of fuels: introduction- theoretical calculation of calorific value- calculation of stoichiometry of fuel and air ratioignition temperature- explosive range - flue gas analysis (ORSAT Method).

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- 1. Vairam S, Kalvani P and SubaRamesh., "Engineering Chemistry"., Wiley India PvtLtd., New Delhi., 2011
- 2. Dara S.S and Umare S.S. "Engineering Chemistry", S. Chand & Company Ltd., New Delhi, 2010

REFERENCES:

- 1. Kannan P. and Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai. 2009.
- 2. AshimaSrivastava and Janhavi N N., "Concepts of Engineering Chemistry", ACME Learning Private Limited., New Delhi., 2010.
- 3. RenuBapna and Renu Gupta., "Engineering Chemistry", Macmillan India Publisher Ltd., 2010.
- 4. Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010

DIGITAL PRINCIPLES AND SYSTEM DESIGN

LTPC 3 0 0 3

OBJECTIVES:

CS6201

The student should be made to:

- Learn the various number systems.
- Learn Boolean Algebra
- Understand the various logic gates.
- Be familiar with various combinational circuits.
- Be familiar with designing synchronous and asynchronous sequential circuits.
- Be exposed to designing using PLD

UNIT I **BOOLEAN ALGEBRA AND LOGIC GATES**

Review of Number Systems - Arithmetic Operations - Binary Codes - Boolean Algebra and Theorems - Boolean Functions - Simplification of Boolean Functions using Karnaugh Map and Tabulation Methods – Logic Gates – NAND and NOR Implementations.

UNIT II **COMBINATIONAL LOGIC**

Combinational Circuits – Analysis and Design Procedures – Circuits for Arithmetic Operations, Code Conversion – Decoders and Encoders – Multiplexers and Demultiplexers – Introduction to HDL – HDL Models of Combinational circuits.

UNIT III SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits – Latches and Flip Flops – Analysis and Design Procedures – State Reduction and State Assignment – Shift Registers – Counters – HDL for Sequential Logic Circuits.

UNIT IV **ASYNCHRONOUS SEQUENTIAL LOGIC**

Analysis and Design of Asynchronous Sequential Circuits – Reduction of State and Flow Tables – Race-free State Assignment – Hazards.

9

9

9

MEMORY AND PROGRAMMABLE LOGIC UNIT V

RAM and ROM – Memory Decoding – Error Detection and Correction – Programmable Logic Array – Programmable Array Logic - Sequential Programmable Devices - Application Specific Integrated Circuits.

TOTAL: 45 PERIODS

9

OUTCOMES:

At the end of this course, the student will be able to:

- Perform arithmetic operations in any number system.
- Simplify the Boolean expression using K-Map and Tabulation techniques.
- Use boolean simplification techniques to design a combinational hardware circuit.
- Design and Analysis of a given digital circuit combinational and sequential.
- Design using PLD.

TEXT BOOK:

1. Morris Mano M. and Michael D. Ciletti, "Digital Design", IV Edition, Pearson Education, 2008.

REFERENCES:

- 1. John F. Wakerly, "Digital Design Principles and Practices", Fourth Edition, Pearson Education, 2007.
- 2. Charles H. Roth Jr, "Fundamentals of Logic Design", Fifth Edition Jaico Publishing House, Mumbai, 2003.
- 3. Donald D. Givone, "Digital Principles and Design", Tata Mcgraw Hill, 2003.
- 4. Kharate G. K., "Digital Electronics", Oxford University Press, 2010.

CS6202 **PROGRAMMING AND DATA STRUCTURES I** LTPC

3 0 0 3

OBJECTIVES:

The student should be made to:

- Be familiar with the basics of C programming language.
- Be exposed to the concepts of ADTs
- Learn linear data structures list, stack, and queue.
- Be exposed to sorting, searching, hashing algorithms

UNIT I **C PROGRAMMING FUNDAMENTALS- A REVIEW**

Conditional statements - Control statements - Functions - Arrays - Preprocessor - Pointers -Variation in pointer declarations – Function Pointers – Function with Variable number of arguments

UNIT II **C PROGRAMMING ADVANCED FEATURES**

Structures and Unions - File handling concepts - File read - write - binary and Stdio - File Manipulations

UNIT III LINEAR DATA STRUCTURES – LIST

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list implementation singly linked lists- circularly linked lists- doubly-linked lists - applications of lists - Polynomial Manipulation – All operation (Insertion, Deletion, Merge, Traversal)

- 9
- 9

UNIT IV LINEAR DATA STRUCTURES – STACKS, QUEUES

Stack ADT – Evaluating arithmetic expressions- other applications- Queue ADT – circular queue implementation – Double ended Queues – applications of queues

UNIT V SORTING, SEARCHING AND HASH TECHNIQUES

Sorting algorithms: Insertion sort - Selection sort - Shell sort - Bubble sort - Quick sort - Merge sort - Radix sort - Searching: Linear search –Binary Search Hashing: Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Use the control structures of C appropriately for problems.
- Implement abstract data types for linear data structures.
- Apply the different linear data structures to problem solutions.
- Critically analyse the various algorithms.

TEXT BOOKS:

- 1. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Pearson Education, 1988.
- Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 1997.

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", Second Edition, Mcgraw Hill, 2002.
- 2. Reema Thareja, "Data Structures Using C", Oxford University Press, 2011
- 3. Aho, Hopcroft and Ullman, "Data Structures and Algorithms", Pearson Education, 1983.
- 4. Stephen G. Kochan, "Programming in C", 3rd edition, Pearson Ed.,

GE6262

PHYSICS AND CHEMISTRY LABORATORY – II

L T P C 0 0 2 1

PHYSICS LABORATORY – II

OBJECTIVES:

• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

(Any FIVE Experiments)

LIST OF EXPERIMENTS:

- 1. Determination of Young's modulus by uniform bending method
- 2. Determination of band gap of a semiconductor
- 3. Determination of Coefficient of viscosity of a liquid –Poiseuille's method
- 4. Determination of Dispersive power of a prism Spectrometer
- 5. Determination of thickness of a thin wire Air wedge method
- 6. Determination of Rigidity modulus Torsion pendulum

OUTCOMES:

• The students will have the ability to test materials by using their knowledge of applied physics principles in optics and properties of matter.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Traveling microscope, meter scale, Knife edge, weights
- 2. Band gap experimental set up
- 3. Burette, Capillary tube, rubber tube, stop clock, beaker and weighing balance
- 4. spectrometer, prism, sodium vapour lamp.
- 5. Air-wedge experimental set up.
- 6. Torsion pendulum set up.

(vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY -II

OBJECTIVES:

• To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of hardness, alkalinity, metal ion content, corrosion in metals and cement analysis.

(Any FIVE Experiments)

- 1. Determination of alkalinity in water sample
- 2. Determination of total, temporary & permanent hardness of water by EDTA method
- 3. Estimation of copper content of the given solution by EDTA method
- 4. Estimation of iron content of the given solution using potentiometer
- 5. Estimation of iron content of the given solution using potentiometer
- 6. Estimation of sodium present in water using flame photometer
- 7. Corrosion experiment weight loss method
- 8. Conductometric precipitation titration using BaCl₂ and Na₂SO₄
- 9. Determination of CaO in Cement.

OUTCOMES:

TOTAL: 30 PERIODS

The students will be conversant with hands-on knowledge in the quantitative chemical analysis of water quality related parameters, corrosion measurement and cement analysis.

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York (2001).
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry, LBS Singapore (1994).
- 3. Jeffery G.H, Bassett J., Mendham J. and Denny R.C., "Vogel's Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M. and Sandell E.B. et al. Quantitative chemical analysis, Mcmillan, Madras 1980
- Laboratory classes on alternate weeks for Physics and Chemistry.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	Potentiometer	-	5 Nos
2.	Flame photo meter	-	5 Nos
3.	Weighing Balance	-	5 Nos
4.	Conductivity meter	-	5 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (30 Nos each)

CS6211

DIGITAL LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- Understand the various logic gates.
- Be familiar with various combinational circuits.
- Understand the various components used in the design of digital computers.
- Be exposed to sequential circuits
- Learn to use HDL

ST OF EXPERIMENTS:

- 1. Verification of Boolean Theorems using basic gates.
- 2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters.
- 3. Design and implementation of combinational circuits using MSI devices:
 - 4 bit binary adder / subtractor
 - Parity generator / checker
 - Magnitude Comparator
 - Application using multiplexers
- 4. Design and implementation of sequential circuits:
 - Shift –registers
 - Synchronous and asynchronous counters
- 5. Coding combinational / sequential circuits using HDL.
- 6. Design and implementation of a simple digital system (Mini Project).

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course, the student will be able to:

- Use boolean simplification techniques to design a combinational hardware circuit.
- Design and Implement combinational and sequential circuits.
- Analyze a given digital circuit combinational and sequential.
- Design the different functional units in a digital computer system.
- Design and Implement a simple digital system.

LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS HARDWARE:

- 1. Digital trainer kits 30
- 2. Digital ICs required for the experiments in sufficient numbers 96

SOFTWARE:

1. HDL simulator.

CS6212 PROGRAMMING AND DATA STRUCTURES LABORATORY I L

L T P C 0 0 3 2

OBJECTIVES:

The students should be made to:

- Be familiar with c programming
- Be exposed to implementing abstract data types
- Learn to use files
- Learn to implement sorting and searching algorithms.
- 1. C Programs using Conditional and Control Statements
- 2. C Programs using Arrays, Strings and Pointers and Functions
- Representation of records using Structures in C Creation of Linked List Manipulation of records in a Linked List
- 4. File Handling in C Sequential access Random Access
- 5. Operations on a Stack and Queue infix to postfix simple expression evaluation using stacks Linked Stack Implementation Linked Queue Implementation
- 6. Implementation of Sorting algorithms
- 7. Implementation of Linear search and Binary Search.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement C programs for implementing stacks, queues, linked lists.
- Apply good programming design methods for program development.
- Apply the different data structures for implementing solutions to practical problems.
- Develop searching and sorting programs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos. (or)

Server with C compiler supporting 30 terminals or more.

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS LTPC

OBJECTIVES:

- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

9+3

UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

- 1. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, Second reprint, 2012.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt. Ltd.1998.

REFERENCES:

- 1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd, 2007.
- 2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc Graw Hill Publishing Company Limited, NewDelhi, 2008.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata Mc Graw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
- 6. Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

9+3

9+3

9+3

9+3

PROGRAMMING AND DATA STRUCTURES II

OBJECTIVES:

CS6301

The student should be made to:

- Be familiar with the C++ concepts of abstraction, encapsulation, constructor, polymorphism, overloading and Inheritance.
- Learn advanced nonlinear data structures.
- Be exposed to graph algorithms
- Learn to apply Tree and Graph structures

UNIT I **OBJECT ORIENTED PROGRAMMING FUNDAMENTALS**

C++ Programming features - Data Abstraction - Encapsulation - class - object - constructors - static members - constant members - member functions - pointers - references - Role of this pointer -Storage classes – function as arguments.

UNIT II **OBJECT ORIENTED PROGRAMMING CONCEPTS**

String Handling - Copy Constructor - Polymorphism - compile time and run time polymorphisms function overloading - operators overloading - dynamic memory allocation - Nested classes -Inheritance – virtual functions.

UNIT III C++ PROGRAMMING ADVANCED FEATURES

Abstract class – Exception handling - Standard libraries - Generic Programming - templates – class template - function template - STL - containers - iterators - function adaptors - allocators -Parameterizing the class - File handling concepts.

UNIT IV **ADVANCED NON-LINEAR DATA STRUCTURES**

AVL trees – B-Trees – Red-Black trees – Splay trees - Binomial Heaps – Fibonacci Heaps – Disjoint Sets – Amortized Analysis – accounting method – potential method – aggregate analysis.

UNIT V GRAPHS

Representation of Graphs – Breadth-first search – Depth-first search – Topological sort – Minimum Spanning Trees – Kruskal and Prim algorithm – Shortest path algorithm – Dijkstra's algorithm – Bellman-Ford algorithm – Floyd - Warshall algorithm.

OUTCOMES:

At the end of the course, the student should be able to:

- Design problem solutions using Object Oriented Techniques.
- Apply the concepts of data abstraction, encapsulation and inheritance for problem solutions.
- Use the control structures of C++ appropriately.
- Critically analyse the various algorithms.
- Apply the different data structures to problem solutions.

TEXT BOOKS:

- 1. Bjarne Stroustrup, "The C++ Programming Language", 3rd Edition, Pearson Education, 2007.
- 2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 2nd Edition, Pearson Education. 2005

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Second Edition, Mc Graw Hill, 2002.
- 2. Michael T Goodrich, Roberto Tamassia, David Mount, "Data Structures and Algorithms in C++", 7th Edition, Wiley Publishers, 2004.

9

9

9

9

9

TOTAL: 45 PERIODS

To make the students understand the Security Issues in Databases.

UNIT I **INTRODUCTION TO DBMS**

• To expose the students to SQL.

• To make the students understand the relational model.

• To familiarize the students with the different types of databases.

To familiarize the students with ER diagrams.

CS6302

OBJECTIVES:

Processing.

File Systems Organization - Sequential, Pointer, Indexed, Direct - Purpose of Database System-Database System Terminologies-Database characteristics- Data models – Types of data models – Components of DBMS- Relational Algebra. LOGICAL DATABASE DESIGN: Relational DBMS -Codd's Rule - Entity-Relationship model - Extended ER Normalization – Functional Dependencies, Anomaly- 1NF to 5NF- Domain Key Normal Form – Denormalization

To make the students to understand the fundamentals of Transaction Processing and Query

UNIT II **SQL & QUERY OPTIMIZATION**

SQL Standards - Data types - Database Objects- DDL-DML-DCL-TCL-Embedded SQL-Static Vs Dynamic SQL - QUERY OPTIMIZATION: Query Processing and Optimization - Heuristics and Cost Estimates in Query Optimization.

TRANSACTION PROCESSING AND CONCURRENCY CONTROL UNIT III

Introduction-Properties of Transaction- Serializability- Concurrency Control - Locking Mechanisms-Two Phase Commit Protocol-Dead lock.

UNIT IV TRENDS IN DATABASE TECHNOLOGY

Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage – File Organization – Organization of Records in Files - Indexing and Hashing -Ordered Indices - B+ tree Index Files - B tree Index Files - Static Hashing - Dynamic Hashing - Introduction to Distributed Databases- Client server technology- Multidimensional and Parallel databases- Spatial and multimedia databases-Mobile and web databases- Data Warehouse-Mining- Data marts.

UNIT V **ADVANCED TOPICS**

DATABASE SECURITY: Data Classification-Threats and risks – Database access Control – Types of Privileges – Cryptography- Statistical Databases.- Distributed Databases-Architecture-Transaction Processing-Data Warehousing and Mining-Classification-Association rules-Clustering-Information Retrieval- Relevance ranking-Crawling and Indexing the Web- Object Oriented Databases-XML Databases.

OUTCOMES:

At the end of the course, the student should be able to:

- Design Databases for applications. •
- Use the Relational model, ER diagrams.
- Apply concurrency control and recovery mechanisms for practical problems.
- Design the Query Processor and Transaction Processor.
- Apply security concepts to databases.

DATABASE MANAGEMENT SYSTEMS

To expose the students to the fundamentals of Database Management Systems.

10

8

8

10

TOTAL: 45 PERIODS

TEXT BOOK:

1. Ramez Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education, 2008.

REFERENCES:

- 1. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata Mc Graw Hill, 2011.
- 2. C.J.Date, A.Kannan and S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 3. Atul Kahate, "Introduction to Database Management Systems", Pearson Education, New Delhi, 2006.
- 4. Alexis Leon and Mathews Leon, "Database Management Systems", Vikas Publishing House Private Limited, New Delhi, 2003.
- 5. Raghu Ramakrishnan, "Database Management Systems", Fourth Edition, Tata Mc Graw Hill, 2010.
- 6. G.K.Gupta, "Database Management Systems", Tata Mc Graw Hill, 2011.
- 7. Rob Cornell, "Database Systems Design and Implementation", Cengage Learning, 2011.

CS6303

COMPUTER ARCHITECTURE

L T P C 3 0 0 3

OBJECTIVES:

- To make students understand the basic structure and operation of digital computer.
- To understand the hardware-software interface.
- To familiarize the students with arithmetic and logic unit and implementation of fixed point and floating-point arithmetic operations.
- To expose the students to the concept of pipelining.
- To familiarize the students with hierarchical memory system including cache memories and virtual memory.
- To expose the students with different ways of communicating with I/O devices and standard I/O interfaces.

UNIT I OVERVIEW & INSTRUCTIONS

Eight ideas – Components of a computer system – Technology – Performance – Power wall – Uniprocessors to multiprocessors; Instructions – operations and operands – representing instructions – Logical operations – control operations – Addressing and addressing modes.

UNIT II ARITHMETIC OPERATIONS

ALU - Addition and subtraction – Multiplication – Division – Floating Point operations – Subword parallelism.

UNIT III PROCESSOR AND CONTROL UNIT

Basic MIPS implementation – Building datapath – Control Implementation scheme – Pipelining – Pipelined datapath and control – Handling Data hazards & Control hazards – Exceptions.

UNIT IV PARALLELISM

Instruction-level-parallelism – Parallel processing challenges – Flynn's classification – Hardware multithreading – Multicore processors

35

9

11

9

UNIT V MEMORY AND I/O SYSTEMS

Memory hierarchy - Memory technologies – Cache basics – Measuring and improving cache performance - Virtual memory, TLBs - Input/output system, programmed I/O, DMA and interrupts, I/O processors.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design arithmetic and logic unit.
- Design and anlayse pipelined control units
- Evaluate performance of memory systems.
- Understand parallel processing architectures.

TEXT BOOK:

1. David A. Patterson and John L. Hennessey, "Computer organization and design', Morgan Kauffman / Elsevier, Fifth edition, 2014.

REFERENCES:

- 1. V.Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organisation", VI th edition, Mc Graw-Hill Inc, 2012.
- 2. William Stallings "Computer Organization and Architecture", Seventh Edition, Pearson Education, 2006.
- 3. Vincent P. Heuring, Harry F. Jordan, "Computer System Architecture", Second Edition, Pearson Education, 2005.
- 4. Govindarajalu, "Computer Architecture and Organization, Design Principles and Applications", first edition, Tata McGraw Hill, New Delhi, 2005.
- 5. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata Mc Graw Hill, 1998.
- 6. <u>http://nptel.ac.in/</u>.

ANALOG AND DIGITAL COMMUNICATION

L T P C 3 0 0 3

OBJECTIVES:

CS6304

The student should be made to:

- Understand analog and digital communication techniques.
- Learn data and pulse communication techniques.
- Be familiarized with source and Error control coding.
- Gain knowledge on multi-user radio communication.

UNIT I ANALOG COMMUNICATION

Noise: Source of Noise - External Noise- Internal Noise- Noise Calculation. Introduction to **Communication Systems**: Modulation – Types - Need for Modulation. Theory of Amplitude Modulation - Evolution and Description of SSB Techniques - Theory of Frequency and Phase Modulation – Comparison of various Analog Communication System (AM – FM – PM).

9

Amplitude Shift Keying (ASK) – Frequency Shift Keying (FSK) Minimum Shift Keying (MSK) –Phase

Shift Keving (PSK) – BPSK – QPSK – 8 PSK – 16 PSK - Quadrature Amplitude Modulation (QAM) – 8 QAM – 16 QAM – Bandwidth Efficiency– Comparison of various Digital Communication System (ASK - FSK - PSK - QAM).

UNIT III DATA AND PULSE COMMUNICATION

DIGITAL COMMUNICATION

Data Communication: History of Data Communication - Standards Organizations for Data Communication- Data Communication Circuits - Data Communication Codes - Error Detection and Correction Techniques - Data communication Hardware - serial and parallel interfaces.

Pulse Communication: Pulse Amplitude Modulation (PAM) – Pulse Time Modulation (PTM) – Pulse code Modulation (PCM) - Comparison of various Pulse Communication System (PAM – PTM – PCM).

SOURCE AND ERROR CONTROL CODING UNIT IV

Entropy, Source encoding theorem, Shannon fano coding, Huffman coding, mutual information, channel capacity, channel coding theorem, Error Control Coding, linear block codes, cyclic codes, convolution codes, viterbi decoding algorithm.

UNIT V **MULTI-USER RADIO COMMUNICATION**

Advanced Mobile Phone System (AMPS) - Global System for Mobile Communications (GSM) - Code division multiple access (CDMA) - Cellular Concept and Frequency Reuse - Channel Assignment and Hand - Overview of Multiple Access Schemes - Satellite Communication - Bluetooth.

TOTAL: 45 PERIODS

OUTCOMES:

UNIT II

At the end of the course, the student should be able to:

- Apply analog and digital communication techniques.
- Use data and pulse communication techniques. •
- Analyze Source and Error control coding.
- Utilize multi-user radio communication.

TEXT BOOK:

1. Wayne Tomasi, "Advanced Electronic Communication Systems", 6th Edition, Pearson Education, 2009.

REFERENCES:

- Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2004 1.
- Rappaport T.S, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson 2. Education, 2007
- H.Taub, D L Schilling and G Saha, "Principles of Communication", 3rd Edition, Pearson Education, 3. 2007.
- B. P.Lathi, "Modern Analog and Digital Communication Systems", 3rd Edition, Oxford 4. University Press, 2007.
- Blake, "Electronic Communication Systems", Thomson Delmar Publications, 2002. 5.
- Martin S.Roden, "Analog and Digital Communication System". 3rd Edition. Prentice Hall of India. 6. 2002.
- B.Sklar, "Digital Communication Fundamentals and Applications" 2nd Edition Pearson 7. Education 2007.

Q

9

GE6351

ENVIRONMENTAL SCIENCE AND ENGINEERING

12

10

10

OBJECTIVES:

To the study of nature and the facts about environment.

- To find and implement scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry-Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere formation of smog, PAN, acid rain, oxygen and ozone chemistry;- Mitigation procedures- Control of particulate and gaseous emission, Control of SO₂, NO_x, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources

for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins –Biochemical degradation of pollutants, Bioconversion of pollutants.

Field study of local area to document environmental assets - river/forest/grassland/hill/mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organization-environmental ethics: Issues and possible solutions – 12 Principles of green chemistry- nuclear accidents and holocaust, case studies. – wasteland reclamation – consumerism and waste products – environment production act – Air act – Water act – Wildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labeling of environmentally friendly products (Ecomark). enforcement machinery involved in environmental legislation- central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides. Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare –Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology in environment and human health – Case studies.

TOTAL: 45 PERIODS

OUTCOMES:

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environment at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions.
- Development and improvement in standard of living has lead to serious environmental disasters.

TEXT BOOKS:

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd Edition, Pearson Education 2004.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata Mc Graw-Hill, New Delhi, 2006.

REFERENCES:

- 1. R.K. Trivedi, "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standard", Vol. I and II, Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice Hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press 2005.

7

CS6311 PROGRAMMING AND DATA STRUCTURE LABORATORY II

LT PC 0 0 3 2

OBJECTIVES:

The student should be made to:

- Be familiarized with good programming design methods, particularly Top- Down design.
- Getting exposure in implementing the different data structures using C++
- Appreciate recursive algorithms.

LIST OF EXPERIMENTS:

IMPLEMENTATION IN THE FOLLOWING TOPICS:

- 1. Constructors & Destructors, Copy Constructor.
- 2. Friend Function & Friend Class.
- 3. Inheritance.
- 4. Polymorphism & Function Overloading.
- 5. Virtual Functions.
- 6. Overload Unary & Binary Operators Both as Member Function & Non Member Function.
- 7. Class Templates & Function Templates.
- 8. Exception Handling Mechanism.
- 9. Standard Template Library concept.
- 10. File Stream classes.
- 11. Applications of Stack and Queue
- 12. Binary Search Tree
- 13. Tree traversal Techniques
- 14. Minimum Spanning Trees
- 15. Shortest Path Algorithms

OUTCOMES:

TOTAL: 45 PERIODS

At the end of the course, the student should be able to:

- Design and implement C++ programs for manipulating stacks, queues, linked lists, trees, and graphs.
- Apply good programming design methods for program development.
- Apply the different data structures for implementing solutions to practical problems.
- Develop recursive programs using trees and graphs.

REFERENCE:

spoken-tutorial.org.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C++ complier 30 Nos.

(or)

Server with C++ compiler supporting 30 terminals or more.

DATABASE MANAGEMENT SYSTEMS LABORATORY

LTPC 0 0 3 2

CS6312

OBJECTIVES:

The student should be made to:

- Learn to create and use a database
- Be familiarized with a query language
- Have hands on experience on DDL Commands
- Have a good understanding of DML Commands and DCL commands
- Familiarize advanced SQL queries. •
- Be Exposed to different applications

LIST OF EXPERIMENTS:

- 1. Creation of a database and writing SQL queries to retrieve information from the database.
- 2. Performing Insertion, Deletion, Modifying, Altering, Updating and Viewing records based on conditions.
- 3. Creation of Views, Synonyms, Sequence, Indexes, Save point.
- 4. Creating an Employee database to set various constraints.
- 5. Creating relationship between the databases.
- 6. Study of PL/SQL block.
- 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user.
- 8. Write a PL/SQL block that handles all types of exceptions.
- 9. Creation of Procedures.
- 10. Creation of database triggers and functions
- 11. Mini project (Application Development using Oracle/ Mysql)
 - Inventory Control System. a)
 - b) Material Requirement Processing.
 - c) Hospital Management System.
 - d) Railway Reservation System.
 - e) Personal Information System.
 - Web Based User Identification System. f)
 - g) Timetable Management System.
 - h) Hotel Management System

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement a database schema for a given problem-domain
- Populate and query a database
- Create and maintain tables using PL/SQL.
- Prepare reports.

REFERENCE:

spoken-tutorial.org

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

HARDWARE:

Standalone desktops (or) Server supporting 30 terminals or more. 30 Nos.

SOFTWARE:

Front end: VB/VC ++/JAVA or Equivalent

Back end: Oracle / SQL / MySQL/ PostGress / DB2 or Equivalent

MA6453 PROBABILITY AND QUEUEING THEORY LTPC 3104

OBJECTIVE:

To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.

UNIT I **RANDOM VARIABLES**

Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions.

TWO - DIMENSIONAL RANDOM VARIABLES UNIT II

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables.

UNIT III RANDOM PROCESSES

Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.

UNIT IV **QUEUEING MODELS**

Markovian queues - Birth and Death processes - Single and multiple server queueing models -Little's formula - Queues with finite waiting rooms - Queues with impatient customers: Balking and reneging.

UNIT V ADVANCED QUEUEING MODELS

Finite source models - M/G/1 queue - Pollaczek Khinchin formula - M/D/1 and M/E_k/1 as special cases – Series queues – Open Jackson networks.

OUTCOMES:

- The students will have a fundamental knowledge of the probability concepts.
- Acquire skills in analyzing queueing models.
- It also helps to understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.

TEXT BOOKS:

- Ibe. O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier, 1st Indian 1. Reprint, 2007.
- 2. Gross. D. and Harris. C.M., "Fundamentals of Queueing Theory", Wiley Student edition, 2004.

REFERENCES:

- Robertazzi, "Computer Networks and Systems: Queueing Theory and performance evaluation", 1. Springer, 3rd Edition, 2006.
- Taha, H.A., "Operations Research", Pearson Education, Asia, 8th Edition, 2007, 2.
- Trivedi.K.S., "Probability and Statistics with Reliability, Queueing and Computer Science 3. Applications", John Wiley and Sons, 2nd Edition, 2002.

9+3

9+3

9+3

9+3

9+3

TOTAL (L:45+T:15): 60 PERIODS

- 4. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 5. Yates. R.D. and Goodman. D. J., "Probability and Stochastic Processes", Wiley India Pvt. Ltd., Bangalore, 2nd Edition, 2012.

CS6551

COMPUTER NETWORKS

OBJECTIVES:

The student should be made to:

- Understand the division of network functionalities into layers.
- Be familiar with the components required to build different types of networks
- Be exposed to the required functionality at each layer
- Learn the flow control and congestion control algorithms

UNIT I FUNDAMENTALS & LINK LAYER

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance ; Link layer Services - Framing - Error Detection - Flow control

UNIT II MEDIA ACCESS & INTERNETWORKING

Media access control - Ethernet (802.3) - Wireless LANs – 802.11 – Bluetooth - Switching and bridging – Basic Internetworking (IP, CIDR, ARP, DHCP,ICMP)

UNIT III ROUTING

Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6), Multicast – addresses – multicast routing (DVMRP, PIM)

UNIT IV TRANSPORT LAYER

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission – TCP Congestion control - Congestion avoidance (DECbit, RED) – QoS – Application requirements

UNIT V APPLICATION LAYER

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS - SNMP

OUTCOMES:

At the end of the course, the student should be able to:

- Identify the components required to build different types of networks
- Choose the required functionality at each layer for given application
- Identify solution for each functionality at each layer
- Trace the flow of information from one node to another node in the network

TEXT BOOK:

1. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.

TOTAL: 45 PERIODS

9

9

LTP C 3 0 0 3

9

9

REFERENCES:

- 1. James F. Kurose, Keith W. Ross, "Computer Networking A Top-Down Approach Featuring the Internet", Fifth Edition, Pearson Education, 2009.
- 2. Nader. F. Mir, "Computer and Communication Networks", Pearson Prentice Hall Publishers, 2010.
- 3. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", Mc Graw Hill Publisher, 2011.
- 4. Behrouz A. Forouzan, "Data communication and Networking", Fourth Edition, Tata McGraw Hill, 2011.

OPERATING SYSTEMS

OBJECTIVES:

CS6401

The student should be made to:

- Study the basic concepts and functions of operating systems.
- Understand the structure and functions of OS.
- Learn about Processes, Threads and Scheduling algorithms.
- Understand the principles of concurrency and Deadlocks.
- Learn various memory management schemes.
- Study I/O management and File systems.
- Learn the basics of Linux system and perform administrative tasks on Linux Servers.

UNIT I OPERATING SYSTEMS OVERVIEW

Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and Multicore Organization. Operating system overview-objectives and functions, Evolution of Operating System.- Computer System Organization-Operating System Structure and Operations- System Calls, System Programs, OS Generation and System Boot.

UNIT II PROCESS MANAGEMENT

Processes-Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication; Threads- Overview, Multicore Programming, Multithreading Models; Windows 7 - Thread and SMP Management. Process Synchronization - Critical Section Problem, Mutex Locks, Semophores, Monitors; CPU Scheduling and Deadlocks.

UNIT III STORAGE MANAGEMENT

Main Memory-Contiguous Memory Allocation, Segmentation, Paging, 32 and 64 bit architecture Examples; Virtual Memory- Demand Paging, Page Replacement, Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

UNIT IV I/O SYSTEMS

Mass Storage Structure- Overview, Disk Scheduling and Management; File System Storage-File Concepts, Directory and Disk Structure, Sharing and Protection; File System Implementation- File System Structure, Directory Structure, Allocation Methods, Free Space Management, I/O Systems.

UNIT V CASE STUDY

Linux System- Basic Concepts;System Administration-Requirements for Linux System Administrator, Setting up a LINUX Multifunction Server, Domain Name System, Setting Up Local Network Services; Virtualization- Basic Concepts, Setting Up Xen,VMware on Linux Host and Adding Guest OS.

TOTAL: 45 PERIODS

9

9

9

9

9

L T P C 3 0 0 3

OUTCOMES:

At the end of the course, the student should be able to:

- Design various Scheduling algorithms.
- Apply the principles of concurrency.
- Design deadlock, prevention and avoidance algorithms.
- Compare and contrast various memory management schemes.
- Design and Implement a prototype file systems.
- Perform administrative tasks on Linux Servers.

TEXT BOOK:

 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley and Sons Inc., 2012.

REFERENCES:

- William Stallings, "Operating Systems Internals and Design Principles", 7th Edition, Prentice Hall, 2011.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- 3. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education", 1996.
- 4. D M Dhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata McGraw-Hill Education, 2007.
- 5. <u>http://nptel.ac.in/</u>.

DESIGN AND ANALYSIS OF ALGORITHMS L T P C

OBJECTIVES:

CS6402

The student should be made to:

- Learn the algorithm analysis techniques.
- Become familiar with the different algorithm design techniques.
- Understand the limitations of Algorithm power.

UNIT I INTRODUCTION

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types – Fundamentals of the Analysis of Algorithm Efficiency – Analysis Framework – Asymptotic Notations and its properties – Mathematical analysis for Recursive and Non-recursive algorithms.

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER

Brute Force - Closest-Pair and Convex-Hull Problems-Exhaustive Search - Traveling Salesman Problem - Knapsack Problem - Assignment problem.

Divide and conquer methodology – Merge sort – Quick sort – Binary search – Multiplication of Large Integers – Strassen's Matrix Multiplication-Closest-Pair and Convex-Hull Problems.

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Computing a Binomial Coefficient – Warshall's and Floyd' algorithm – Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique– Prim's algorithm- Kruskal's Algorithm-Dijkstra's Algorithm-Huffman Trees.

9

3 0 0 3

9

UNIT IV ITERATIVE IMPROVEMENT

The Simplex Method-The Maximum-Flow Problem – Maximm Matching in Bipartite Graphs- The Stable marriage Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER

Limitations of Algorithm Power-Lower-Bound Arguments-Decision Trees-P, NP and NP-Complete Problems--Coping with the Limitations - Backtracking – n-Queens problem – Hamiltonian Circuit Problem – Subset Sum Problem-Branch and Bound – Assignment problem – Knapsack Problem – Traveling Salesman Problem- Approximation Algorithms for NP – Hard Problems – Traveling Salesman problem – Knapsack problem.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design algorithms for various computing problems.
- Analyze the time and space complexity of algorithms.
- Critically analyze the different algorithm design techniques for a given problem.
- Modify existing algorithms to improve efficiency.

TEXT BOOK:

1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2012.

REFERENCES:

- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, PHI Learning Private Limited, 2012.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.
- 3. Donald E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearson Education, 2009. Steven S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2008.
- 4. http://nptel.ac.in/

EC6504

MICROPROCESSOR AND MICROCONTROLLER

LT PC 3 0 0 3

9

OBJECTIVES:

The student should be made to:

- Study the Architecture of 8086 microprocessor.
- Learn the design aspects of I/O and Memory Interfacing circuits.
- Study about communication and bus interfacing.
- Study the Architecture of 8051 microcontroller.

UNIT I THE 8086 MICROPROCESSOR

Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

9

UNIT II 8086 SYSTEM BUS STRUCTURE

8086 signals – Basic configurations – System bus timing –System design using 8086 – IO programming – Introduction to Multiprogramming – System Bus Structure - Multiprocessor configurations – Coprocessor, Closely coupled and loosely Coupled configurations – Introduction to advanced processors.

UNIT III I/O INTERFACING

Memory Interfacing and I/O interfacing - Parallel communication interface – Serial communication interface – D/A and A/D Interface - Timer – Keyboard /display controller – Interrupt controller – DMA controller – Programming and applications Case studies: Traffic Light control, LED display , LCD display, Keyboard display interface and Alarm Controller.

UNIT IV MICROCONTROLLER

Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V INTERFACING MICROCONTROLLER

Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation.

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement programs on 8086 microprocessor.
- Design I/O circuits.
- Design Memory Interfacing circuits.
- Design and implement 8051 microcontroller based systems.

TEXT BOOKS:

- 1. Yu-Cheng Liu, Glenn A.Gibson, "Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design", Second Edition, Prentice Hall of India, 2007.
- 2. Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Second Edition, Pearson Education, 2011

REFERENCE:

1. Doughlas V.Hall, "Microprocessors and Interfacing, Programming and Hardware:,TMH, 2012

CS6403	SOFTWARE ENGINEERING	LTPC
		3003

OBJECTIVES:

The student should be made to:

- Understand the phases in a software project
- Understand fundamental concepts of requirements engineering and Analysis Modelling.
- Understand the major considerations for enterprise integration and deployment.
- Learn various testing and maintenance measures

TOTAL: 45 PERIODS

9

9

9

UNIT I SOFTWARE PROCESS AND PROJECT MANAGEMENT

Introduction to Software Engineering, Software Process, Perspective and Specialized Process Models - Software Project Management: Estimation - LOC and FP Based Estimation, COCOMO Model – Project Scheduling – Scheduling, Earned Value Analysis - Risk Management.

UNIT II **REQUIREMENTS ANALYSIS AND SPECIFICATION**

Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document – Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets- Data Dictionary.

UNIT III SOFTWARE DESIGN

Design process – Design Concepts-Design Model– Design Heuristic – Architectural Design – Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design -Component level Design: Designing Class based components, traditional Components.

UNIT IV **TESTING AND IMPLEMENTATION**

Software testing fundamentals-Internal and external views of Testing-white box testing- basis path testing-control structure testing-black box testing- Regression Testing - Unit Testing - Integration Testing – Validation Testing – System Testing And Debugging – Software Implementation Techniques: Coding practices-Refactoring.

UNIT V PROJECT MANAGEMENT

Estimation – FP Based, LOC Based, Make/Buy Decision, COCOMO II - Planning – Project Plan, Planning Process, RFP Risk Management - Identification, Projection, RMMM - Scheduling and Tracking – Relationship between people and effort, Task Set & Network, Scheduling, EVA - Process and Project Metrics.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to

- Identify the key activities in managing a software project.
- Compare different process models.
- Concepts of requirements engineering and Analysis Modeling.
- Apply systematic procedure for software design and deployment.
- Compare and contrast the various testing and maintenance. •

TEXT BOOK:

Roger S. Pressman, "Software Engineering – A Practitioner's Approach", Seventh Edition, 1. Mc Graw-Hill International Edition, 2010.

REFERENCES:

- 1. Ian Sommerville, "Software Engineering", 9th Edition, Pearson Education Asia, 2011.
- 2. Rajib Mall, "Fundamentals of Software Engineering", Third Edition, PHI Learning Private Limited .2009.
- 3. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 2010.
- 4. Kelkar S.A., "Software Engineering", Prentice Hall of India Pvt Ltd, 2007.
- 5. Stephen R.Schach, "Software Engineering", Tata McGraw-Hill Publishing Company Limited, 2007.
- 6. http://nptel.ac.in/.

9

9

9

9

CS6411

NETWORKS LABORATORY

L T P C 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Learn socket programming.
- Be familiar with simulation tools.
- Have hands on experience on various networking protocols.

LIST OF EXPERIMENTS:

- 1. Implementation of Stop and Wait Protocol and Sliding Window Protocol.
- 2. Study of Socket Programming and Client Server model
- 3. Write a code simulating ARP /RARP protocols.
- 4. Write a code simulating PING and TRACEROUTE commands
- 5. Create a socket for HTTP for web page upload and download.
- 6. Write a program to implement RPC (Remote Procedure Call)
- 7. Implementation of Subnetting .
- 8. Applications using TCP Sockets like
 - a. Echo client and echo server
 - b. Chat
 - c. File Transfer
- 9. Applications using TCP and UDP Sockets like
 - d. DNS
 - e. SNMP
 - f. File Transfer
- 10. Study of Network simulator (NS).and Simulation of Congestion Control Algorithms using NS
- 11. Perform a case study about the different routing algorithms to select the network path with its optimum and economical during data transfer.
 - i. Link State routing
 - ii. Flooding
 - iii. Distance vector

REFERENCE:

spoken-tutorial.org.

OUTCOMES:

At the end of the course, the student should be able to

- Use simulation tools
- Implement the various protocols.
- Analyse the performance of the protocols in different layers.
- Analyze various routing algorithms

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SOFTWARE:

- C / C++ / Java / Equivalent Compiler 30
- Network simulator like NS2/Glomosim/OPNET/ Equivalent

HARDWARE:

Standalone desktops	30 Nos
---------------------	--------

CS6412 MICROPROCESSOR AND MICROCONTROLLER LABORATORY

OBJECTIVES:

The student should be made to:

- Introduce ALP concepts and features
- Write ALP for arithmetic and logical operations in 8086 and 8051
- Differentiate Serial and Parallel Interface
- Interface different I/Os with Microprocessors
- Be familiar with MASM

LIST OF EXPERIMENTS:

8086 Programs using kits and MASM

- 1. Basic arithmetic and Logical operations
- 2. Move a data block without overlap
- 3. Code conversion, decimal arithmetic and Matrix operations.
- 4. Floating point operations, string manipulations, sorting and searching
- 5. Password checking, Print RAM size and system date
- 6. Counters and Time Delay

Peripherals and Interfacing Experiments

- 7. Traffic light control
- 8. Stepper motor control
- 9. Digital clock
- 10. Key board and Display
- 11. Printer status
- 12. Serial interface and Parallel interface
- 13. A/D and D/A interface and Waveform Generation

8051 Experiments using kits and MASM

- 14. Basic arithmetic and Logical operations
- 15. Square and Cube program, Find 2's complement of a number
- 16. Unpacked BCD to ASCII

OUTCOMES:

At the end of the course, the student should be able to:

- Write ALP Programmes for fixed and Floating Point and Arithmetic
- Interface different I/Os with processor
- Generate waveforms using Microprocessors
- Execute Programs in 8051
- Explain the difference between simulator and Emulator

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS: HARDWARE:

8086 development kits	- 30 nos
Interfacing Units	- Each 10 nos
Microcontroller	- 30 nos

SOFTWARE:

Intel Desktop Systems with MASM - 30 nos 8086 Assembler 8051 Cross Assembler

TOTAL: 45 PERIODS

L T P C 0 0 3 2

CS6413

OPERATING SYSTEMS LABORATORY

OBJECTIVES:

The student should be made to:

- Learn shell programming and the use of filters in the UNIX environment.
- Be exposed to programming in C using system calls.
- Learn to use the file system related system calls.
- Be exposed to process creation and inter process communication.
- Be familiar with implementation of CPU Scheduling Algorithms, page replacement algorithms and Deadlock avoidance

LIST OF EXPERIMENTS:

- 1. Basics of UNIX commands.
- 2. Shell Programming.
- 3. Implement the following CPU scheduling algorithms
 - a) Round Robin b) SJF c) FCFS d) Priority
- 4. Implement all file allocation strategies
 - a) Sequential b) Indexed c) Linked
- 5. Implement Semaphores
- 6. Implement all File Organization Techniques
 - a) Single level directory b) Two level c) Hierarchical d) DAG
- 7. Implement Bankers Algorithm for Dead Lock Avoidance
- 8. Implement an Algorithm for Dead Lock Detection
- 9. Implement e all page replacement algorithms
 - a) FIFO b) LRU c) LFU
- 10. Implement Shared memory and IPC
- 11. Implement Paging Technique of memory management.
- 12. Implement Threading & Synchronization Applications

OUTCOMES:

At the end of the course, the student should be able to

- Implement deadlock avoidance, and Detection Algorithms
- Compare the performance of various CPU Scheduling Algorithm
- Critically analyze the performance of the various page replacement algorithms
- Create processes and implement IPC

REFERENCE:

spoken-tutorial.org

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C / C++ / Java / Equivalent complier 30 Nos.

(or)

Server with C / C++ / Java / Equivalent complier supporting 30 terminals

TOTAL: 45 PERIODS

DISCRETE MATHEMATICS

OBJECTIVES:

MA6566

To extend student's Logical and Mathematical maturity and ability to deal with abstraction and to introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.

UNIT I LOGIC AND PROOFS

Propositional Logic – Propositional equivalences - Predicates and Quantifiers – Nested Quantifiers – Rules of inference - Introduction to proofs – Proof methods and strategy.

UNIT II COMBINATORICS

Mathematical induction – Strong induction and well ordering – The basics of counting – The pigeonhole principle – Permutations and combinations – Recurrence relations – Solving linear recurrence relations – Generating functions – Inclusion and exclusion principle and its applications.

UNIT III GRAPHS

Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV ALGEBRAIC STRUCTURES

Algebraic systems – Semi groups and monoids - Groups – Subgroups – Homomorphism's – Normal subgroup and cosets – Lagrange's theorem – Definitions and examples of Rings and Fields.

UNIT V LATTICES AND BOOLEAN ALGEBRA

Partial ordering – Posets – Lattices as posets – Properties of lattices - Lattices as algebraic systems – Sub lattices – Direct product and homomorphism – Some special lattices – Boolean algebra.

TOTAL (L: 45+T:15): 60 PERIODS

OUTCOMES:

At the end of the course, students would:

- Have knowledge of the concepts needed to test the logic of a program.
- Have an understanding in identifying structures on many levels.
- Be aware of a class of functions which transform a finite set into another finite set which relates to input and output functions in computer science.
- Be aware of the counting principles.
- Be exposed to concepts and properties of algebraic structures such as groups, rings and fields.

TEXT BOOKS:

- 1. Kenneth H.Rosen, "Discrete Mathematics and its Applications", 7th Edition, Tata Mc Graw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2011.
- 2. Tremblay J.P. and Manohar R, "Discrete Mathematical Structures with Applications to Computer Science", Tata Mc Graw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011.

REFERENCES:

- 1. Ralph.P.Grimaldi., "Discrete and Combinatorial Mathematics: An Applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2007.
- 2. Thomas Koshy., "Discrete Mathematics with Applications", Elsevier Publications, 2006.
- 3. Seymour Lipschutz and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata Mc Graw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.

L T P C 3 1 0 4

9+3 The

9+3

9+3

9+3

9+3

classes - Exception handling - Introduction to Threads - Multithreading - String handling - Streams

UNIT II WEBSITES BASICS, HTML 5, CSS 3, WEB 2.0

Web 2.0: Basics-RIA Rich Internet Applications - Collaborations tools - Understanding websites and web servers: Understanding Internet - Difference between websites and web server- Internet technologies Overview –Understanding the difference between internet and intranet; HTML and CSS: HTML 5.0, XHTML, CSS 3.

An overview of Java - Data Types - Variables and Arrays - Operators - Control Statements -Classes – Objects – Methods – Inheritance - Packages – Abstract classes – Interfaces and Inner

UNIT III CLIENT SIDE AND SERVER SIDE PROGRAMMING

Java Script: An introduction to JavaScript–JavaScript DOM Model-Date and Objects,-Regular Expressions- Exception Handling-Validation-Built-in objects-Event Handling- DHTML with JavaScript. Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session Handling- Understanding Cookies- Installing and Configuring Apache Tomcat Web Server;-DATABASE CONNECTIVITY: JDBC perspectives, JDBC program example - JSP: Understanding Java Server Pages-JSP Standard Tag Library(JSTL)-Creating HTML forms by embedding JSP code.

UNIT IV PHP and XML

An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions-Connecting to Database - Using Cookies-Regular Expressions; XML: Basic XML- Document Type Definition-XML Schema DOM and Presenting XML, XML Parsers and Validation, XSL and XSLT Transformation, News Feed (RSS and ATOM).

UNIT V **INTRODUCTION TO AJAX and WEB SERVICES**

AJAX: Ajax Client Server Architecture-XML Http Request Object-Call Back Methods; Web Services: Introduction- Java web services Basics - Creating, Publishing, Testing and Describing a Web services (WSDL)-Consuming a web service, Database Driven web service from an application -SOAP.

OUTCOMES:

At the end of the course, the student should be able to:

- Implement Java programs.
- Create a basic website using HTML and Cascading Style Sheets.
- Design and implement dynamic web page with validation using JavaScript objects and by • applying different event handling mechanisms.
- Design rich client presentation using AJAX.
- Design and implement simple web page in PHP, and to present data in XML format.
- Design and implement server side programs using Servlets and JSP.

53

INTERNET PROGRAMMING

CS6501

UNIT I

and I/O – Applets.

The student should be made to:

- Learn Java Programming.
- Understand different Internet Technologies.

JAVA PROGRAMMING

• Be exposed to java specific web services architecture.

9

8

TOTAL (L:45+T:15): 60 PERIODS

8

9

TEXT BOOKS:

- 1. Deitel and Deitel and Nieto, "Internet and World Wide Web How to Program", Prentice Hall, 5th Edition, 2011.
- 2. Herbert Schildt, "Java-The Complete Reference", Eighth Edition, Mc Graw Hill Professional, 2011.

REFERENCES:

- 1. Stephen Wynkoop and John Burke "Running a Perfect Website", QUE, 2nd Edition, 1999.
- 2. Chris Bates, Web Programming Building Intranet Applications, 3rd Edition, Wiley Publications, 2009.
- 3. Jeffrey C and Jackson, "Web Technologies A Computer Science Perspective", Pearson Education, 2011.
- 4. Gopalan N.P. and Akilandeswari J., "Web Technology", Prentice Hall of India, 2011.
- 5. Paul Dietel and Harvey Deitel, "Java How to Program", , 8th Edition Prentice Hall of India.
- 6. Mahesh P. Matha, "Core Java A Comprehensive Study", Prentice Hall of India, 2011.
- 7. Uttam K.Roy, "Web Technologies", Oxford University Press, 2011.

CS6502 OBJECT ORIENTED ANALYSIS AND DESIGN L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the basics of OO analysis and design skills.
- Learn the UML design diagrams.
- Learn to map design to code.
- Be exposed to the various testing techniques.

UNIT I UML DIAGRAMS

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams– Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams.

UNIT II DESIGN PATTERNS

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller - Design Patterns – creational - factory method - structural – Bridge – Adapter - behavioral – Strategy – observer.

UNIT III CASE STUDY

Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Use cases – include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies - Aggregation and Composition.

UNIT IV APPLYING DESIGN PATTERNS

System sequence diagrams - Relationship between sequence diagrams and use cases Logical architecture and UML package diagram – Logical architecture refinement - UML class diagrams - UML interaction diagrams - Applying GoF design patterns.

UNIT V CODING AND TESTING

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration Testing – GUI Testing – OO System Testing.

9

9

9

9

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement projects using OO concepts.
- Use the UML analysis and design diagrams.
- Apply appropriate design patterns.
- Create code from design.
- Compare and contrast various testing techniques.

TEXT BOOK:

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", Third Edition, Pearson Education, 2005.

REFERENCES:

- 1. Simon Bennett, Steve Mc Robb and Ray Farmer, "Object Oriented Systems Analysis and Design Using UML", Fourth Edition, Mc-Graw Hill Education, 2010.
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Software", Addison-Wesley, 1995.
- 3. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language", Third edition, Addison Wesley, 2003.
- 4. Paul C. Jorgensen, "Software Testing:- A Craftsman's Approach", Third Edition, Auerbach Publications, Taylor and Francis Group, 2008.

CS6503

THEORY OF COMPUTATION

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand various Computing models like Finite State Machine, Pushdown Automata, and Turing Machine.
- Be aware of Decidability and Un-decidability of various problems.
- Learn types of grammars.

UNIT I FINITE AUTOMATA

Introduction- Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with €- moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA's with and without €-moves – Equivalence of finite Automaton and regular expressions –Minimization of DFA- - Pumping Lemma for Regular sets – Problems based on Pumping Lemma.

UNIT II GRAMMARS

Grammar Introduction– Types of Grammar - Context Free Grammars and Languages– Derivations and Languages – Ambiguity- Relationship between derivation and derivation trees – Simplification of CFG – Elimination of Useless symbols - Unit productions - Null productions – Greiback Normal form – Chomsky normal form – Problems related to CNF and GNF.

UNIT III PUSHDOWN AUTOMATA

Pushdown Automata- Definitions – Moves – Instantaneous descriptions – Deterministic pushdown automata – Equivalence of Pushdown automata and CFL - pumping lemma for CFL – problems based on pumping Lemma.

55

9

9

UNIT IV TURING MACHINES

Definitions of Turing machines – Models – Computable languages and functions –Techniques for Turing machine construction – Multi head and Multi tape Turing Machines - The Halting problem – Partial Solvability – Problems about Turing machine- Chomskian hierarchy of languages.

UNIT V UNSOLVABLE PROBLEMS AND COMPUTABLE FUNCTIONS

Unsolvable Problems and Computable Functions – Primitive recursive functions – Recursive and recursively enumerable languages – Universal Turing machine. MEASURING AND CLASSIFYING COMPLEXITY: Tractable and Intractable problems- Tractable and possibly intractable problems - P and NP completeness - Polynomial time reductions.

OUTCOMES:

At the end of the course, the student should be able to:

- Design Finite State Machine, Pushdown Automata, and Turing Machine.
- Explain the Decidability or Undecidability of various problems

TEXT BOOKS:

- 1. Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008. (UNIT 1,2,3)
- 2. John C Martin, "Introduction to Languages and the Theory of Computation", Third Edition, Tata McGraw Hill Publishing Company, New Delhi, 2007. (UNIT 4,5)

REFERENCES:

- 1. Mishra K L P and Chandrasekaran N, "Theory of Computer Science Automata, Languages and Computation", Third Edition, Prentice Hall of India, 2004.
- 2. Harry R Lewis and Christos H Papadimitriou, "Elements of the Theory of Computation", Second Edition, Prentice Hall of India, Pearson Education, New Delhi, 2003.
- 3. Peter Linz, "An Introduction to Formal Language and Automata", Third Edition, Narosa Publishers, New Delhi, 2002.
- 4. Kamala Krithivasan and Rama. R, "Introduction to Formal Languages, Automata Theory and Computation", Pearson Education 2009

CS6504

COMPUTER GRAPHICS

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Gain knowledge about graphics hardware devices and software used.
- Understand the two dimensional graphics and their transformations.
- Understand the three dimensional graphics and their transformations.
- Appreciate illumination and color models.
- Be familiar with understand clipping techniques.

UNIT I INTRODUCTION

Survey of computer graphics, Overview of graphics systems – Video display devices, Raster scan systems, Random scan systems, Graphics monitors and Workstations, Input devices, Hard copy Devices, Graphics Software; Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.

9

UNIT II TWO DIMENSIONAL GRAPHICS

Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; widow-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.

UNIT III THREE DIMENSIONAL GRAPHICS

Three dimensional concepts; Three dimensional object representations – Polygon surfaces- Polygon tables- Plane equations - Polygon meshes; Curved Lines and surfaces, Quadratic surfaces; Blobby objects; Spline representations – Bezier curves and surfaces -B-Spline curves and surfaces. TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations – Translation, Rotation, Scaling, composite transformations; Three dimensional viewing – viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods.

UNIT IV ILLUMINATION AND COLOUR MODELS

Light sources - basic illumination models – halftone patterns and dithering techniques; Properties of light - Standard primaries and chromaticity diagram; Intuitive colour concepts - RGB colour model - YIQ colour model - CMY colour model - HSV colour model - HLS colour model; Colour selection.

UNIT V ANIMATIONS & REALISM

ANIMATION GRAPHICS: Design of Animation sequences – animation function – raster animation – key frame systems – motion specification –morphing – tweening. **COMPUTER GRAPHICS REALISM:** Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – ray tracing.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design two dimensional graphics.
- Apply two dimensional transformations.
- Design three dimensional graphics.
- Apply three dimensional transformations.
- Apply Illumination and color models.
- Apply clipping techniques to graphics.
- Design animation sequences.

TEXT BOOKS:

- John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven K. Feiner and Kurt Akeley ,"Computer Graphics: Principles and Practice", , 3rd Edition, Addison-Wesley Professional,2013. (UNIT I, II, III, IV).
- 2. Donald Hearn and Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007 (UNIT V).

REFERENCES:

- 1. Donald Hearn and M. Pauline Baker, Warren Carithers, "Computer Graphics With Open GL", 4th Edition, Pearson Education, 2010.
- 2. Jeffrey McConnell, "Computer Graphics: Theory into Practice", Jones and Bartlett Publishers, 2006.
- 3. Hill F S Jr., "Computer Graphics", Maxwell Macmillan", 1990.
- 4. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, Kelvin Sung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.
- 5. William M. Newman and Robert F.Sproull, "Principles of Interactive Computer Graphics", Mc Graw Hill 1978.
- 6. http://nptel.ac.in/

9

10

10

CS6511

CASE TOOLS LABORATORY

OBJECTIVES:

The student should be made to:

- Learn the basics of OO analysis and design skills.
- Be exposed to the UML design diagrams.
- Learn to map design to code.
- Be familiar with the various testing techniques

LIST OF EXPERIMNENTS:

To develop a mini-project by following the 9 exercises listed below.

- 1. To develop a problem statement.
- 2. Identify Use Cases and develop the Use Case model.
- 3. Identify the conceptual classes and develop a domain model with UML Class diagram.
- 4. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence diagrams.
- 5. Draw relevant state charts and activity diagrams.
- 6. Identify the User Interface, Domain objects, and Technical services. Draw the partial layered, logical architecture diagram with UML package diagram notation.
- 7. Develop and test the Technical services layer.
- 8. Develop and test the Domain objects layer.
- 9. Develop and test the User interface layer.

SUGGESTED DOMAINS FOR MINI-PROJECT:

- 1. Passport automation system.
- 2. Book bank
- 3. Exam Registration
- 4. Stock maintenance system.
- 5. Online course reservation system
- 6. E-ticketing
- 7. Software personnel management system
- 8. Credit card processing
- 9. e-book management system
- 10. Recruitment system
- 11. Foreign trading system
- 12. Conference Management System
- 13. BPO Management System
- 14. Library Management System
- 15. Student Information System

OUTCOMES:

At the end of the course, the student should be able to

- Design and implement projects using OO concepts.
- Use the UML analysis and design diagrams.
- Apply appropriate design patterns.
- Create code from design.
- Compare and contrast various testing techniques

58

TOTAL: 45 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Suggested Software Tools:

Rational Suite (or) Argo UML (or) equivalent, Eclipse IDE and Junit

Software Tools

30 user License

Rational Suite Open Source Alternatives: ArgoUML, Visual Paradigm Eclipse IDE and JUnit

PCs

30

CS6512 INTERNET PROGRAMMING LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- Be familiar with Web page design using HTML/XML and style sheets
- Be exposed to creation of user interfaces using Java frames and applets.
- Learn to create dynamic web pages using server side scripting.
- Learn to write Client Server applications.
- Be familiar with the frameworks JSP Strut, Hibernate, Spring
- Be exposed to creating applications with AJAX

LIST OF EXPERIMNENTS: IMPLEMENT THE FOLLOWING: WEBPAGE CONCEPTS

- a) Create a web page with the following using HTML
 - a. To embed a map in a web page
 - b. To fix the hot spots in that map
 - c. Show all the related information when the hot spots are clicked.
- b) Create a web page with the following.
 - a. Cascading style sheets.
 - b. Embedded style sheets.
 - c. Inline style sheets. Use our college information for the web pages.
- c) Create and save an XML document at the server, which contains 10 users Information. Write a Program, which takes user Id as an input and returns the User details by taking the user information from the XML document.

SOCKETS & SERVLETS

- a) Write programs in Java using sockets to implement the following:
 - i. HTTP request
 - ii. FTP
 - iii. SMTP
 - iv. POP3
- b) Write a program in Java for creating simple chat application with datagram sockets and datagram packets.
- c) Write programs in Java using Servlets:
 - i. To invoke servlets from HTML forms

ii. To invoke servlets from Applets

- d) Write programs in Java to create three-tier applications using servlets for conducting on-line examination for displaying student mark list. Assume that student information is available in a database which has been stored in a database server.
- e) Write a program to lock servlet itself to a particular server IP address and port number. It requires an init parameter key that is appropriate for its servlet IP address and port before it unlocks itself and handles a request
- f) Session tracking using hidden form fields and Session tracking for a hit count
- g) Install TOMCAT web server. Convert the static webpages of programs 1&2 into dynamic web pages using servlets (or JSP) and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.

ADVANCE CONCEPTS:

- a) Implement a simple program using following frameworks a. JSP Struts Framework b. Hibernate c. Spring
- b) Explore the following application in AJAX: Searching in real time with live searches, Getting the answer with auto complete, Chatting with friends ,Dragging and dropping with Ajax, Getting instant login feedback, Ajax-enabled popup menus, Modifying Web pages on the fly.
- c) Write a web services for finding what people think by asking 500 people's opinion for any consumer product
- d) Write a web services for predicting for any product sales

OUTCOMES:

At the end of the course, the student should be able to

- Design Web pages using HTML/XML and style sheets
- Create user interfaces using Java frames and applets.
- Create dynamic web pages using server side scripting.
- Write Client Server applications.
- Use the frameworks JSP Strut, Hibernate, Spring
- Create applications with AJAX

REFERENCE:

spoken-tutorial.org.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS SOFTWARE:

Java, Dream Weaver or Equivalent, MySQL or Equivalent, Apache Server

30 Nos

HARDWARE:

Standalone	deskto	ps
------------	--------	----

CS6513 COMPUTER GRAPHICS LABORATORY L T P C

0 0 3 2

OBJECTIVES:

The student should be made to:

- Understand graphics programming
- Be exposed to creation of 3D graphical scenes using open graphics library suits
- Be familiar with image manipulation, enhancement
- Learn to create animations
- To create a multimedia presentation/Game/Project.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS: IMPLEMENT THE EXERCISES USING C / OPENGL / JAVA

- Implementation of Algorithms for drawing 2D Primitives Line (DDA, Bresenham) – all slopes Circle (Midpoint)
- 2D Geometric transformations Translation Rotation Scaling Reflection Shear Window-Viewport
- 3. Composite 2D Transformations
- 4. Line Clipping
- 5. 3D Transformations Translation, Rotation, Scaling.
- 6. 3D Projections Parallel, Perspective.
- 7. Creating 3D Scenes.
- 8. Image Editing and Manipulation Basic Operations on image using any image editing software, Creating gif animated images, Image optimization.
- 9. 2D Animation To create Interactive animation using any authoring tool.

OUTCOMES:

TOTAL: 45 PERIODS

At the end of the course, the student should be able to

- Create 3D graphical scenes using open graphics library suits
- Implement image manipulation and enhancement
- Create 2D animations using tools

REFERENCE:

spoken-tutorial.org

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SOFTWARE

C, C++, Java, OpenGL

HARDWARE:

Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more.

CS6601

DISTRIBUTED SYSTEMS

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand foundations of Distributed Systems.
- Introduce the idea of peer to peer services and file system.
- Understand in detail the system level and support required for distributed system.
- Understand the issues involved in studying process and resource management.

UNIT I INTRODUCTION

Examples of Distributed Systems-Trends in Distributed Systems - Focus on resource sharing -Challenges. Case study: World Wide Web.

UNIT II COMMUNICATION IN DISTRIBUTED SYSTEM

System Model – Inter process Communication - the API for internet protocols – External data representation and Multicast communication. **Network virtualization:** Overlay networks. **Case study:** MPI Remote Method Invocation And Objects: Remote Invocation – Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. Case study: Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches -Distributed objects - Case study: Enterprise Java Beans -from objects to components.

PEER TO PEER SERVICES AND FILE SYSTEM UNIT III

Peer-to-peer Systems - Introduction - Napster and its legacy - Peer-to-peer - Middleware - Routing overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems - Introduction - File service architecture - Andrew File system. File System: Features-File model -File accessing models - File sharing semantics Naming: Identifiers, Addresses, Name Resolution - Name Space Implementation – Name Caches – LDAP.

UNIT IV SYNCHRONIZATION AND REPLICATION

Introduction - Clocks, events and process states - Synchronizing physical clocks- Logical time and logical clocks - Global states - Coordination and Agreement - Introduction - Distributed mutual exclusion - Elections - Transactions and Concurrency Control- Transactions -Nested transactions -Locks – Optimistic concurrency control - Timestamp ordering – Atomic Commit protocols - Distributed deadlocks – Replication – Case study – Coda.

UNIT V **PROCESS & RESOURCE MANAGEMENT**

Process Management: Process Migration: Features, Mechanism - Threads: Models, Issues, Implementation. Resource Management: Introduction- Features of Scheduling Algorithms -Task Assignment Approach – Load Balancing Approach – Load Sharing Approach.

OUTCOMES:

At the end of the course, the student should be able to:

- Discuss trends in Distributed Systems.
- Apply network virtualization.
- Apply remote method invocation and objects.
- Design process and resource management systems.

TEXT BOOK:

1. George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012.

REFERENCES:

- 1. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007.
- 2. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.
- 3. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 4. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003.

10

9

TOTAL: 45 PERIODS

10

63

MOBILE COMPUTING

OBJECTIVES:

IT6601

The student should be made to:

- Understand the basic concepts of mobile computing
- Be familiar with the network protocol stack
- Learn the basics of mobile telecommunication system
- Be exposed to Ad-Hoc networks
- Gain knowledge about different mobile platforms and application development

UNIT I INTRODUCTION

Mobile Computing – Mobile Computing Vs wireless Networking – Mobile Computing Applications – Characteristics of Mobile computing – Structure of Mobile Computing Application. MAC Protocols – Wireless MAC Issues – Fixed Assignment Schemes – Random Assignment Schemes – Reservation Based Schemes.

UNIT II MOBILE INTERNET PROTOCOL AND TRANSPORT LAYER

Overview of Mobile IP – Features of Mobile IP – Key Mechanism in Mobile IP – route Optimization. Overview of TCP/IP – Architecture of TCP/IP- Adaptation of TCP Window – Improvement in TCP Performance.

UNIT III MOBILE TELECOMMUNICATION SYSTEM

Global System for Mobile Communication (GSM) – General Packet Radio Service (GPRS) – Universal Mobile Telecommunication System (UMTS).

UNIT IV MOBILE AD-HOC NETWORKS

Ad-Hoc Basic Concepts – Characteristics – Applications – Design Issues – Routing – Essential of Traditional Routing Protocols – Popular Routing Protocols – Vehicular Ad Hoc networks (VANET) – MANET Vs VANET – Security.

UNIT V MOBILE PLATFORMS AND APPLICATIONS

Mobile Device Operating Systems – Special Constrains & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – M-Commerce – Structure – Pros & Cons – Mobile Payment System – Security Issues.

TOTAL: 45 PERIODS

At the end of the course, the student should be able to:

- Explain the basics of mobile telecommunication system
- Choose the required functionality at each layer for given application
- Identify solution for each functionality at each layer
- Use simulator tools and design Ad hoc networks
- Develop a mobile application.

TEXT BOOK:

OUTCOMES:

1. Prasant Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd, New Delhi – 2012.

9

9

9

9

9

L T P C 3 0 0 3

REFERENCES:

- 1. Jochen H. Schller, "Mobile Communications", Second Edition, Pearson Education, New Delhi, 2007.
- 2. Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.
- 3. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 2003.
- 4. William.C.Y.Lee, "Mobile Cellular Telecommunications-Analog and Digital Systems", Second Edition, Tata Mc Graw Hill Edition ,2006.
- 5. C.K.Toh, "AdHoc Mobile Wireless Networks", First Edition, Pearson Education, 2002.
- 6. Android Developers : http://developer.android.com/index.html
- 7. Apple Developer : <u>https://developer.apple.com/</u>
- 8. Windows Phone Dev Center : http://developer.windowsphone.com
- 9. BlackBerry Developer : http://developer.blackberry.com/

CS6660

COMPILER DESIGN

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the design principles of a Compiler.
- Learn the various parsing techniques and different levels of translation
- Learn how to optimize and effectively generate machine codes

UNIT I INTRODUCTION TO COMPILERS

Translators-Compilation and Interpretation-Language processors -The Phases of Compiler-Errors Encountered in Different Phases-The Grouping of Phases-Compiler Construction Tools - Programming Language basics.

UNIT II LEXICAL ANALYSIS

Need and Role of Lexical Analyzer-Lexical Errors-Expressing Tokens by Regular Expressions-Converting Regular Expression to DFA- Minimization of DFA-Language for Specifying Lexical Analyzers-LEX-Design of Lexical Analyzer for a sample Language.

UNIT III SYNTAX ANALYSIS

Need and Role of the Parser-Context Free Grammars -Top Down Parsing -General Strategies-Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser-LR (0)Item-Construction of SLR Parsing Table -Introduction to LALR Parser - Error Handling and Recovery in Syntax Analyzer-YACC-Design of a syntax Analyzer for a Sample Language .

UNIT IV SYNTAX DIRECTED TRANSLATION & RUN TIME ENVIRONMENT

Syntax directed Definitions-Construction of Syntax Tree-Bottom-up Evaluation of S-Attribute Definitions- Design of predictive translator - Type Systems-Specification of a simple type checker-Equivalence of Type Expressions-Type Conversions.

RUN-TIME ENVIRONMENT: Source Language Issues-Storage Organization-Storage Allocation-Parameter Passing-Symbol Tables-Dynamic Storage Allocation-Storage Allocation in FORTAN.

10

5

9

UNIT V CODE OPTIMIZATION AND CODE GENERATION

Principal Sources of Optimization-DAG- Optimization of Basic Blocks-Global Data Flow Analysis-Efficient Data Flow Algorithms-Issues in Design of a Code Generator - A Simple Code Generator Algorithm.

TOTAL: 45 PERIODS

9

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement a prototype compiler.
- Apply the various optimization techniques.
- Use the different compiler construction tools.

TEXTBOOK:

1. Alfred V Aho, Monica S. Lam, Ravi Sethi and Jeffrey D Ullman, "Compilers – Principles, Techniques and Tools", 2nd Edition, Pearson Education, 2007.

REFERENCES:

- 1. Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependence-based Approach", Morgan Kaufmann Publishers, 2002.
- 2. Steven S. Muchnick, "Advanced Compiler Design and Implementation, "Morgan Kaufmann Publishers Elsevier Science, India, Indian Reprint 2003.
- 3. Keith D Cooper and Linda Torczon, "Engineering a Compiler", Morgan Kaufmann Publishers Elsevier Science, 2004.
- 4. Charles N. Fischer, Richard. J. LeBlanc, "Crafting a Compiler with C", Pearson Education, 2008.

IT6502

DIGITAL SIGNAL PROCESSING

OBJECTIVES:

- To introduce discrete Fourier transform and its applications.
- To teach the design of infinite and finite impulse response filters for filtering undesired signals.
- To introduce signal processing concepts in systems having more than one sampling frequency.

UNIT I SIGNALS AND SYSTEMS

Basic elements of DSP – concepts of frequency in Analog and Digital Signals – sampling theorem – Discrete – time signals, systems – Analysis of discrete time LTI systems – Z transform – Convolution – Correlation.

UNIT II FREQUENCY TRANSFORMATIONS

Introduction to DFT – Properties of DFT – Circular Convolution - Filtering methods based on DFT – FFT Algorithms - Decimation – in – time Algorithms, Decimation – in – frequency Algorithms – Use of FFT in Linear Filtering – DCT – Use and Application of DCT.

UNIT III IIR FILTER DESIGN

Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation.

9

LTPC

3 1 0 4

9

UNIT IV FIR FILTER DESIGN

Structures of FIR – Linear phase FIR filter – Fourier Series - Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques

UNIT V FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS

Binary fixed point and floating point number representations – Comparison - Quantization noise – truncation and rounding – quantization noise power- input quantization error- coefficient quantization error – limit cycle oscillations-dead band- Overflow error-signal scaling.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Perform frequency transforms for the signals.
- Design IIR and FIR filters.
- Finite word length effects in digital filters

TEXT BOOK:

1. John G. Proakis and Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education, Prentice Hall, 2007.

REFERENCES:

- 1. Emmanuel C.Ifeachor, and Barrie.W.Jervis, "Digital Signal Processing", Second Edition, Pearson Education, Prentice Hall, 2002.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Third Edition, Tata Mc Graw Hill, 2007.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, 8th Indian Reprint, Pearson, 2004.
- 4. Andreas Antoniou, "Digital Signal Processing", Tata McGraw Hill, 2006.

CS6659

ARTIFICIAL INTELLIGENCE

L T P C 3 0 0 3

9

9

OBJECTIVES:

The student should be made to:

- Study the concepts of Artificial Intelligence.
- Learn the methods of solving problems using Artificial Intelligence.
- Introduce the concepts of Expert Systems and machine learning.

UNIT I INTRODUCTION TO AI AND PRODUCTION SYSTEMS

Introduction to AI-Problem formulation, Problem Definition -Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics -Specialized production system- Problem solving methods - Problem graphs, Matching, Indexing and Heuristic functions -Hill Climbing-Depth first and Breath first, Constraints satisfaction - Related algorithms, Measure of performance and analysis of search algorithms.

UNIT II REPRESENTATION OF KNOWLEDGE

Game playing - Knowledge representation, Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation of knowledge.

9

UNIT III KNOWLEDGE INFERENCE

Knowledge representation -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

UNIT IV PLANNING AND MACHINE LEARNING

Basic plan generation systems - Strips - Advanced plan generation systems – K strips - Strategic explanations - Why, Why not and how explanations. Learning- Machine learning, adaptive Learning.

UNIT V EXPERT SYSTEMS

Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert systems shells.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Identify problems that are amenable to solution by AI methods.
- Identify appropriate AI methods to solve a given problem.
- Formalise a given problem in the language/framework of different AI methods.
- Implement basic Al algorithms.
- Design and carry out an empirical evaluation of different algorithms on a problem formalisation, and state the conclusions that the evaluation supports.

TEXT BOOKS:

- 1. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill- 2008. (Units-I,II,VI & V)
- 2. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007. (Unit-III).

REFERENCES:

- 1. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
- 2. Stuart Russel and Peter Norvig "AI A Modern Approach", 2nd Edition, Pearson Education 2007.
- 3. Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.
- 4. http://nptel.ac.in

CS6611 MOBILE APPLICATION DEVELOPMENT LABORATORY L T P C

OBJECTIVES:

The student should be made to:

- Know the components and structure of mobile application development frameworks for Android and windows OS based mobiles.
- Understand how to work with various mobile application development frameworks.
- Learn the basic and important design concepts and issues of development of mobile applications.
- Understand the capabilities and limitations of mobile devices.

LIST OF EXPERIMENTS:

- 1. Develop an application that uses GUI components, Font and Colours
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Develop a native calculator application.
- 4. Write an application that draws basic graphical primitives on the screen.

9

9

0 0 3 2

- 5. Develop an application that makes use of database.
- 6. Develop an application that makes use of RSS Feed.
- 7. Implement an application that implements Multi threading
- 8. Develop a native application that uses GPS location information.
- 9. Implement an application that writes data to the SD card.
- 10. Implement an application that creates an alert upon receiving a message.
- 11. Write a mobile application that creates alarm clock

OUTCOMES:

At the end of the course, the student should be able to:

- Design and Implement various mobile applications using emulators.
- Deploy applications to hand-held devices

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Standalone desktops with Windows or Android or iOS or Equivalent Mobile Application Development Tools with appropriate emulators and debuggers - 30 Nos.

CS6612

COMPILER LABORATORY

LT PC 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Be exposed to compiler writing tools.
- Learn to implement the different Phases of compiler
 Deformition with events of the second state for the second state of the second state
- Be familiar with control flow and data flow analysis
- Learn simple optimization techniques

LIST OF EXPERIMENTS:

- 1. Implementation of Symbol Table
- 2. Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers, constants, comments, operators etc.)
- 3. Implementation of Lexical Analyzer using Lex Tool
- 4. Generate YACC specification for a few syntactic categories.
 - a) Program to recognize a valid arithmetic expression that usesoperator +, -, * and /.
 b) Program to recognize a valid variable which starts with a letterfollowed by any number of letters or digits.
 - d)Implementation of Calculator using LEX and YACC
- 5. Convert the BNF rules into Yacc form and write code to generate Abstract Syntax Tree.
- 6. Implement type checking
- 7. Implement control flow analysis and Data flow Analysis
- 8. Implement any one storage allocation strategies(Heap,Stack,Static)
- 9. Construction of DAG
- 10. Implement the back end of the compiler which takes the three address code and produces the 8086 assembly language instructions that can be assembled and run using a 8086 assembler. The target assembly instructions can be simple move, add, sub, jump. Also simple addressing modes are used.
- 11. Implementation of Simple Code Optimization Techniques (Constant Folding., etc.)

OUTCOMES:

At the end of the course, the student should be able to

- Implement the different Phases of compiler using tools
- Analyze the control flow and data flow of a typical program
- Optimize a given program
- Generate an assembly language program equivalent to a source language program

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C / C++ compiler and Compiler writing tools 30 Nos.

(or)

Server with C / C++ compiler and Compiler writing tools supporting 30 terminals or more.

LEX and YACC

GE6674 COMMUNICATION AND SOFT SKILLS- LABORATORY BASED L T P C

0 0 4 2

OBJECTIVES:

To enable learners to,

- Develop their communicative competence in English with specific reference to speaking and listening
- Enhance their ability to communicate effectively in interviews.
- Strengthen their prospects of success in competitive examinations.

UNIT I LISTENING AND SPEAKING SKILLS

Conversational skills (formal and informal)- group discussion- making effective presentations using computers, listening/watching interviews conversations, documentaries. Listening to lectures, discussions from TV/ Radio/ Podcast.

UNIT II READING AND WRITING SKILLS

Reading different genres of tests ranging from newspapers to creative writing. Writing job applications- cover letter- resume- emails- letters- memos- reports. Writing abstracts- summaries-interpreting visual texts.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS

International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) - Civil Service(Language related)- Verbal Ability.

UNIT IV INTERVIEW SKILLS

Different types of Interview format- answering questions- offering information- mock interviews-body language(paralinguistic features)- articulation of sounds- intonation.

69

12

12

12

70

UNIT V SOFT SKILLS

Motivation- emotional intelligence-Multiple intelligences- emotional intelligence- managing changes-time management-stress management-leadership straits-team work- career planning - intercultural communication- creative and critical thinking

TOTAL: 60 PERIODS

Teaching Methods:

- 1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
- 2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
- 3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
- 4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
- 5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.

Lab Infrastructure:				
S. No.	Description of Equipment (minimum configuration)	Qty Required		
1	Server	1 No.		
	PIV System			
	1 GB RAM / 40 GB HDD			
	OS: Win 2000 server			
	Audio card with headphones			
	• JRE 1.3			
2	Client Systems	60 Nos.		
	PIII or above			
	• 256 or 512 MB RAM / 40 GB HDD			
	OS: Win 2000			
	Audio card with headphones	_		
	• JRE 1.3			
3	Handicam	1 No.		
4	Television 46"	1 No.		
5	Collar mike	1 No.		
6	Cordless mike	1 No.		
7	Audio Mixer	1 No.		
8	DVD recorder/player	1 No.		
9	LCD Projector with MP3/CD/DVD provision for Audio/video facility	1 No.		

Lab Infrastructure:

Evaluation:

Internal: 20 marks

Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

External: 80 marks

Online Test	- 35 marks
Interview	- 15 marks
Presentation	- 15 marks
Group Discussion	- 15 marks

Note on Internal and External Evaluation:

- 1. Interview mock interview can be conducted on one-on-one basis.
- 2. Speaking example for role play:
 - a. Marketing engineer convincing a customer to buy his product.
 - b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
- 3. Presentation should be extempore on simple topics.
- 4. Discussion topics of different kinds; general topics, and case studies.

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD-ROM), Times Multimedia, Mumbai.
- 6. Robert M Sherfield and et al. "Developing Soft Skills" 4th edition, New Delhi: Pearson Education, 2009.

Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion http://www.washington.edu/doit/TeamN/present_tips.html http://www.oxforddictionaries.com/words/writing-job-applications http://www.kent.ac.uk/careers/cv/coveringletters.htm http://www.mindtools.com/pages/article/newCDV_34.htm

CRYPTOGRAPHY AND NETWORK SECURITY

OBJECTIVES:

The student should be made to:

- Understand OSI security architecture and classical encryption techniques.
- Acquire fundamental knowledge on the concepts of finite fields and number theory.
- Understand various block cipher and stream cipher models.
- Describe the principles of public key cryptosystems, hash functions and digital signature.

UNIT I INTRODUCTION & NUMBER THEORY

Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques, steganography).FINITE FIELDS AND NUMBER THEORY: Groups, Rings, Fields-Modular arithmetic-Euclid's algorithm-Finite fields- Polynomial Arithmetic –Prime numbers-Fermat's and Euler's theorem-Testing for primality -The Chinese remainder theorem- Discrete logarithms.

UNIT II BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY

Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES-Blowfish-RC5 algorithm. **Public key cryptography:** Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange-Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT III HASH FUNCTIONS AND DIGITAL SIGNATURES

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC – MD5 - SHA - HMAC – CMAC - Digital signature and authentication protocols – DSS – EI Gamal – Schnorr.

UNIT IV SECURITY PRACTICE & SYSTEM SECURITY

Authentication applications – Kerberos – X.509 Authentication services - Internet Firewalls for Trusted System: Roles of Firewalls – Firewall related terminology- Types of Firewalls - Firewall designs - SET for E-Commerce Transactions. Intruder – Intrusion detection system – Virus and related threats – Countermeasures – Firewalls design principles – Trusted systems – Practical implementation of cryptography and security.

UNIT V E-MAIL, IP & WEB SECURITY

E-mail Security: Security Services for E-mail-attacks possible through E-mail - establishing keys privacy-authentication of the source-Message Integrity-Non-repudiation-Pretty Good Privacy-S/MIME. **IPSecurity:** Overview of IPSec - IP and IPv6-Authentication Header-Encapsulation Security Payload (ESP)-Internet Key Exchange (Phases of IKE, ISAKMP/IKE Encoding). **Web Security:** SSL/TLS Basic Protocol-computing the keys- client authentication-PKI as deployed by SSLAttacks fixed in v3-Exportability-Encoding-Secure Electronic Transaction (SET).

OUTCOMES:

Upon Completion of the course, the students should be able to:

- Compare various Cryptographic Techniques
- Design Secure applications
- Inject secure coding in the developed applications

10

10

LTPC 3 0 0 3

TOTAL: 45 PERIODS

8

8

TEXT BOOKS:

- 1. William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013. (UNIT I,II,III,IV).
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002. (UNIT V).

REFERENCES:

- 1. Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill, 2007.
- 2. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2003.
- 3. Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.
- 4. Ulysess Black, "Internet Security Protocols", Pearson Education Asia, 2000.
- 5. Charlie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Second Edition, Private Communication in Public World", PHI 2002.
- 6. Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dreamtech India Pvt Ltd, 2003.
- 7. Douglas R Simson "Cryptography Theory and practice", First Edition, CRC Press, 1995.
- 8. <u>http://nptel.ac.in/</u>.

CS6702

GRAPH THEORY AND APPLICATIONS

LTPC 3 0 0 3

9

9

OBJECTIVES:

The student should be made to:

- Be familiar with the most fundamental Graph Theory topics and results.
- Be exposed to the techniques of proofs and analysis.

UNIT I INTRODUCTION

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –Connectedness – Components – Euler graphs – Hamiltonian paths and circuits – Trees – Properties of trees – Distance and centers in tree – Rooted and binary trees.

UNIT II TREES, CONNECTIVITY & PLANARITY

Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets – Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different representation of a planer graph.

UNIT III MATRICES, COLOURING AND DIRECTED GRAPH

Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color problem – Directed graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and connectedness – Euler graphs.

UNIT IV PERMUTATIONS & COMBINATIONS

Fundamental principles of counting - Permutations and combinations - Binomial theorem - combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion - Derangements - Arrangements with forbidden positions.

9

investigation of questions in graph theory.

• Validate and critically assess a mathematical proof.

• Reason from definitions to construct mathematical proofs.

Upon Completion of the course, the students should be able to:

TEXT BOOKS:

OUTCOMES:

- 1. Narsingh Deo, "Graph Theory: With Application to Engineering and Computer Science", Prentice Hall of India, 2003.
- 2. Grimaldi R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", Addison Wesley, 1994.

REFERENCES:

- 1. Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995.
- 2. Mott J.L., Kandel A. and Baker T.P. "Discrete Mathematics for Computer Scientists and Mathematicians", Prentice Hall of India, 1996.
- 3. Liu C.L., "Elements of Discrete Mathematics", Mc Graw Hill, 1985.
- 4. Rosen K.H., "Discrete Mathematics and Its Applications", Mc Graw Hill, 2007.

CS6703

GRID AND CLOUD COMPUTING

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand how Grid computing helps in solving large scale scientific problems.
- Gain knowledge on the concept of virtualization that is fundamental to cloud computing.
- Learn how to program the grid and the cloud.
- Understand the security issues in the grid and the cloud environment.

UNIT I INTRODUCTION

Evolution of Distributed computing: Scalable computing over the Internet – Technologies for network based systems – clusters of cooperative computers - Grid computing Infrastructures – cloud computing - service oriented architecture – Introduction to Grid Architecture and standards – Elements of Grid – Overview of Grid Architecture.

UNIT V GENERATING FUNCTIONS

from non-examples.

Generating functions - Partitions of integers - Exponential generating function – Summation operator - Recurrence relations - First order and second order – Non-homogeneous recurrence relations - Method of generating functions.

Use mathematical definitions to identify and construct examples and to distinguish examples

Use a combination of theoretical knowledge and independent mathematical thinking in creative

Write precise and accurate mathematical definitions of objects in graph theory.

TOTAL: 45 PERIODS

10

UNIT II GRID SERVICES

Introduction to Open Grid Services Architecture (OGSA) – Motivation – Functionality Requirements – Practical & Detailed view of OGSA/OGSI – Data intensive grid service models – OGSA services.

UNIT III VIRTUALIZATION

Cloud deployment models: public, private, hybrid, community – Categories of cloud computing: Everything as a service: Infrastructure, platform, software - Pros and Cons of cloud computing – Implementation levels of virtualization – virtualization structure – virtualization of CPU, Memory and I/O devices – virtual clusters and Resource Management – Virtualization for data center automation.

UNIT IV PROGRAMMING MODEL

Open source grid middleware packages – Globus Toolkit (GT4) Architecture, Configuration – Usage of Globus – Main components and Programming model - Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job – Design of Hadoop file system, HDFS concepts, command line and java interface, dataflow of File read & File write.

UNIT V SECURITY

Trust models for Grid security environment – Authentication and Authorization methods – Grid security infrastructure – Cloud Infrastructure security: network, host and application level – aspects of data security, provider data and its security, Identity and access management architecture, IAM practices in the cloud, SaaS, PaaS, IaaS availability in the cloud, Key privacy issues in the cloud.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Apply grid computing techniques to solve large scale scientific problems.
- Apply the concept of virtualization.
- Use the grid and cloud tool kits.
- Apply the security models in the grid and the cloud environment.

TEXT BOOK:

1. Kai Hwang, Geoffery C. Fox and Jack J. Dongarra, "Distributed and Cloud Computing: Clusters, Grids, Clouds and the Future of Internet", First Edition, Morgan Kaufman Publisher, an Imprint of Elsevier, 2012.

REFERENCES:

- 1. Jason Venner, "Pro Hadoop- Build Scalable, Distributed Applications in the Cloud", A Press, 2009
- 2. Tom White, "Hadoop The Definitive Guide", First Edition. O'Reilly, 2009.
- 3. Bart Jacob (Editor), "Introduction to Grid Computing", IBM Red Books, Vervante, 2005
- 4. Ian Foster, Carl Kesselman, "The Grid: Blueprint for a New Computing Infrastructure", 2nd Edition, Morgan Kaufmann.
- 5. Frederic Magoules and Jie Pan, "Introduction to Grid Computing" CRC Press, 2009.
- 6. Daniel Minoli, "A Networking Approach to Grid Computing", John Wiley Publication, 2005.
- 7. Barry Wilkinson, "Grid Computing: Techniques and Applications", Chapman and Hall, CRC, Taylor and Francis Group, 2010.

9

9

 OBJECTIVES: The student should be made to: Be familiar with resource management techniques. Learn to solve problems in linear programming and Integer programming. Be exposed to CPM and PERT.
UNIT ILINEAR PROGRAMMING9Principal components of decision problem – Modeling phases – LP Formulation and graphic solution – Resource allocation problems – Simplex method – Sensitivity analysis.9
UNIT IIDUALITY AND NETWORKS9Definition of dual problem – Primal – Dual relation ships – Dual simplex methods – Post optimality analysis – Transportation and assignment model - Shortest route problem.9
UNIT IIIINTEGER PROGRAMMING9Cutting plan algorithm – Branch and bound methods, Multistage (Dynamic) programming.
UNIT IVCLASSICAL OPTIMISATION THEORY:9Unconstrained external problems, Newton – Ralphson method – Equality constraints – Jacobean methods – Lagrangian method – Kuhn – Tucker conditions – Simple problems.9

UNIT V **OBJECT SCHEDULING:**

Network diagram representation – Critical path method – Time charts and resource leveling – PERT.

OUTCOMES:

Upon Completion of the course, the students should be able to:

- Solve optimization problems using simplex method.
- Apply integer programming and linear programming to solve real-life applications. •
- Use PERT and CPM for problems in project management

TEXT BOOK:

1. H.A. Taha, "Operation Research", Prentice Hall of India, 2002.

REFERENCES:

- 1. Paneer Selvam, 'Operations Research', Prentice Hall of India, 2002
- 2. Anderson 'Quantitative Methods for Business', 8th Edition, Thomson Learning, 2002.
- 3. Winston 'Operation Research', Thomson Learning, 2003.
- 4. Vohra, 'Quantitative Techniques in Management', Tata Mc Graw Hill, 2002.
- 5. Anand Sarma, 'Operation Research', Himalaya Publishing House, 2003.

CS6704

RESOURCE MANAGEMENT TECHNIQUES

9

TOTAL: 45 PERIODS

SECURITY LABORATORY

OBJECTIVES:

The student should be made to:

- Be exposed to the different cipher techniques
- Learn to implement the algorithms DES, RSA, MD5, SHA-1
- Learn to use network security tools like GnuPG, KF sensor, Net Strumbler

LIST OF EXPERIMENTS:

- 1. Implement the following SUBSTITUTION & TRANSPOSITION TECHNIQUES concepts:
 - a) Caesar Cipher
 - b) Playfair Cipher
 - c) Hill Cipher
 - d) Vigenere Cipher
 - e) Rail fence row & Column Transformation
- 2. Implement the following algorithms
 - a) DES
 - b) RSA Algorithm
 - c) Diffiee-Hellman
 - d) MD5
 - e) SHA-1
- 5 Implement the SIGNATURE SCHEME Digital Signature Standard
- 6. Demonstrate how to provide secure data storage, secure data transmission and for creating digital signatures (GnuPG).
- 7. Setup a honey pot and monitor the honeypot on network (KF Sensor)
- 8. Installation of rootkits and study about the variety of options
- 9. Perform wireless audit on an access point or a router and decrypt WEP and WPA.(Net Stumbler)
- 10. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to

- Implement the cipher techniques
- Develop the various security algorithms
- Use different open source tools for network security and analysis

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SOFTWARE:

C / C++ / Java or equivalent compiler

GnuPG, KF Sensor or Equivalent, Snort, Net Stumbler or Equivalent

HARDWARE:

Standalone desktops - 30 Nos.

Server supporting 30 terminals or more.

GRID AND CLOUD COMPUTING LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- Be exposed to tool kits for grid and cloud environment.
- Be familiar with developing web services/Applications in grid framework
- Learn to run virtual machines of different configuration.
- Learn to use Hadoop

LIST OF EXPERIMENTS:

GRID COMPUTING LAB

Use Globus Toolkit or equivalent and do the following:

- 1. Develop a new Web Service for Calculator.
- 2. Develop new OGSA-compliant Web Service.
- 3. Using Apache Axis develop a Grid Service.
- 4. Develop applications using Java or C/C++ Grid APIs
- 5. Develop secured applications using basic security mechanisms available in Globus Toolkit.
- 6. Develop a Grid portal, where user can submit a job and get the result. Implement it with and without GRAM concept.

CLOUD COMPUTING LAB

Use Eucalyptus or Open Nebula or equivalent to set up the cloud and demonstrate.

- 1. Find procedure to run the virtual machine of different configuration. Check how many virtual machines can be utilized at particular time.
- 2. Find procedure to attach virtual block to the virtual machine and check whether it holds the data even after the release of the virtual machine.
- 3. Install a C compiler in the virtual machine and execute a sample program.
- 4. Show the virtual machine migration based on the certain condition from one node to the other.
- 5. Find procedure to install storage controller and interact with it.
- 6. Find procedure to set up the one node Hadoop cluster.
- 7. Mount the one node Hadoop cluster using FUSE.
- 8. Write a program to use the API's of Hadoop to interact with it.
- 9. Write a wordcount program to demonstrate the use of Map and Reduce tasks

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to

- Use the grid and cloud tool kits.
- Design and implement applications on the Grid.
- Design and Implement applications on the Cloud.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SOFTWARE:

Globus Toolkit or equivalent Eucalyptus or Open Nebula or equivalent

HARDWARE

Standalone desktops	30 Nos

MULTI-CORE ARCHITECTURES AND PROGRAMMING

LTPC 3003

OBJECTIVES:

The student should be made to:

- Understand the challenges in parallel and multi-threaded programming.
- Learn about the various parallel programming paradigms, and solutions.

UNIT I MULTI-CORE PROCESSORS

Single core to Multi-core architectures - SIMD and MIMD systems - Interconnection networks -Symmetric and Distributed Shared Memory Architectures - Cache coherence - Performance Issues -Parallel program design.

UNIT II PARALLEL PROGRAM CHALLENGES

Performance - Scalability - Synchronization and data sharing - Data races - Synchronization primitives (mutexes, locks, semaphores, barriers) - deadlocks and livelocks - communication between threads (condition variables, signals, message queues and pipes).

UNIT III SHARED MEMORY PROGRAMMING WITH OpenMP

OpenMP Execution Model – Memory Model – OpenMP Directives – Work-sharing Constructs - Library functions - Handling Data and Functional Parallelism - Handling Loops - Performance Considerations.

UNIT IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI

MPI program execution - MPI constructs - libraries - MPI send and receive - Point-to-point and Collective communication – MPI derived datatypes – Performance evaluation 9

PARALLEL PROGRAM DEVELOPMENT UNIT V

Case studies - n-Body solvers – Tree Search – OpenMP and MPI implementations and comparison.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Program Parallel Processors.
- Develop programs using OpenMP and MPI.
- Compare and contrast programming for serial processors and programming for parallel processors.

TEXT BOOKS:

- 1. Peter S. Pacheco, "An Introduction to Parallel Programming", Morgan-Kauffman/Elsevier, 2011.
- 2. Darryl Gove, "Multicore Application Programming for Windows, Linux, and Oracle Solaris", Pearson, 2011 (unit 2)

REFERENCES:

- 1. Michael J Quinn, "Parallel programming in C with MPI and OpenMP", Tata McGraw Hill, 2003.
- 2. Shameem Akhter and Jason Roberts, "Multi-core Programming", Intel Press, 2006.

9

9

9

80

PROJECT WORK

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

C# AND .NET PROGRAMMING

CS6001

OBJECTIVES:

The student should be made to:

- Understand the foundations of CLR execution.
- Learn the technologies of the .NET framework.
- Know the object oriented aspects of C#.
- Be aware of application development in .NET.
- Learn web based applications on .NET (ASP.NET).

UNIT I INTRODUCTION TO C#

Introducing C#, Understanding .NET, overview of C#, Literals, Variables, Data Types, Operators, checked and unchecked operators, Expressions, Branching, Looping, Methods, implicit and explicit casting, Constant, Arrays, Array Class, Array List, String, String Builder, Structure, Enumerations, boxing and unboxing.

UNIT II OBJECT ORIENTED ASPECTS OF C#

Class, Objects, Constructors and its types, inheritance, properties, indexers, index overloading, polymorphism, sealed class and methods, interface, abstract class, abstract and interface, operator overloading, delegates, events, errors and exception, Threading.

L T P C 3 0 0 3

9

UNIT III APPLICATION DEVELOPMENT ON .NET

Building windows application, Creating our own window forms with events and controls, menu creation, inheriting window forms, SDI and MDI application, Dialog Box(Modal and Modeless), accessing data with ADO.NET, DataSet, typed dataset, Data Adapter, updating database using stored procedures, SQL Server with ADO.NET, handling exceptions, validating controls, windows application configuration.

UNIT IV WEB BASED APPLICATION DEVELOPMENT ON .NET

Programming web application with web forms, ASP.NET introduction, working with XML and .NET, Creating Virtual Directory and Web Application, session management techniques, web.config, web services, passing datasets, returning datasets from web services, handling transaction, handling exceptions, returning exceptions from SQL Server.

UNIT V CLR AND .NET FRAMEWORK

Assemblies, Versoning, Attributes, reflection, viewing meta data, type discovery, reflection on type, marshalling, remoting, security in .NET

OUTCOMES:

After completing this course, the student will be able to:

- List the major elements of the .NET frame work
- Explain how C# fits into the .NET platform.
- Analyze the basic structure of a C# application
- Debug, compile, and run a simple application.
- Develop programs using C# on .NET
- Design and develop Web based applications on .NET
- Discuss CLR.

TEXT BOOKS:

- 1. Herbert Schildt, "The Complete Reference: C# 4.0", Tata Mc Graw Hill, 2012.
- 2. Christian Nagel et al. "Professional C# 2012 with .NET 4.5", Wiley India, 2012.

REFERENCES:

- 1. Andrew Troelsen, "Pro C# 2010 and the .NET 4 Platform, Fifth edition, A Press, 2010.
- 2. Ian Griffiths, Matthew Adams, Jesse Liberty, "Programming C# 4.0", Sixth Edition, O'Reilly, 2010.

TOTAL QUALITY MANAGEMENT

GE6757

OBJECTIVES:

• To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Costs of quality.

TOTAL: 45 PERIODS

L T P C 3 0 0 3

9

9

UNIT II TQM PRINCIPLES

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY SYSTEMS

Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation, Quality Auditing - QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors..

OUTCOMES :

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXTBOOK:

1. Dale H. Besterfiled, et at., "Total quality Management", Pearson Education Asia, Third Edition, Indian Reprint 2006.

REFERENCES:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

9

9

9

TOTAL: 45 PERIODS

IT6702

DATA WAREHOUSING AND DATA MINING

LTPC 3003

OBJECTIVES:

The student should be made to:

- Be familiar with the concepts of data warehouse and data mining,
- Be acquainted with the tools and techniques used for Knowledge Discovery in Databases.

UNIT I DATA WAREHOUSING

Data warehousing Components –Building a Data warehouse –- Mapping the Data Warehouse to a Multiprocessor Architecture – DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools –Metadata.

UNIT II BUSINESS ANALYSIS

Reporting and Query tools and Applications – Tool Categories – The Need for Applications – Cognos Impromptu – Online Analytical Processing (OLAP) – Need – Multidimensional Data Model – OLAP Guidelines – Multidimensional versus Multirelational OLAP – Categories of Tools – OLAP Tools and the Internet.

UNIT III DATA MINING

Introduction – Data – Types of Data – Data Mining Functionalities – Interestingness of Patterns – Classification of Data Mining Systems – Data Mining Task Primitives – Integration of a Data Mining System with a Data Warehouse – Issues –Data Preprocessing.

UNIT IV ASSOCIATION RULE MINING AND CLASSIFICATION

Mining Frequent Patterns, Associations and Correlations – Mining Methods – Mining various Kinds of Association Rules – Correlation Analysis – Constraint Based Association Mining – Classification and Prediction - Basic Concepts - Decision Tree Induction - Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction.

UNIT V CLUSTERING AND TRENDS IN DATA MINING

Cluster Analysis - Types of Data – Categorization of Major Clustering Methods – K-means– Partitioning Methods – Hierarchical Methods - Density-Based Methods –Grid Based Methods – Model-Based Clustering Methods – Clustering High Dimensional Data - Constraint – Based Cluster Analysis – Outlier Analysis – Data Mining Applications.

TOTAL: 45 PERIODS

OUTCOMES:

After completing this course, the student will be able to:

- Apply data mining techniques and methods to large data sets.
- Use data mining tools
- Compare and contrast the various classifiers.

TEXT BOOKS:

- 1. Alex Berson and Stephen J.Smith, "Data Warehousing, Data Mining and OLAP", Tata McGraw Hill Edition, Thirteenth Reprint 2008.
- 2. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Third Edition, Elsevier, 2012.

9 a

9

9

9

REFERENCES:

- 1. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, "Introduction to Data Mining", Person Education, 2007.
- 2. K.P. Soman, Shyam Diwakar and V. Aja, "Insight into Data Mining Theory and Practice", Eastern Economy Edition, Prentice Hall of India, 2006.
- 3. G. K. Gupta, "Introduction to Data Mining with Case Studies", Eastern Economy Edition, Prentice Hall of India, 2006.
- 4. Daniel T.Larose, "Data Mining Methods and Models", Wiley-Interscience, 2006.

CS6002

NETWORK ANALYSIS AND MANAGEMENT

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn network devices functions and configurations hub, switch, tap and routers.
- Be familiar with network Security Devices.
- Be exposed to network services.
- Understand and analyze application performance
- Learn to analyze network traffic and protocols
- Be aware of network-troubleshooting concepts.
- Understand network security concepts.

UNIT I A SYSTEM APPROACH TO NETWORK DESIGN AND REQUIREMENT ANALYSIS

9

9

9

Introduction-Network Service and Service based networks- Systems and services- characterizing the services. Requirement Analysis: Concepts – Background – User Requirements- Application Requirements- Host Requirements-Network Requirements – Requirement Analysis: Guidelines – Requirements gathering and listing- Developing service metrics to measure performance – Characterizing behavior- developing performance threshold – Distinguish between service performance levels. Requirement Analysis: Practice –Template, table and maps –simplifying the requirement analysis process –case study.

UNIT II FLOW ANALYSIS: CONCEPTS, GUIDELINES AND PRACTICE

Background- Flows- Data sources and sinks- Flow models- Flow boundaries- Flow distributions- Flow specifications- Applying the flow model-Establishing flow boundaries-Applying flow distributions- Combining flow models, boundaries and distributions- Developing flow specifications-prioritizing flow-simplifying flow analysis process –examples of applying flow specs- case study.

UNIT III LOGICAL DESIGN: CHOICES, INTERCONNECTION MECHANISMS, NETWORK MANAGEMENT AND SECURITY

Background- Establishing design goals- Developing criteria for technology evolution- Making technology choices for design-case study- Shared Medium- Switching and Routing: Comparison and contrast- Switching- Routing-Hybrid Routing/Switching Mechanisms – Applying Interconnection Mechanism to Design – Integrating Network management and security into the Design- Defining Network Management- Designing with manageable resources- Network Management Architecture-Security- Security mechanism- Examples- Network Management and security plans- Case study.

presentation skills.

Explain the key concepts and algorithms in complex network analysis.
Apply a range of techniques for characterizing network structure.
Discuss methodologies for analyzing networks of different fields.

TEXT BOOKS:

OUTCOMES:

1. James.D.McCabe, "Practical Computer Network Analysis and Design", 1st Edition, Morgan Kaufaman, 1997.

Demonstrate knowledge of recent research in the area and exhibit technical writing and

 Mani Subramanian, "Network Management – Principles & Practice" – 2nd Edition Prentice Hall, 2012.

REFERENCES:

- 1. J.Radz,"Fundamentals of Computer Network Analysis and Engineering: Basic Approaches for Solving Problems in the Networked Computing Environment", Universe, 2005.
- 2. Mark Newman, "Networks: An Introduction", Kindle Edition, 2010.
- 3. Laura Chappel and Gerald Combs ,"Wireshark 101: Essential Skills for Network Analysis", Kindle Edition, 2013.
- 4. William Stallings., "SNMP, SNMP2, SNMP3 and RMON1 and 2", Pearson Education, 2004.
- 5. Daw Sudira, "Network Management", Sonali Publications, 2004.

IT6004

SOFTWARE TESTING

LT PC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Expose the criteria for test cases.
- Learn the design of test cases.
- Be familiar with test management and test automation techniques.
- Be exposed to test metrics and measurements.

UNIT IV NETWORK DESIGN: PHYSICAL, ADDRESSING AND ROUTING

Introduction- Evaluating cable plant design options – Network equipment placement- diagramming the physical design- diagramming the worksheet –case study. Introduction to Addressing and routing-establishing routing flow in the design environments- manipulating routing flows- developing addressing strategies- developing a routing strategy- case study.

UNIT V NETWORK MANAGEMENT AND SNMP PROTOCOL MODEL

At the end of this course the students should be able to:

Network and System management, Network management system platform; Current SNMP Broadband and TMN management, Network management standards. SNMPV1, SNMPV2 system architecture, SNMPV2, structure of management information. SNMPV2 – MIB – SNMPV2 protocol, SNMPV3-Architecture, Application, MIB, security user based security model, access control RMON.

TOTAL: 45 PERIODS

9

UNIT I INTRODUCTION

Testing as an Engineering Activity – Testing as a Process – Testing axioms – Basic definitions – Software Testing Principles – The Tester's Role in a Software Development Organization – Origins of Defects - Cost of defects - Defect Classes - The Defect Repository and Test Design - Defect Examples - Developer/Tester Support of Developing a Defect Repository - Defect Prevention strategies.

UNIT II **TEST CASE DESIGN**

Test case Design Strategies - Using Black Bod Approach to Test Case Design - Random Testing -Requirements based testing - Boundary Value Analysis - Equivalence Class Partitioning - Statebased testing – Cause-effect graphing – Compatibility testing – user documentation testing – domain testing - Using White Box Approach to Test design - Test Adequacy Criteria - static testing vs. structural testing - code functional testing - Coverage and Control Flow Graphs - Covering Code Logic – Paths – code complexity testing – Evaluating Test Adequacy Criteria.

LEVELS OF TESTING UNIT III

The need for Levers of Testing – Unit Test – Unit Test Planning – Designing the Unit Tests – The Test Harness – Running the Unit tests and Recording results – Integration tests – Designing Integration Tests – Integration Test Planning – Scenario testing – Defect bash elimination

System Testing – Acceptance testing – Performance testing – Regression Testing – Internationalization testing – Ad-hoc testing – Alpha, Beta Tests – Testing OO systems – Usability and Accessibility testing - Configuration testing - Compatibility testing - Testing the documentation -Website testing.

UNIT IV **TEST MANAGEMENT**

People and organizational issues in testing – Organization structures for testing teams – testing services – Test Planning – Test Plan Components – Test Plan Attachments – Locating Test Items – test management - test process - Reporting Test Results - The role of three groups in Test Planning and Policy Development – Introducing the test specialist – Skills needed by a test specialist – Building a Testing Group.

UNIT V **TEST AUTOMATION**

Software test automation - skill needed for automation - scope of automation - design and architecture for automation - requirements for a test tool - challenges in automation - Test metrics and measurements – project, progress and productivity metrics.

OUTCOMES:

At the end of the course the students will be able to

- Design test cases suitable for a software development for different domains.
- Identify suitable tests to be carried out.
- Prepare test planning based on the document.
- Document test plans and test cases designed.
- Use of automatic testing tools.
- Develop and validate a test plan.

TEXT BOOKS:

- 1. Srinivasan Desikan and Gopalaswamy Ramesh, "Software Testing Principles and Practices", Pearson Education, 2006.
- 2. Ron Patton, "Software Testing", Second Edition, Sams Publishing, Pearson Education, 2007.

9

9

9

TOTAL: 45 PERIODS

9

REFERENCES:

- 1. Ilene Burnstein, "Practical Software Testing", Springer International Edition, 2003.
- 2. Edward Kit," Software Testing in the Real World Improving the Process", Pearson Education, 1995.
- 3. Boris Beizer," Software Testing Techniques" 2nd Edition, Van Nostrand Reinhold, New York, 1990.
- 4. Aditya P. Mathur, "Foundations of Software Testing Fundamental Algorithms and Techniques", Dorling Kindersley (India) Pvt. Ltd., Pearson Education. 2008.

GE6084

HUMAN RIGHTS

LTPC 3 0 0 3

OBJECTIVES:

To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

Human Rights – Meaning, origin and Development. Notion and classification of Rights – Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II

Evolution of the concept of Human Rights Magana carta – Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV

Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

Human Rights of Disadvantaged People - Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights - National and State Human Rights Commission - Judiciary - Role of NGO's, Media, Educational Institutions, Social Movements.

OUTCOMES:

Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

TOTAL: 45 PERIODS

9

9

9

9

• Be expose to the TCP issues in adhoc networks.

AD HOC AND SENSOR NETWORKS

• Learn the architecture and protocols of wireless sensor networks.

Understand the design issues in ad hoc and sensor networks.

Be familiar with different types of adhoc routing protocols.

Learn the different types of MAC protocols.

UNIT I INTRODUCTION

The student should be made to:

Fundamentals of Wireless Communication Technology – The Electromagnetic Spectrum – Radio propagation Mechanisms – Characteristics of the Wireless Channel -mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) :concepts and architectures. Applications of Ad Hoc and Sensor networks. Design Challenges in Ad hoc and Sensor Networks.

UNIT II MAC PROTOCOLS FOR AD HOC WIRELESS NETWORKS

Issues in designing a MAC Protocol- Classification of MAC Protocols- Contention based protocols-Contention based protocols with Reservation Mechanisms- Contention based protocols with Scheduling Mechanisms – Multi channel MAC-IEEE 802.11

UNIT III ROUTING PROTOCOLS AND TRANSPORT LAYER IN AD HOC WIRELESS NETWORKS

Issues in designing a routing and Transport Layer protocol for Ad hoc networks- proactive routing, reactive routing (on-demand), hybrid routing- Classification of Transport Layer solutions-TCP over Ad hoc wireless Networks.

UNIT IV WIRELESS SENSOR NETWORKS (WSNS) AND MAC PROTOCOLS

Single node architecture: hardware and software components of a sensor node - WSN Network architecture: typical network architectures-data relaying and aggregation strategies -MAC layer protocols: self-organizing, Hybrid TDMA/FDMA and CSMA based MAC- IEEE 802.15.4.

UNIT V WSN ROUTING, LOCALIZATION & QOS

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and relative localization, triangulation-QOS in WSN-Energy Efficient Design-Synchronization-Transport Layer issues.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Explain the concepts, network architectures and applications of ad hoc and wireless sensor networks
- Analyze the protocol design issues of ad hoc and sensor networks
- Design routing protocols for ad hoc and wireless sensor networks with respect to some protocol design issues
- Evaluate the QoS related performance measurements of ad hoc and sensor networks

TEXT BOOK:

1. C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols ", Prentice Hall Professional Technical Reference, 2008.

88

CS6003

OBJECTIVES:

9 ork

9

TOTAL: 45 PERIODS

9

9

REFERENCES:

- 1. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.
- 2. Feng Zhao and Leonides Guibas, "Wireless Sensor Networks", Elsevier Publication 2002.
- 3. Holger Karl and Andreas Willig "Protocols and Architectures for Wireless Sensor Networks", Wiley, 2005
- 4. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, and Applications", John Wiley, 2007.
- 5. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.

CS6004

CYBER FORENSICS

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the security issues network layer and transport layer
- Be exposed to security issues of the application layer
- Learn computer forensics
- Be familiar with forensics tools
- Learn to analyze and validate forensics data

UNIT I NETWORK LAYER SECURITY & TRANSPORT LAYER SECURITY

IPSec Protocol - IP Authentication Header - IP ESP - Key Management Protocol for IPSec . **Transport layer Security:** SSL protocol, Cryptographic Computations – TLS Protocol.

UNIT II E-MAIL SECURITY & FIREWALLS

PGP - S/MIME - Internet Firewalls for Trusted System: Roles of Firewalls – Firewall related terminology-Types of Firewalls - Firewall designs - SET for E-Commerce Transactions.

UNIT III INTRODUCTION TO COMPUTER FORENSICS

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

UNIT IV EVIDENCE COLLECTION AND FORENSICS TOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. **Current Computer Forensics Tools:** Software/ Hardware Tools.

UNIT V ANALYSIS AND VALIDATION

Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics

OUTCOMES:

Upon completion of the course, the student should be able to:

- Discuss the security issues network layer and transport layer
- Apply security principles in the application layer
- Explain computer forensics
- Use forensics tools
- Analyze and validate forensics data

TOTAL: 45 PERIODS

9

9

9

9

TEXT BOOKS:

- 1. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2003.
- 2. Nelson, Phillips, Enfinger, Steuart, "Computer Forensics and Investigations", Cengage Learning, India Edition, 2008.

REFERENCES:

- 1. John R.Vacca, "Computer Forensics", Cengage Learning, 2005
- 2. Richard E.Smith, "Internet Cryptography", 3rd Edition Pearson Education, 2008.
- 3. Marjie T.Britz, "Computer Forensics and Cyber Crime": An Introduction", 3rd Edition, Prentice Hall, 2013.

CS6005

ADVANCED DATABASE SYSTEMS

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn different types of databases.
- Be exposed to query languages.
- Be familiar with the indexing techniques.

UNIT I PARALLEL AND DISTRIBUTED DATABASES

Inter and Intra Query Parallelism – Architecture – Query evaluation – Optimization – Distributed Architecture – Storage – Catalog Management – Query Processing - Transactions – Recovery - Large-scale Data Analytics in the Internet Context – Map Reduce Paradigm - run-time system for supporting scalable and fault-tolerant execution - paradigms: Pig Latin and Hive and parallel databases versus Map Reduce.

UNIT II ACTIVE DATABASES

Syntax and Sematics (Starburst, Oracle, DB2) – Taxonomy – Applications – Integrity Management – Workflow Management – Business Rules – Design Principles – Properties – Rule Modularization – Rule Debugging – IDEA methodology – Open Problems.

UNIT III TEMPORAL AND OBJECT DATABASES

Overview – Data types – Associating Facts – Temporal Query Language – TSQL2 – Time Ontology – Language Constructs – Architecture – Temporal Support – Object Database and Change Management – Change of Schema – Implementing Database Updates in O2 – Benchmark Database Updates – Performance Evaluation.

UNIT IV COMPLEX QUERIES AND REASONING

Logic of Query Languages – Relational Calculi – Recursive rules – Syntax and semantics of Data log – Fix point semantics – Implementation Rules and Recursion – Rule rewriting methods – Compilation and Optimization – Recursive Queries in SQL – Open issues.

UNIT V SPATIAL, TEXT AND MULTIMEDIA DATABASES

Traditional Indexing Methods (Secondary Keys, Spatial Access Methods) – Text Retrieval – Multimedia Indexing – 1D Time Series – 2d Color images – Sub pattern Matching – Open Issues – Uncertainties.

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

Upon completion of the course, the student should be able to:

- Design different types of databases.
- Use query languages.
- Apply indexing techniques.

TEXT BOOK:

1. Raghu Ramakrishnan "Database Management System", Mc Graw Hill Publications, 2000.

REFERENCES:

- 1. Carlo Zaniolo, Stefano Ceri "Advanced Database Systems", Morgan Kauffmann Publishers.VLDB Journal, 1997
- 2. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2011

BM6005

BIO INFORMATICS

LT PC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Exposed to the need for Bioinformatics technologies
- Be familiar with the modeling techniques
- Learn microarray analysis
- Exposed to Pattern Matching and Visualization

UNIT I INTRODUCTION

Need for Bioinformatics technologies – Overview of Bioinformatics technologies Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics - Biological Data Integration System.

UNIT II DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS

Bioinformatics data – Data warehousing architecture – data guality – Biomedical data analysis – DNA data analysis - Protein data analysis - Machine learning - Neural network architecture and applications in bioinformatics.

UNIT III MODELING FOR BIOINFORMATICS

Hidden Markov modeling for biological data analysis - Sequence identification -Sequence classification – multiple alignment generation – Comparative modeling – Protein modeling – genomic modeling - Probabilistic modeling - Bayesian networks - Boolean networks - Molecular modeling -Computer programs for molecular modeling.

UNIT IV PATTERN MATCHING AND VISUALIZATION

Gene regulation – motif recognition – motif detection – strategies for motif detection – Visualization – Fractal analysis – DNA walk models – one dimension – two dimension – higher dimension – Game representation of Biological sequences – DNA, Protein, Amino acid sequences.

91

9

9

9

UNIT V MICROARRAY ANALYSIS

Microarray technology for genome expression study - image analysis for data extraction preprocessing – segmentation – gridding – spot extraction – normalization, filtering – cluster analysis - gene network analysis - Compared Evaluation of Scientific Data Management Systems - Cost Matrix - Evaluation model - Benchmark - Tradeoffs.

OUTCOMES:

Upon Completion of the course, the students will be able to

- Develop models for biological data.
- Apply pattern matching techniques to bioinformatics data protein data genomic data.
- Apply micro array technology for genomic expression study.

TEXT BOOK:

1. Yi-Ping Phoebe Chen (Ed), "BioInformatics Technologies", First Indian Reprint, Springer Verlag, 2007.

REFERENCES:

- 1. Bryan Bergeron, "Bio Informatics Computing", Second Edition, Pearson Education, 2003.
- 2. Arthur M Lesk, "Introduction to Bioinformatics", Second Edition, Oxford University Press, 2005

IT6801	SERVICE ORIENTED ARCHITECTURE	LTPC
		3 0 0 3
OBJECTIVES:		

The student should be made to:

- Learn XML fundamentals.
- Be exposed to build applications based on XML.
- Understand the key principles behind SOA.
- Be familiar with the web services technology elements for realizing SOA.
- Learn the various web service standards.

UNIT I INTRODUCTION TO XML

XML document structure – Well formed and valid documents – Namespaces – DTD – XML Schema – X-Files.

BUILDING XML- BASED APPLICATIONS UNIT II

Parsing XML – using DOM, SAX – XML Transformation and XSL – XSL Formatting – Modeling Databases in XML.

UNIT III SERVICE ORIENTED ARCHITECTURE

Characteristics of SOA, Comparing SOA with Client-Server and Distributed architectures - Benefits of SOA -- Principles of Service orientation – Service layers.

UNIT IV WEB SERVICES

Service descriptions - WSDL - Messaging with SOAP - Service discovery - UDDI - Message Exchange Patterns – Orchestration – Choreography – WS Transactions.

9

9

9

9

9

TOTAL: 45 PERIODS

UNIT V BUILDING SOA-BASED APPLICATIONS

Service Oriented Analysis and Design – Service Modeling – Design standards and guidelines --Composition – WS-BPEL – WS-Coordination – WS-Policy – WS-Security – SOA support in J2EE

TOTAL : 45 PERIODS

9

OUTCOMES:

Upon successful completion of this course, students will be able to:

- Build applications based on XML.
- Develop web services using technology elements.
- Build SOA-based applications for intra-enterprise and inter-enterprise applications.

TEXTBOOKS:

- 1. Ron Schmelzer et al. "XML and Web Services", Pearson Education, 2002.
- 2. Thomas Erl, "Service Oriented Architecture: Concepts, Technology, and Design", Pearson Education, 2005.

REFERENCES:

- 1. Frank P.Coyle, "XML, Web Services and the Data Revolution", Pearson Education, 2002
- 2. Eric Newcomer, Greg Lomow, "Understanding SOA with Web Services", Pearson Education, 2005
- 3. Sandeep Chatterjee and James Webber, "Developing Enterprise Web Services: An Architect's Guide", Prentice Hall, 2004.
- 4. James McGovern, Sameer Tyagi, Michael E.Stevens, Sunil Mathew, "Java Web Services Architecture", Morgan Kaufmann Publishers, 2003.

IT6005	DIGITAL IMAGE PROCESSING	LTPC
		3003

OBJECTIVES:

The student should be made to:

- Learn digital image fundamentals.
- Be exposed to simple image processing techniques.
- Be familiar with image compression and segmentation techniques.
- Learn to represent image in form of features.

UNIT I DIGITAL IMAGE FUNDAMENTALS

Introduction – Origin – Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels - color models.

UNIT II IMAGE ENHANCEMENT

Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering– Smoothing and Sharpening Spatial Filtering – **Frequency Domain:** Introduction to Fourier Transform – Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters.

UNIT III IMAGE RESTORATION AND SEGMENTATION

Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering **Segmentation**: Detection of Discontinuities–Edge Linking and Boundary detection – Region based segmentation-Morphological processing- erosion and dilation.

8 ובו

10

 Apply image enhancement and restoration techniques. Use image compression and segmentation Techniques.

Upon successful completion of this course, students will be able to:

1. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2010.

REFERENCES:

TEXT BOOK:

OUTCOMES:

- 1. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata McGraw Hill Pvt. Ltd., 2011.
- 2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.
- 3. Willliam K Pratt, "Digital Image Processing", John Willey, 2002.
- 4. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First Edition, PHI Learning Pvt. Ltd., 2011.
- 5. http://eeweb.poly.edu/~onur/lectures/lectures.html.
- 6. http://www.caen.uiowa.edu/~dip/LECTURE/lecture.html

EC6703

EMBEDDED AND REAL TIME SYSTEMS

LTPC 3003

9

OBJECTIVES:

The student should be made to:

- Learn the architecture and programming of ARM processor.
- Be familiar with the embedded computing platform design and analysis.
- Be exposed to the basic concepts of real time Operating system.
- Learn the system design techniques and networks for embedded systems

UNIT I INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS

Complex systems and micro processors- Embedded system design process - Design example: Model train controller- Instruction sets preliminaries - ARM Processor - CPU: programming input and outputsupervisor mode, exceptions and traps - Co-processors- Memory system mechanisms - CPU performance- CPU power consumption.

Wavelets - Subband coding - Multiresolution expansions - Compression: Fundamentals - Image Compression models - Error Free Compression - Variable Length Coding - Bit-Plane Coding -Lossless Predictive Coding - Lossy Compression - Lossy Predictive Coding - Compression Standards.

UNIT V IMAGE REPRESENTATION AND RECOGNITION

Boundary representation – Chain Code – Polygonal approximation, signature, boundary segments – Boundary description - Shape number - Fourier Descriptor, moments- Regional Descriptors -Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching.

TOTAL: 45 PERIODS

UNIT IV WAVELETS AND IMAGE COMPRESSION

• Discuss digital image fundamentals.

Represent features of images.

UNIT II EMBEDDED COMPUTING PLATFORM DESIGN

The CPU Bus-Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs-Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.

UNIT III PROCESSES AND OPERATING SYSTEMS

Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive real-time operating systems- Priority based scheduling- Interprocess communication mechanisms – Evaluating operating system performance- power optimization strategies for processes – Example Real time operating systems-POSIX-Windows CE.

UNIT V SYSTEM DESIGN TECHNIQUES AND NETWORKS

Design methodologies- Design flows - Requirement Analysis – Specifications-System analysis and architecture design – Quality Assurance techniques- Distributed embedded systems – MPSoCs and shared memory multiprocessors.

UNIT V CASE STUDY

Data compressor - Alarm Clock - Audio player - Software modem-Digital still camera - Telephone answering machine-Engine control unit – Video accelerator.

OUTCOMES:

Upon completion of the course, students will be able to:

- Describe the architecture and programming of ARM processor.
- Outline the concepts of embedded systems
- Explain the basic concepts of real time Operating system design.
- Use the system design techniques to develop software for embedded systems
- Differentiate between the general purpose operating system and the real time operating system
- Model real-time applications using embedded-system concepts

TEXT BOOK:

1. Marilyn Wolf, "Computers as Components - Principles of Embedded Computing System Design", Third Edition "Morgan Kaufmann Publisher (An imprint from Elsevier), 2012.

REFERENCES:

- 1. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third Edition Cengage Learning, 2012.
- 2. David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, Addison-Wesley Professional, 2007.
- 3. Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems- From Design to Networking with C/C++", Prentice Hall, 1999.
- 4. C.M. Krishna, Kang G. Shin, "Real-Time Systems", International Editions, Mc Graw Hill 1997
- 5. K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", Dream Tech Press, 2005.
- 6. Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata Mc Graw Hill, 2004.

9

9

TOTAL: 45 PERIODS

9

g

GAME PROGRAMMING

UNIT I 3D GRAPHICS FOR GAME PROGRAMMING

Understand the concepts of Game design and development.
Learn the processes, mechanics and issues in Game Design.
Be exposed to the Core architectures of Game Programming.

• Know about Game programming platforms, frame works and engines.

3D Transformations, Quaternions, 3D Modeling and Rendering, Ray Tracing, Shader Models, Lighting, Color, Texturing, Camera and Projections, Culling and Clipping, Character Animation, Physics-based Simulation, Scene Graphs.

UNIT II GAME ENGINE DESIGN

The student should be made to:

• Learn to develop games.

Game engine architecture, Engine support systems, Resources and File systems, Game loop and real-time simulation, Human Interface devices, Collision and rigid body dynamics, Game profiling.

UNIT III GAME PROGRAMMING

Application layer, Game logic, Game views, managing memory, controlling the main loop, loading and caching game data, User Interface management, Game event management.

UNIT IV GAMING PLATFORMS AND FRAMEWORKS

2D and 3D Game development using Flash, DirectX, Java, Python, Game engines - DX Studio, Unity.

UNIT V GAME DEVELOPMENT

Developing 2D and 3D interactive games using DirectX or Python – Isometric and Tile Based Games, Puzzle games, Single Player games, Multi Player games. TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

- Discuss the concepts of Game design and development.
- Design the processes, and use mechanics for game development.
- Explain the Core architectures of Game Programming.
- Use Game programming platforms, frame works and engines.
- Create interactive Games.

TEXT BOOKS:

- 1. Mike Mc Shaffrfy and David Graham, "Game Coding Complete", Fourth Edition, Cengage Learning, PTR, 2012.
- 2. Jason Gregory, "Game Engine Architecture", CRC Press / A K Peters, 2009.
- 3. David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-Time Computer Graphics" 2nd Editions, Morgan Kaufmann, 2006.

REFERENCES:

- 1. Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", 2nd Edition Prentice Hall / New Riders, 2009.
- 2. Eric Lengyel, "Mathematics for 3D Game Programming and Computer Graphics", 3rd Edition, Course Technology PTR, 2011.
- 3. Jesse Schell, The Art of Game Design: A book of lenses, 1st Edition, CRC Press, 2008.

OBJECTIVES:

9

9

9

9

Introduction -History of IR- Components of IR - Issues -Open source Search engine Frameworks -The impact of the web on IR - The role of artificial intelligence (AI) in IR - IR Versus Web Search -Components of a Search engine- Characterizing the web.

UNIT II INFORMATION RETRIEVAL

Boolean and vector-space retrieval models- Term weighting - TF-IDF weighting- cosine similarity -Preprocessing - Inverted indices - efficient processing with sparse vectors - Language Model based IR - Probabilistic IR – Latent Semantic Indexing - Relevance feedback and query expansion.

UNIT III WEB SEARCH ENGINE - INTRODUCTION AND CRAWLING

Web search overview, web structure, the user, paid placement, search engine optimization/ spam. Web size measurement - search engine optimization/spam - Web Search Architectures - crawling meta-crawlers- Focused Crawling - web indexes -- Near-duplicate detection - Index Compression -XML retrieval.

UNIT IV WEB SEARCH - LINK ANALYSIS AND SPECIALIZED SEARCH

Link Analysis -hubs and authorities - Page Rank and HITS algorithms -Searching and Ranking -Relevance Scoring and ranking for Web - Similarity - Hadoop & Map Reduce - Evaluation -Personalized search - Collaborative filtering and content-based recommendation of documents and products - handling "invisible" Web - Snippet generation, Summarization, Question Answering, Cross-Lingual Retrieval.

Information filtering; organization and relevance feedback - Text Mining -Text classification and clustering - Categorization algorithms: naive Bayes; decision trees; and nearest neighbor - Clustering algorithms: agglomerative clustering; k-means; expectation maximization (EM).

TOTAL: 45 PERIODS

INFORMATION RETRIEVAL

The Student should be made to:

- Learn the information retrieval models.
- Be familiar with Web Search Engine. •
- Be exposed to Link Analysis.
- Understand Hadoop and Map Reduce. •
- Learn document text mining techniques.

UNIT I INTRODUCTION

UNIT V **DOCUMENT TEXT MINING**

OUTCOMES:

Upon completion of the course, students will be able to

- Apply information retrieval models.
- Design Web Search Engine. •
- Use Link Analysis. •
- Use Hadoop and Map Reduce. •
- Apply document text mining techniques.

OBJECTIVES:

9

9

9

9

TEXT BOOKS:

- 1. C. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, Cambridge University Press, 2008.
- 2. Ricardo Baeza Yates and Berthier Ribeiro Neto, Modern Information Retrieval: The Concepts and Technology behind Search 2nd Edition, ACM Press Books 2011.
- 3. Bruce Croft, Donald Metzler and Trevor Strohman, Search Engines: Information Retrieval in Practice, 1st Edition Addison Wesley, 2009.
- 4. Mark Levene, An Introduction to Search Engines and Web Navigation, 2nd Edition Wiley, 2010.

REFERENCES:

- 1. Stefan Buettcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.
- 2. Ophir Frieder "Information Retrieval: Algorithms and Heuristics: The Information Retrieval Series ", 2nd Edition, Springer, 2004.
- 3. Manu Konchady, "Building Search Applications: Lucene, Ling Pipe", and First Edition, Gate Mustru Publishing, 2008.

IT6006

DATA ANALYTICS

L T P C 3 0 0 3

OBJECTIVES:

The Student should be made to:

- Be exposed to big data
- Learn the different ways of Data Analysis
- Be familiar with data streams
- Learn the mining and clustering
- Be familiar with the visualization

UNIT I INTRODUCTION TO BIG DATA

Introduction to Big Data Platform – Challenges of conventional systems - Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting - Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error.

UNIT II DATA ANALYSIS

Regression modeling, Multivariate analysis, Bayesian modeling, inference and Bayesian networks, Support vector and kernel methods, Analysis of time series: linear systems analysis, nonlinear dynamics - Rule induction - Neural networks: learning and generalization, competitive learning, principal component analysis and neural networks; Fuzzy logic: extracting fuzzy models from data, fuzzy decision trees, Stochastic search methods.

UNIT III MINING DATA STREAMS

Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window - Realtime Analytics Platform(RTAP) applications - case studies - real time sentiment analysis, stock market predictions.

12

8

3. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.

HUMAN COMPUTER INTERACTION

UNIT I FOUNDATIONS OF HCI

The Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory - processing and networks; Interaction: Models - frameworks - Ergonomics - styles elements - interactivity- Paradigms.

OUTCOMES:

applications:

UNIT IV

Parallelism.

UNIT V

The student should be made to:

- Apply the statistical analysis methods. •
- Compare and contrast various soft computing frameworks. •

FRAMEWORKS AND VISUALIZATION

FREQUENT ITEMSETS AND CLUSTERING

- Design distributed file systems.
- Apply Stream data model. •
- Use Visualisation techniques

TEXT BOOKS:

- 1. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.

Hierarchical - K- Means - Clustering high dimensional data - CLIQUE and PROCLUS - Frequent pattern based clustering methods - Clustering in non-euclidean space - Clustering for streams and

MapReduce - Hadoop, Hive, MapR - Sharding - NoSQL Databases - S3 - Hadoop Distributed file

REFERENCES:

CS6008

OBJECTIVES:

- 1. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics, John Wiley & sons, 2012.
- 2. Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007 Pete Warden, Big Data Glossary, O'Reilly, 2011.

The student should be made to:

- Learn the foundations of Human Computer Interaction.
- Be familiar with the design technologies for individuals and persons with disabilities.
- Be aware of mobile HCI.
- Learn the guidelines for user interface.

8

systems - Visualizations - Visual data analysis techniques, interaction techniques; Systems and

TOTAL: 45 PERIODS

99

9

LTPC 3003

UNIT II **DESIGN & SOFTWARE PROCESS**

Interactive Design basics - process - scenarios - navigation - screen design - Iteration and prototyping. HCl in software process - software life cycle - usability engineering - Prototyping in practice - design rationale. Design rules - principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.

UNIT III MODELS AND THEORIES

Cognitive models - Socio-Organizational issues and stake holder requirements - Communication and collaboration models-Hypertext, Multimedia and WWW.

UNIT IV MOBILE HCI

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design; Elements of Mobile Design, Tools.

UNIT V WEB INTERFACE DESIGN

Designing Web Interfaces - Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.

L: 45, T: 0, TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Design effective dialog for HCI.
- Design effective HCI for individuals and persons with disabilities.
- Assess the importance of user feedback.
- Explain the HCI implications for designing multimedia/ ecommerce/ e-learning Web sites.
- Develop meaningful user interface.

TEXT BOOKS:

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004 (UNIT I, II & III).
- 2. Brian Fling, "Mobile Design and Development", First Edition, O'Reilly Media Inc., 2009 (UNIT –IV).

NANO COMPUTING

3. Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O'Reilly, 2009.(UNIT-V).

CS6009

OBJECTIVES:

The student should be made to:

- Learn nano computing challenges.
- Be familiar with the imperfections. •
- Be exposed to reliability evaluation strategies.
- Learn nano scale quantum computing.
- Understand Molecular Computing and Optimal Computing.

UNIT I NANOCOMPUTING-PROSPECTS AND CHALLENGES

Introduction - History of Computing - Nanocomputing - Quantum Computers - Nanocomputing Technologies - Nano Information Processing - Prospects and Challenges - Physics of Nanocomputing : Digital Signals and Gates - Silicon Nanoelectronics - Carbon Nanotube Electronics - Carbon Nanotube Field-effect Transistors - Nanolithography.

9

9

9

LTPC 3003

Upon completion of the course, the student should be able to:

- Discuss nano computing challenges.
- Handle the imperfections.
- Apply reliability evaluation strategies.
- Use nano scale quantum computing.
- Utilize Molecular Computing and Optimal Computing.

TEXT BOOK:

OUTCOMES:

 Sahni V. and Goswami D., Nano Computing, McGraw Hill Education Asia Ltd. (2008), ISBN (13): 978007024892.

REFERNCES:

- 1. Sandeep K. Shukla and R. Iris Bahar., Nano, Quantum and Molecular Computing, Kluwer Academic Publishers 2004, ISBN: 1402080670.
- 2. Sahni V, Quantum Computing, McGraw Hill Education Asia Ltd. 2007.
- 3. Jean-Baptiste Waldner, Nanocomputers and Swarm Intelligence, John Wiley & Sons, Inc. 2008, ISBN (13): 978-1848210097.

IT6011 KNOWLEDGE MANAGEMENT L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the Evolution of Knowledge management.
- Be familiar with tools.
- Be exposed to Applications.
- Be familiar with some case studies.

UNIT II NANOCOMPUTING WITH IMPERFECTIONS

Introduction - Nanocomputing in the Presence of Defects and Faults - Defect Tolerance - Towards Quadrillion Transistor Logic Systems.

UNIT III RELIABILITY OF NANOCOMPUTING

Markov Random Fields - Reliability Evaluation Strategies - NANOLAB - NANOPRISM - Reliable Manufacturing and Behavior from Law of Large Numbers.

UNIT IV NANOSCALE QUANTUM COMPUTING

Quantum Computers - Hardware Challenges to Large Quantum Computers - Fabrication, Test, and Architectural Challenges - Quantum-dot Cellular Automata (QCA) - Computing with QCA - QCA Clocking - QCA Design Rules.

UNIT V QCADESIGNER SOFTWARE AND QCA IMPLEMENTATION

Basic QCA Circuits using QCA Designer - QCA Implementation - Molecular and Optical Computing: Molecular Computing - Optimal Computing - Ultrafast Pulse Shaping and Tb/sec Data Speeds.

TOTAL: 45 PERIODS

9

9

9

UNIT I INTRODUCTION

An Introduction to Knowledge Management - The foundations of knowledge management- including cultural issues- technology applications organizational concepts and processes- management aspects- and decision support systems. The Evolution of Knowledge management: From Information Management to Knowledge Management - Key Challenges Facing the Evolution of Knowledge Management - Ethics for Knowledge Management.

UNIT II CREATING THE CULTURE OF LEARNING AND KNOWLEDGE SHARING

Organization and Knowledge Management - Building the Learning Organization. Knowledge Markets: Cooperation among Distributed Technical Specialists – Tacit Knowledge and Quality Assurance.

UNIT III KNOWLEDGE MANAGEMENT-THE TOOLS

Telecommunications and Networks in Knowledge Management - Internet Search Engines and Knowledge Management - Information Technology in Support of Knowledge Management - Knowledge Management and Vocabulary Control - Information Mapping in Information Retrieval - Information Coding in the Internet Environment - Repackaging Information.

UNIT IV KNOWLEDGEMANAGEMENT-APPLICATION

Components of a Knowledge Strategy - Case Studies (From Library to Knowledge Center, Knowledge Management in the Health Sciences, Knowledge Management in Developing Countries).

UNIT V FUTURE TRENDS AND CASE STUDIES

Advanced topics and case studies in knowledge management - Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan - A case study on Corporate Memories for supporting various aspects in the process life -cycles of an organization.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Use the knowledge management tools.
- Develop knowledge management Applications.
- Design and develop enterprise applications.

TEXT BOOK:

1. Srikantaiah.T. K., Koenig, M., "Knowledge Management for the Information Professional" Information Today, Inc., 2000.

REFERENCE:

1. Nonaka, I., Takeuchi, H., "The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation", Oxford University Press, 1995.

CS6010

SOCIAL NETWORK ANALYSIS

LT P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand the concept of semantic web and related applications.
- Learn knowledge representation using ontology.
- Understand human behaviour in social web and related communities.
- Learn visualization of social networks.

8

10

9

9

TOTAL: 45 PERIODS

L 3

UNIT I INTRODUCTION

Introduction to Semantic Web: Limitations of current Web - Development of Semantic Web - Emergence of the Social Web - Social Network analysis: Development of Social Network Analysis - Key concepts and measures in network analysis - Electronic sources for network analysis: Electronic discussion networks, Blogs and online communities - Web-based networks - Applications of Social Network Analysis.

UNIT II MODELLING, AGGREGATING AND KNOWLEDGE REPRESENTATION

Ontology and their role in the Semantic Web: Ontology-based knowledge Representation - Ontology languages for the Semantic Web: Resource Description Framework - Web Ontology Language - Modelling and aggregating social network data: State-of-the-art in network data representation - Ontological representation of social individuals - Ontological representation of social relationships - Aggregating and reasoning with social network data - Advanced representations.

UNIT III EXTRACTION AND MINING COMMUNITIES IN WEB SOCIAL NETWORKS

Extracting evolution of Web Community from a Series of Web Archive - Detecting communities in social networks - Definition of community - Evaluating communities - Methods for community detection and mining - Applications of community mining algorithms - Tools for detecting communities social network infrastructures and communities - Decentralized online social networks - Multi-Relational characterization of dynamic social network communities.

UNIT IV PREDICTING HUMAN BEHAVIOUR AND PRIVACY ISSUES

Understanding and predicting human behaviour for social communities - User data management -Inference and Distribution - Enabling new human experiences - Reality mining - Context - Awareness - Privacy in online social networks - Trust in online environment - Trust models based on subjective logic - Trust network analysis - Trust transitivity analysis - Combining trust and reputation - Trust derivation based on trust comparisons - Attack spectrum and countermeasures.

UNIT V VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

Graph theory - Centrality - Clustering - Node-Edge Diagrams - Matrix representation - Visualizing online social networks, Visualizing social networks with matrix-based representations - Matrix and Node-Link Diagrams - Hybrid representations - Applications - Cover networks - Community welfare - Collaboration networks - Co-Citation networks.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Develop semantic web related applications.
- Represent knowledge using ontology.
- Predict human behaviour in social web and related communities.
- Visualize social networks.

TEXT BOOKS:

- 1. Peter Mika, "Social Networks and the Semantic Web", First Edition, Springer 2007.
- 2. Borko Furht, "Handbook of Social Network Technologies and Applications", 1st Edition, Springer, 2010.

REFERENCES:

1. Guandong Xu ,Yanchun Zhang and Lin Li, "Web Mining and Social Networking – Techniques and applications", First Edition Springer, 2011.

9

9

TOTAL: 45 PERIODS

9

- 2. Dion Goh and Schubert Foo, "Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively", IGI Global Snippet, 2008.
- 3. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, "Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modelling", IGI Global Snippet, 2009.
- 4. John G. Breslin, Alexander Passant and Stefan Decker, "The Social Semantic Web", Springer, 2009.

CS6013FOUNDATION SKILLS IN INTEGRATED PRODUCTL T P CDEVELOPMENT3 0 0 3

OBJECTIVE:

This program can be offered with all Undergraduate programs/courses for all engineering streams. The FSIPD program aims to improve student's awareness and understanding of the basic concepts involved in Integrated product Development (IPD) by providing exposure to the key product development concepts. Students, who complete this program, will stand a better chance to be considered for jobs in the Engineering industry.

COURSE OBJECTIVES:

After completing this program, the student will be able to obtain the technical skills needed to effectively play the entry level design engineer role in an engineering organization.

The student will be able to:

- Understand the global trends and development methodologies of various types of products and services
- Conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- Understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- Understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- Gain knowledge of the Innovation & Product Development process in the Business
 Context

UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT

Global Trends Analysis and Product decision - Social Trends - Technical Trends - Economical Trends - Environmental Trends - Political/Policy Trends - Introduction to Product Development Methodologies and Management - Overview of Products and Services - Types of Product Development - Overview of Product Development methodologies - Product Life Cycle - Product Development Planning and Management

9

9

UNIT II REQUIREMENTS AND SYSTEM DESIGN

Requirement Engineering - Types of Requirements - Requirement Engineering - Traceability Matrix and Analysis - Requirement Management - System Design & Modeling - Introduction to System Modeling - System Optimization - System Specification - Sub-System Design - Interface Design

UNIT III DESIGN AND TESTING

Conceptualization - Industrial Design and User Interface Design - Introduction to Concept generation Techniques – Challenges in Integration of Engineering Disciplines - Concept Screening & Evaluation - Detailed Design - Component Design and Verification – Mechanical, Electronics and Software Subsystems - High Level Design/Low Level Design of S/W Program - Types of Prototypes, S/W Testing- Hardware Schematic, Component design, Layout and Hardware Testing – Prototyping - Introduction to Rapid Prototyping and Rapid Manufacturing - System Integration, Testing, Certification and Documentation

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL)SUPPORT

Introduction to Product verification processes and stages - Introduction to Product validation processes and stages - Product Testing standards and Certification - Product Documentation - Sustenance - Maintenance and Repair – Enhancements - Product EoL - Obsolescence Management - Configuration Management - EoL Disposal

UNIT V BUSINESS DYNAMICS ENGINEERING SERVICES INDUSTRY

The Industry - Engineering Services Industry - Product development in Industry versus Academia -The IPD Essentials - Introduction to vertical specific product development processes -Manufacturing/Purchase and Assembly of Systems - Integration of Mechanical, Embedded and S/W systems – Product development Trade-offs - Intellectual Property Rights and Confidentiality - Security and configuration management.

TOTAL: 45 PERIODS

9

9

COURSE OUTCOMES:

The students will be able to

- Define, formulate and analyze a problem
- Solve specific problems independently or as part of a team
- Develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer
- Work independently as well as in teams
- Manage a project from start to finish

COURSE MATERIAL AND PEDAGOGY:

- NASSCOM has agreed to prepare / revise the course materials [selected teachers Anna University from major disciplines will be included in the process] as PPT slides for all theUNITS. The PPTs can be printed and given to each student if necessary at a Nominal Fee. This is the best possible material for this special course.
- NASSCOM will train the teachers of Anna University to enable them to teach this course. Atraining programme for nearly 3500 teachers needs to be organized. The team

is exploring use of technology including the EDUSAT facility at Anna University.

• The course is to be offered as an elective to all UG Students both in the Constituent Colleges and Affiliated colleges of Anna University.

TEXT BOOKS [INDIAN ECONOMY EDITIONS]:

- 1. Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", TataMcGraw Hill, Fifth Edition, New Delhi, 2011
- 2. John W Newstorm and Keith Davis, "Organizational Behavior", Tata McGraw Hill, Eleventh Edition, New Delhi, 2005.

- 1. Hiriyappa B, "Corporate Strategy Managing the Business", Authorhouse, USA, 2013
- 2. Peter F Drucker, "People and Performance", Butterworth Heinemann [Elsevier].Oxford, UK, 2004.
- 3. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning -Conceptsand Practice", Prentice Hall India, New Delhi, 2003
- 4. Mark S Sanders and Ernest J McCormick, "Human Factors in Engineering and Design", McGraw Hill Education, Seventh Edition, New Delhi, 2013.

SOFTWARE PROJECT MANAGEMENT LTPC

OBJECTIVES:

MG6088

- To outline the need for Software Project Management
- To highlight different techniques for software cost estimation and activity planning.

UNIT I **PROJECT EVALUATION AND PROJECT PLANNING**

Importance of Software Project Management – Activities Methodologies – Categorization of Software Projects - Setting objectives - Management Principles - Management Control - Project portfolio Management - Cost-benefit evaluation technology - Risk evaluation - Strategic program Management – Stepwise Project Planning.

UNIT II PROJECT LIFE CYCLE AND EFFORT ESTIMATION

Software process and Process Models - Choice of Process models - mental delivery - Rapid Application development – Agile methods – Extreme Programming – SCRUM – Managing interactive processes - Basics of Software estimation - Effort and Cost estimation techniques - COSMIC Full function points - COCOMO II A Parametric Productivity Model - Staffing Pattern.

UNIT III **ACTIVITY PLANNING AND RISK MANAGEMENT**

Objectives of Activity planning - Project schedules - Activities - Sequencing and scheduling -Network Planning models - Forward Pass & Backward Pass techniques - Critical path (CRM) method - Risk identification - Assessment - Monitoring - PERT technique - Monte Carlo simulation -Resource Allocation – Creation of critical patterns – Cost schedules.

UNIT IV **PROJECT MANAGEMENT AND CONTROL**

Framework for Management and control - Collection of data Project termination - Visualizing progress - Cost monitoring - Earned Value Analysis- Project tracking - Change control- Software Configuration Management – Managing contracts – Contract Management.

UNIT V **STAFFING IN SOFTWARE PROJECTS**

Managing people - Organizational behavior - Best methods of staff selection - Motivation - The Oldham-Hackman job characteristic model - Ethical and Programmed concerns - Working in teams -Decision making - Team structures - Virtual teams - Communications genres - Communication plans.

TOTAL: 45 PERIODS

OUTCOMES:

 At the end of the course the students will be able to practice Project Management principles while developing a software.

TEXTBOOK:

1. Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, Tata McGraw Hill, New Delhi, 2012.

9

3003

9

9

9

- 1. Robert K. Wysocki "Effective Software Project Management" Wiley Publication, 2011.
- 2. Walker Rovce: "Software Project Management"- Addison-Wesley, 1998.
- 3. Gopalaswamy Ramesh, "Managing Global Software Projects" McGraw Hill Education (India), Fourteenth Reprint 2013.

PROFESSIONAL ETHICS IN ENGINEERING LTPC GE6075

OBJECTIVES:

To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I **HUMAN VALUES**

Morals, values and Ethics - Integrity - Work ethic - Service learning - Civic virtue - Respect for others - Living peacefully - Caring - Sharing - Honesty - Courage - Valuing time - Cooperation -Commitment - Empathy - Self confidence - Character - Spirituality - Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories

UNIT III **ENGINEERING AS SOCIAL EXPERIMENTATION**

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY. RESPONSIBILITIES AND RIGHTS

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk -Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

UNIT V **GLOBAL ISSUES**

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers - Consulting Engineers - Engineers as Expert Witnesses and Advisors -Moral Leadership –Code of Conduct – Corporate Social Responsibility

OUTCOMES:

Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society

TEXTBOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

TOTAL: 45 PERIODS

9

9

8

10

9

3 0 0 3

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundametals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi 2013.
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011

Web sources:

- 1. www.onlineethics.org
- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.org

CS6011	NATURAL LANGUAGE PROCESSING	LTPC
		3003

OBJECTIVES:

The student should be made to:

- Learn the techniques in natural language processing.
- Be familiar with the natural language generation.
- Be exposed to machine translation.
- Understand the information retrieval techniques.

UNIT I OVERVIEW AND LANGUAGE MODELING

Overview: Origins and challenges of NLP-Language and Grammar-Processing Indian Languages-NLP Applications-Information Retrieval. Language Modeling: Various Grammar- based Language Models-Statistical Language Model.

UNIT II WORD LEVEL AND SYNTACTIC ANALYSIS

Word Level Analysis: Regular Expressions-Finite-State Automata-Morphological Parsing-Spelling Error Detection and correction-Words and Word classes-Part-of Speech Tagging.

Syntactic Analysis: Context-free Grammar-Constituency- Parsing-Probabilistic Parsing.

UNIT III SEMANTIC ANALYSIS AND DISCOURSE PROCESSING

Semantic Analysis: Meaning Representation-Lexical Semantics- Ambiguity-Word Sense Disambiguation. Discourse Processing: cohesion-Reference Resolution- Discourse Coherence and Structure.

UNIT IV NATURAL LANGUAGE GENERATION AND MACHINE TRANSLATION

Natural Language Generation: Architecture of NLG Systems- Generation Tasks and Representations-Application of NLG. Machine Translation: Problems in Machine Translation- Characteristics of Indian Languages- Machine Translation Approaches-Translation involving Indian Languages.

9

10

8

UNIT V INFORMATION RETRIEVAL AND LEXICAL RESOURCES

Information Retrieval: Design features of Information Retrieval Systems-Classical, Non-classical, Alternative Models of Information Retrieval – valuation Lexical Resources: World Net-Frame Net-Stemmers-POS Tagger- Research Corpora.

TOTAL: 45 PERIODS

9

OUTCOMES:

Upon completion of the course, the student should be able to:

- Analyze the natural language text.
- Generate the natural language.
- Do machine translation.
- Apply information retrieval techniques.

TEXT BOOK:

1. Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

REFERENCES:

- Daniel Jurafsky and James H Martin, "Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", 2nd Edition, Prentice Hall, 2008.
- 2. James Allen, "Natural Language Understanding", 2nd edition, Benjamin /Cummings publishing company, 1995.

CS6012

SOFT COMPUTING

OBJECTIVES:

The student should be made to:

- Learn the various soft computing frame works.
- Be familiar with design of various neural networks.
- Be exposed to fuzzy logic.
- Learn genetic programming.
- Be exposed to hybrid systems.

UNIT I INTRODUCTION

Artificial neural network: Introduction, characteristics- learning methods – taxonomy – Evolution of neural networks- basic models - important technologies - applications.

Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts.

UNIT II NEURAL NETWORKS

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative autoassociative memory network & iterative associative memory network – unsupervised learning networks: Kohonen self organizing feature maps, LVQ – CP networks, ART network.

9

9

L T P C 3 0 0 3

UNIT III FUZZY LOGIC

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNIT IV GENETIC ALGORITHM

Genetic algorithm and search space - general genetic algorithm – operators - Generational cycle - stopping condition – constraints - classification - genetic programming – multilevel optimization – real life problem- advances in GA.

UNIT V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Apply various soft computing frame works.
- Design of various neural networks.
- Use fuzzy logic.
- Apply genetic programming.
- Discuss hybrid soft computing.

TEXT BOOKS:

- 1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 2. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

REFERENCES:

- 1. S.Rajasekaran and G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.
- 2. George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications" Prentice Hall, 1997.
- 3. David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.
- 4. James A. Freeman, David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques, Pearson Education India, 1991.
- 5. Simon Haykin, "Neural Networks Comprehensive Foundation" Second Edition, Pearson Education, 2005.

9

- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
 To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity.

• To provide students an exposure to disasters, their significance and types.

UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of-community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level-State Disaster Management Authority(SDMA) – Early Warning System – Advisories from

APPROACHES TO DISASTER RISK REDUCTION (DRR)

Appropriate Agencies. UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

DISASTER MANAGEMENT

• To ensure that students begin to understand the relationship between vulnerability,

UNIT II

OBJECTIVES:

9

9

9

OUTCOMES:

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management

TEXTBOOK:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

AFFILIATED INSTITUTIONS

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

R – 2013

PROGRAM EDUCATIONAL OBJECTIVES :

- 1. To prepare the students have successful career in industry and motivate for higher education.
- 2. To provide strong foundation in basic science and mathematics necessary to formulate, solve and analyze electrical and electronics problems
- 3. To provide strong foundation in circuit theory, field theory, control theory and signal processing concepts.
- 4. To provide good knowledge of Electrical power apparatus and their applications in power systems
- 5. To provide knowledge on basic electronics to power electronics and their applications in power engineering
- 6. To provide an opportunity to work in inter disciplinary groups
- 7. To promote student awareness for life long learning and inculcate professional ethics
- 8. To provide necessary foundation on computational platforms and software applications related to the respective field of engineering.

PROGRAM OUTCOMES :

- a) Ability to understand and apply differential equations, integrals, matrix theory, probability theory and Laplace, Fourier and Z transformations for engineering problems
- b) Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.
- c) Ability to model and analyze electrical apparatus and their application to power system
- d) Ability to understand and analyze power system operation, stability, control and protection.
- e) Ability to handle the engineering aspects of electrical energy generation and utilization.
- f) Ability to understand and analyse, linear and digital electronic circuits.
- g) Ability to review, prepare and present technological developments
- h) Ability to form a group and develop or solve engineering hardware and problems
- i) To understand and apply computing platform and software for engineering problems.
- j) To understand ethical issues, environmental impact and acquire management skills.

Program Educational					Program Outcome						
Educational Objective	а	b	с	d	е	f	g	h	i	j	
1		х		х		х	х		х	х	
2	х										
3		х									
4				х							
5						х					
6								х			
7							х	х			
8						Х			Х		

ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

R - 2013

B. E. ELECTRICAL AND ELECTRONICS ENGINEERING

I TO VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I										
S.NO.	COURSE CODE	COURSE TITLE	L	т	Ρ	С				
THEORY										
1.	HS6151	Technical English - I	3	1	0	4				
2.	MA6151	Mathematics - I	3	1	0	4				
3.	PH6151	Engineering Physics - I	3	0	0	3				
4.	CY6151	Engineering Chemistry - I	3	0	0	3				
5.	GE6151	Computer Programming	3	0	0	3				
6.	GE6152	Engineering Graphics	2	0	3	4				
PRACT	ICAL									
7.	GE6161	Computer Practices Laboratory	0	0	3	2				
8.	GE6162	Engineering Practices Laboratory	0	0	3	2				
9.	GE6163	Physics and Chemistry Laboratory - I	0	0	2	1				
			17	2	11	26				

SEMESTER I

SEMESTER II

S.NO.	COURSE CODE	COURSE TITLE		L	Т	Ρ	С		
THEORY									
1.	HS6251	Technical English - II		3	1	0	4		
2.	MA6251	Mathematics - II		3	1	0	4		
3.	PH6251	Engineering Physics - II		3	0	0	3		
4.	CY6251	Engineering Chemistry - II		3	0	0	3		
5.	GE6251	Basic Civil and Mechanical Engineering		4	0	0	4		
6.	EE6201	Circuit Theory		3	1	0	4		
PRACT	ICAL								
7.	GE6262	Physics and Chemistry Laboratory - II		0	0	2	1		
8.	GE6263	Computer Programming Laboratory		0	1	2	2		
9.	EE6211	Electric Circuits Laboratory		0	0	3	2		
		ТО	TAL	19	4	7	27		

SEMESTER III

SEMESTER III									
S.NO.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С			
THEOR	THEORY								
1.	MA6351	Transforms and Partial Differential Equations	3	1	0	4			
2.	EE6301	Digital Logic Circuits	3	1	0	4			
3.	EE6302	Electromagnetic Theory	3	1	0	4			
4.	GE6351	Environmental Science and Engineering	3	0	0	3			
5.	EC6202	Electronic Devices and Circuits	3	1	0	4			
6.	EE6303	Linear Integrated Circuits and Applications	3	0	0	3			
PRACT	ICAL								
7.	EC6361	Electronics Laboratory	0	0	3	2			
8.	EE6311	Linear and Digital Integrated Circuits Laboratory	0	0	3	2			
	•	TOTAL	18	4	6	26			

SEMESTER IV

S.NO.	COURSE CODE	COURSE TITLE		Т	Ρ	С				
THEOR	THEORY									
1.	MA6459	Numerical Methods	3	1	0	4				
2.	EE6401	Electrical Machines - I	3	1	0	4				
3.	CS6456	Object Oriented Programming	3	0	0	3				
4.	EE6402	Transmission and Distribution	3	0	0	3				
5.	EE6403	Discrete Time Systems and Signal Processing	3	0	0	3				
6.	EE6404	Measurements and Instrumentation	3	0	0	3				
PRACT	ICAL									
7.	CS6461	Object Oriented Programming Laboratory	0	0	3	2				
8.	EE6411	Electrical Machines Laboratory - I	0	0	3	2				
		TOTAL	18	2	6	24				

SEMESTER V

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С				
THEOR	THEORY									
1.	EE6501	Power System Analysis	3	0	0	3				
2.	EE6502	Microprocessors and Microcontrollers	3	0	0	3				
3.	ME6701	Power Plant Engineering	3	0	0	3				
4.	EE6503	Power Electronics	3	0	0	3				
5.	EE6504	Electrical Machines - II	З	1	0	4				
6.	IC6501	Control Systems	3	1	0	4				
PRACT	ICAL									
7.	EE6511	Control and Instrumentation Laboratory	0	0	3	2				
8.	GE6674	Communication and Soft Skills- Laboratory Based	0	0	4	2				
9.	EE6512	Electrical Machines Laboratory - II	0	0	3	2				
		TOTAL	18	2	10	26				

		SEMESTER VI								
S.NO.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С				
THEOR	THEORY									
1.	EC6651	Communication Engineering	3	0	0	3				
2.	EE6601	Solid State Drives	3	0	0	3				
3.	EE6602	Embedded Systems	3	0	0	3				
4.	EE6603	Power System Operation and Control	3	0	0	3				
5.	EE6604	Design of Electrical Machines	3	1	0	4				
6.		Elective - I	3	0	0	3				
PRACT	ICAL		•		•					
7.	EE6611	Power Electronics and Drives Laboratory	0	0	3	2				
8.	EE6612	Microprocessors and Microcontrollers Laboratory	0	0	3	2				
9.	EE6613	Presentation Skills and Technical Seminar	0	0	2	1				
		TOTAL	18	1	8	24				

SEMESTER VII

S.NO.	COURSE CODE	COURSE TITLE		L	Т	Ρ	С		
THEORY									
1.	EE6701	High Voltage Engineering		3	0	0	3		
2.	EE6702	Protection and Switchgear		3	0	0	3		
3.	EE6703	Special Electrical Machines		3	0	0	3		
4.	MG6851	Principles of Management		3	0	0	3		
5.		Elective – II		3	0	0	3		
6.		Elective – III		3	0	0	3		
PRACT	ICAL								
7.	EE6711	Power System Simulation Laboratory		0	0	3	2		
8.	EE6712	Comprehension		0	0	2	1		
			TOTAL	18	0	5	21		

SEMESTER VIII

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С				
THEORY										
1.	EE6801	Electric Energy Generation, Utilization and Conservation	3	0	0	3				
2.		Elective – IV	3	0	0	3				
3.		Elective – V	3	0	0	3				
PRACT	PRACTICAL									
4.	EE6811	Project Work	0	0	12	6				
		TOTAL	9	0	12	15				

TOTAL CREDITS: 189

ELECTIVE - I

S.NO.	COURSE CODE	COURSE TITLE	L	т	Ρ	С
1.	EE6001	Visual Languages and Applications	3	0	0	З
2.	IC6601	Advanced Control System	3	0	0	3
3.	EE6002	Power System Transients	3	0	0	3
4.	EE6003	Optimisation Techniques	3	0	0	3

ELECTIVE - II

S.NO.	COURSE CODE	COURSE TITLE	L	т	Р	С
5.	EI6703	Fibre Optics and Laser Instruments	3	0	0	3
6.	EI6704	Biomedical Instrumentation	3	0	0	3
7.	EE6004	Flexible AC Transmission Systems	3	0	0	3
8.	EE6005	Power Quality	3	0	0	3
9.	EE6006	Applied Soft Computing	3	0	0	3

ELECTIVE - III

S.NO	COURSE CODE	COURSE TITLE	L	Т	Ρ	С	
10.	GE6081	Fundamentals of Nanoscience	З	0	0	3	
11.	11. IC6002 System Identification and Adaptive Control		3	0	0	3	
12.	12. EE6007 Micro Electro Mechanical Systems		3	0	0	3	
13.	EE6008	Microcontroller Based System Design	3	0	0	3	
	ELECTIVE - IV						

S.NO.	COURSE CODE	COURSE TITLE	L	т	Р	С
14.	EE6009	Power Electronics for Renewable Energy Systems	3	0	0	3
15.	EE6010	High Voltage Direct Current Transmission	3	0	0	3
16.	EE6011	Power System Dynamics	3	0	0	3
17.	IC6003	Principles of Robotics	3	0	0	3
18.	GE6083	Disaster Management	3	0	0	3

ELECTIVE – V

S.NO.	COURSE CODE	COURSE TITLE		т	Р	С
19.	GE6075	Professional Ethics in Engineering	3	0	0	3
20.	GE6757	Total Quality Management	3	0	0	3
21.	EC6002	Advanced Digital Signal Processing	3	0	0	3
22.	EE6012	Computer Aided Design of Electrical Apparatus	3	0	0	3
23.	EC6601	VLSI Design	3	0	0	3
24.	GE6084	Human Rights	3	0	0	3
25.	MA6468	Probability and Statistics	3	1	0	4
26.	EI6001	Data Structures and Algorithms	3	0	0	3

6

TECHNICAL ENGLISH – I

LT P C 3 1 0 4

OBJECTIVES:

HS6151

- To enable learners of Engineering and Technology develop their basic communication skills in English.
- To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.
- To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.
- To inculcate the habit of reading and writing leading to effective and efficient communication.

UNIT I

Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds); Speaking - Speaking about one's place, important festivals etc. – Introducing oneself, one's family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one's leisure time activities, hometown, etc.); Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II

Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette; Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions; Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions - Recommendations – Instructions; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures – Picture-based activities.

UNIT III

Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation - Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing - Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) - Paraphrasing; Grammar - Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary - Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables for interpretations.

UNIT IV

Listening - Watching videos / documentaries and responding to questions based on them; Speaking - Responding to questions - Different forms of interviews - Speaking at different types of interviews; Reading - Making inference from the reading passage - Predicting the content of a reading passage; Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of essays; Grammar - Adverbs – Tenses – future time reference; Vocabulary - Single word substitutes - Use of abbreviations and acronyms; E-materials - Interactive exercises for Grammar and Vocabulary - Sample interviews - film scenes - dialogue writing.

9+3

9+3

9+3

9+3

UNIT V

Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials - Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents - Interpreting posters.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Learners should be able to

- speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- read different genres of texts adopting various reading strategies.
- listen/view and comprehend different spoken discourses/excerpts in different accents

TEXTBOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011.
- 2. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006.
- 3. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 4. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001.
- 5. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008.

EXTENSIVE Reading (Not for Examination)

1. Kalam, Abdul. Wings of Fire. Universities Press, Hyderabad. 1999.

WEBSITES:

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like self introduction, peer introduction, group poster making, grammar and vocabulary games, etc.
- Discussions
- Role play activities
- Short presentations
- Listening and viewing activities with follow up activities like discussion, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc.

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Reviews
- Creative writing
- Poster making, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual speaking activities, Pair work activities like role play, Interview, Group discussions
- Reading assessment: Reading passages with comprehension questions graded from simple to complex, from direct to inferential
- ✓ Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content.

End Semester Examination: 80%

MA6151

MATHEMATICS – I

L	Т	Ρ	С
3	1	0	4

9+3

OBJECTIVES:

- To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
- To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of eigenvalues and eigenvectors – Statement and applications of Cayley-Hamilton Theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

9

UNIT II SEQUENCES AND SERIES

Sequences: Definition and examples – Series: Types and Convergence – Series of positive terms – Tests of convergence: Comparison test, Integral test and D'Alembert's ratio test – Alternating series – Leibnitz's test – Series of positive and negative terms – Absolute and conditional convergence.

UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes - Evolute as envelope of normals.

UNIT IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES

Limits and Continuity – Partial derivatives – Total derivative – Differentiation of implicit functions – Jacobian and properties – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

UNIT V MULTIPLE INTEGRALS

Double integrals in cartesian and polar coordinates – Change of order of integration – Area enclosed by plane curves – Change of variables in double integrals – Area of a curved surface - Triple integrals – Volume of Solids.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• This course equips students to have basic knowledge and understanding in one fields of materials, integral and differential calculus.

TEXT BOOKS:

- ^{1.} Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, PEARSON Publishing, 2011.

9+3

9+3

9+3

OBJECTIVES:

• To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) - Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity- Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders

Modes of heat transfer- thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel)

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment -Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies.

Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications - Sonogram

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion -Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO₂, Semiconductor lasers (homojunction & heterojunction)-Industrial and Medical Applications.

Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TOTAL: 45 PERIODS

OUTCOMES:

• The students will have knowledge on the basics of physics related to properties of matter, optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications.

TEXT BOOKS:

- 1. Arumugam M. Engineering Physics. Anuradha publishers, 2010
- 2. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009
- 3. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

9

9

9

9

- 1. Searls and Zemansky. University Physics, 2009
- 2. Mani P. Engineering Physics I. Dhanam Publications, 2011
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
- 4. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011
- 5. Rajagopal K. Engineering Physics. PHI, New Delhi, 2011
- 6. Senthilkumar G. Engineering Physics I. VRB Publishers, 2011.

CY6151

ENGINEERING CHEMISTRY - I

L T P C 3 0 0 3

OBJECTIVES:

- To make the students conversant with basics of polymer chemistry.
- To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I POLYMER CHEMISTRY

Introduction: Classification of polymers – Natural and synthetic; Thermoplastic and Thermosetting. Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tg, Tacticity, Molecular weight – weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension. Preparation, properties and uses of Nylon 6,6, and Epoxy resin.

UNIT II CHEMICAL THERMODYNAMICS

Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van't Hoff isotherm and isochore(problems).

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY

Photochemistry: Laws of photochemistry - Grotthuss–Draper law, Stark–Einstein law and Lambert-Beer Law. Quantum efficiency – determination- Photo processes - Internal Conversion, Intersystem crossing, Fluorescence, Phosphorescence, Chemiluminescence and Photo-sensitization. Spectroscopy: Electromagnetic spectrum - Absorption of radiation – Electronic, Vibrational and rotational transitions. UV-visible and IR spectroscopy – principles, instrumentation (Block diagram only).

UNIT IV PHASE RULE AND ALLOYS

Phase rule: Introduction, definition of terms with examples, One Component System- water system - Reduced phase rule - Two Component Systems- classification – lead-silver system, zincmagnesium system. Alloys: Introduction- Definition- Properties of alloys- Significance of alloying,

9

9

9

Functions and effect of alloying elements- Ferrous alloys- Nichrome and Stainless steel – heat treatment of steel; Non-ferrous alloys – brass and bronze.

UNIT V NANOCHEMISTRY

Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties. Nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrode position, chemical vapour deposition, laser ablation; Properties and applications

OUTCOMES:

• The knowledge gained on polymer chemistry, thermodynamics. spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010
- 2. Kannan P., Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009

REFERENCES:

- 1. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008.
- 3. Gowariker V.R., Viswanathan N.V. and JayadevSreedhar, "Polymer Science", New Age International P (Ltd.,), Chennai, 2006.
- 4. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.

COMPUTER PROGRAMMING

GE6151

OBJECTIVES:

The students should be made to:

- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C.

UNIT I INTRODUCTION

Generation and Classification of Computers- Basic Organization of a Computer –Number System – Binary – Decimal – Conversion – Problems. Need for logical analysis and thinking – Algorithm – Pseudo code – Flow Chart.

9

TOTAL :45 PERIODS

8

L T P C 3 0 0 3

Write and execute C programs for simple applications.

At the end of the course, the student should be able to:

- Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C". Dorling 1. Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
- 2. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009
- Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011. 3.

REFERENCES:

OUTCOMES:

TEXTBOOKS:

- 1. Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill. 2006.
- 2. Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint, 2007.
- 3. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006.

UNIT II **C PROGRAMMING BASICS**

Problem formulation – Problem Solving - Introduction to 'C' programming –fundamentals – structure of a 'C' program - compilation and linking processes - Constants, Variables - Data Types -Expressions using operators in 'C' - Managing Input and Output operations - Decision Making and Branching – Looping statements – solving simple scientific and statistical problems.

UNIT III ARRAYS AND STRINGS

Arrays - Initialization - Declaration - One dimensional and Two dimensional arrays. String- String operations – String Arrays. Simple programs- sorting- searching – matrix operations.

FUNCTIONS AND POINTERS UNIT IV

Function – definition of function – Declaration of function – Pass by value – Pass by reference – Recursion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays- Example Problems.

STRUCTURES AND UNIONS UNIT V

Design C Programs for problems.

Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions - Storage classes, Pre-processor directives.

TOTAL: 45 PERIODS

9

9

GE6152

OBJECTIVES:

• To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.

ENGINEERING GRAPHICS

• To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves, Scales: Construction of Diagonal and Vernier scales.

Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

COMPUTER AIDED DRAFTING (Demonstration Only)

Introduction to drafting packages and demonstration of their use.

TOTAL : 75 PERIODS

5+9

5+9

5+9

5+9

1

6+9

3

L T P C 2 0 3 4

OUTCOMES:

On Completion of the course the student will be able to

- perform free hand sketching of basic geometrical constructions and multiple views of objects.
- do orthographic projection of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- prepare isometric and perspective sections of simple solids.
- demonstrate computer aided drafting.

TEXT BOOK:

1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.

REFERENCES:

- 1. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 2. Luzzader, Warren.J. and Duff,John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 3. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 5. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 6. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The
- students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

GE6161

COMPUTER PRACTICES LABORATORY

L T P C 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Be familiar with the use of Office software.
- Be exposed to presentation and visualization tools.
- Be exposed to problem solving techniques and flow charts.
- Be familiar with programming in C.
- Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:

- 1. Search, generate, manipulate data using MS office/ Open Office
- 2. Presentation and Visualization graphs, charts, 2D, 3D
- 3. Problem formulation, Problem Solving and Flowcharts
- 4. C Programming using Simple statements and expressions
- 5. Scientific problem solving using decision making and looping.
- 6. Simple programming for one dimensional and two dimensional arrays.
- 7. Solving problems using String functions
- 8. Programs with user defined functions Includes Parameter Passing
- 9. Program using Recursive Function and conversion from given program to flow chart.
- 10. Program using structures and unions.

OUTCOMES:

At the end of the course, the student should be able to:

- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos.

(or)

Server with C compiler supporting 30 terminals or more.

GE6162 ENGINEERING PRACTICES LABORATORY

LT P C 0 0 3 2

OBJECTIVES:

• To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

9

13

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:

Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- (a) Study of the joints in roofs, doors, windows and furniture.
- (b) Hands-on-exercise:

Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:

- (a) Preparation of arc welding of butt joints, lap joints and tee joints.
- (b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays, funnels, etc.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

(a) Smithy operations, upsetting, swaging, setting down and bending. Example -

Exercise – Production of hexagonal headed bolt.

- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and vee fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
- 2. Study of logic gates AND, OR, EOR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

OUTCOMES:

- ability to fabricate carpentry components and pipe connections including plumbing works.
- ability to use welding equipments to join the structures.
- ability to fabricate electrical and electronics circuits.

REFERENCES:

- 1. Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
- 2. Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Puplishing House Pvt.Ltd, 2006.
- 3. Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
- 4. Rajendra Prasad A. & Sarma P.M.M.S., "Workshop Practice", Sree Sai Publication, 2002.
- 5. Kannaiah P. & Narayana K.L., "Manual on Workshop Practice", Scitech Publications, 1999.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL

1. Assorted components for plumbing consisting of metallic pipes,	
plastic pipes, flexible pipes, couplings, unions, elbows, plugs ar	nd
other fittings.	15 Sets
2. Carpentry vice (fitted to work bench)	15 Nos.
3. Standard woodworking tools	15 Sets.
4. Models of industrial trusses, door joints, furniture joints	5 each
5. Power Tools: (a) Rotary Hammer	2 Nos
(b) Demolition Hammer	2 Nos
(c) Circular Saw	2 Nos
(d) Planer	2 Nos
(e) Hand Drilling Machine	2 Nos
(f) Jigsaw	2 Nos

TOTAL: 45 PERIODS

10

MECHANICAL

 Arc welding transformer with cables and holders Welding booth with exhaust facility 	5 Nos. 5 Nos.
 Welding accessories like welding shield, chipping hammer, wire brush, etc. Oxygen and acetylene gas cylinders, blow pipe and other 	5 Sets.
welding outfit.	2 Nos.
 Centre lathe Hearth furnace, anvil and smithy tools Moulding table, foundry tools Power Tool: Angle Grinder 	2 Nos. 2 Sets. 2 Sets. 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner	One each.
ELECTRICAL	

 Assorted electrical components for house wiring 	15 Sets
2. Electrical measuring instruments	10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency	/ lamp 1 each
4. Megger (250V/500V)	1 No.
5. Power Tools: (a) Range Finder	2 Nos
(b) Digital Live-wire detector	2 Nos

ELECTRONICS

1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power	
supply	

GE6163 PHYSICS AND CHEMISTRY LABORATORY – I L T P C

0021

PHYSICS LABORATORY – I

OBJECTIVES:

• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1. (a) Determination of Wavelength, and particle size using Laser
 - (b) Determination of acceptance angle in an optical fiber.
- Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 3. Determination of wavelength of mercury spectrum spectrometer grating
- 4. Determination of thermal conductivity of a bad conductor Lee's Disc method.

- 5. Determination of Young's modulus by Non uniform bending method
- 6. Determination of specific resistance of a given coil of wire Carey Foster's Bridge

OUTCOMES:

• The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Diode laser, lycopodium powder, glass plate, optical fiber.
- 2. Ultrasonic interferometer
- 3. Spectrometer, mercury lamp, grating
- 4. Lee's Disc experimental set up
- 5. Traveling microscope, meter scale, knife edge, weights
- 6. Carey foster's bridge set up (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY-I

OBJECTIVES:

- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by vacometry.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1 Determination of DO content of water sample by Winkler's method.
- 2 Determination of chloride content of water sample by argentometric method.
- 3 Determination of strength of given hydrochloric acid using pH meter.
- 4 Determination of strength of acids in a mixture using conductivity meter.
- 5 Estimation of iron content of the water sample using spectrophotometer. (1,10- phenanthroline / thiocyanate method).
- 6 Determination of molecular weight of polyvinylalcohol using Ostwald viscometer.
- 7 Conductometric titration of strong acid vs strong base.

TOTAL: 30 PERIODS

OUTCOMES:

• The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York 2001.
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry", LBS Singapore 1994.
- 3. Jeffery G.H., Bassett J., Mendham J.and Denny vogel's R.C, "Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M., Sandell E.B. et al. "Quantitative chemical analysis", Mcmillan, Madras 1980.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	lodine flask	-	30 Nos
2.	pH meter	-	5 Nos
3.	Conductivity meter	-	5 Nos
4.	Spectrophotometer	-	5 Nos

5. Ostwald Viscometer - 10 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (each 30 Nos.)

HS6251

TECHNICAL ENGLISH II

L T P C 3 1 0 4

9+3

9+3

OBJECTIVES:

- To make learners acquire listening and speaking skills in both formal and informal contexts.
- To help them develop their reading skills by familiarizing them with different types of reading strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components.

UNIT I

Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using 'emoticons' as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. 'can') - Homophones (e.g. 'some', 'sum'); E-materials - Interactive exercise on Grammar and vocabulary – blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II

Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one's friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary - Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students' dialogues.

UNIT III

Listening - Listening to the conversation - Understanding the structure of conversations; Speaking - Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information – expressing feelings (affection, anger, regret, etc.); Reading - Speed reading – reading passages with time limit - Skimming; Writing - Minutes of meeting – format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles – elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause

9+3

and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. 'rock', 'train', 'ring'); E-materials - Interactive exercise on Grammar and vocabulary - Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials – Attending a meeting and writing minutes.

UNIT IV

Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned – scanning; Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary - Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V

Listening - Viewing a model group discussion and reviewing the performance of each participant -Identifying the characteristics of a good listener; Speaking - Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading; Writing – Checklist - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; Ematerials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Learners should be able to

- speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
- write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

TEXTBOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008.
- 2. Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011.
- 3. Riordan, Daniel. G. Technical Communication. Cengage Learning, New Delhi. 2005

9+3

9+3

- 4. Sharma, Sangeetha & Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2009.
- 5. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007.

EXTENSIVE Reading (Not for Examination)

1. Khera, Shiv. You can Win. Macmillan, Delhi. 1998.

Websites

- 1. http://www.englishclub.com
- 2. http://owl.english.purdue.edu

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Report
- Creative writing, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual presentations, Group discussions
- Reading assessment: Reading passages with comprehension questions graded following Bloom's taxonomy
- ✓ Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom's taxonomy.

End Semester Examination: 80%

MA6251

OBJECTIVES:

• To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.

MATHEMATICS – II

- To acquaint the student with the concepts of vector calculus needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

UNIT V COMPLEX INTEGRATION

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

9+3

9+3

9+3

9+3

9+3

L T P C 3 1 0 4

TEXT BOOKS:

- 1. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics" Volume II, Second Edition, PEARSON Publishing, 2011.

PH6251

ENGINEERING PHYSICS – II

L T P C 3 0 0 3

OBJECTIVES:

• To enrich the understanding of various types of materials and their applications in engineering and technology.

UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications

Superconductivity: properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High T_c superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

9

9

DIELECTRIC MATERIALS UNIT IV

Electrical susceptibility - dielectric constant - electronic, ionic, orientational and space charge polarization - frequency and temperature dependence of polarisation - internal field - Claussius -Mosotti relation (derivation) - dielectric loss - dielectric breakdown - uses of dielectric materials (capacitor and transformer) - ferroelectricity and applications.

UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials- Preparation -pulsed laser deposition - chemical vapour deposition - Applications - NLO materials -Birefringence- optical Kerr effect – Classification of Biomaterials and its applications

OUTCOMES:

TOTAL: 45 PERIODS

The students will have the knowledge on physics of materials and that knowledge will be used by them in different engineering and technology applications.

TEXT BOOKS:

- 1. Arumugam M., Materials Science. Anuradha publishers, 2010
- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009

REFERENCES:

- Palanisamy P.K. Materials Science. SCITECH Publishers, 2011. 1.
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.
- 3. Mani P. Engineering Physics II. Dhanam Publications, 2011.
- 4. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.

CY6251 **ENGINEERING CHEMISTRY - II** LTPC

3003

9

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- Principles of electrochemical reactions, redox reactions in corrosion of materials and • methods for corrosion prevention and protection of materials.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.

UNIT I WATER TECHNOLOGY

Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement -boiler corrosion-priming and foaming- desalination of brackish water -reverse osmosis. 9

ELECTROCHEMISTRY AND CORROSION UNIT II

Electrochemical cell - redox reaction, electrode potential- origin of electrode potential- oxidation potential- reduction potential, measurement and applications - electrochemical series and its significance - Nernst equation (derivation and problems). Corrosion- causes- factors- types-

chemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - electrochemical protection - sacrificial anode method and impressed current cathodic method. Paints- constituents and function. Electroplating of Copper and electroless plating of nickel.

ENERGY SOURCES UNIT III

Introduction- nuclear energy- nuclear fission- controlled nuclear fission- nuclear fusion- differences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generatorclassification of nuclear reactor- light water reactor- breeder reactor- solar energy conversionsolar cells- wind energy. Batteries and fuel cells: Types of batteries- alkaline battery- lead storage battery- nickel-cadmium battery- lithium battery- fuel cell H₂ -O₂ fuel cell- applications.

UNIT IV ENGINEERING MATERIALS

Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties - refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement- waterproof and white cement-properties and uses. Glass manufacture, types, properties and uses.

UNIT V **FUELS AND COMBUSTION**

Fuel: Introduction- classification of fuels- calorific value- higher and lower calorific values- coalanalysis of coal (proximate and ultimate)- carbonization- manufacture of metallurgical coke (Otto Hoffmann method) - petroleum- manufacture of synthetic petrol (Bergius process)- knockingoctane number - diesel oil- cetane number - natural gas- compressed natural gas(CNG)- liguefied petroleum gases(LPG)- producer gas- water gas. Power alcohol and bio diesel. Combustion of fuels: introduction- theoretical calculation of calorific value- calculation of stoichiometry of fuel and air ratio- ignition temperature- explosive range - flue gas analysis (ORSAT Method). **TOTAL: 45 PERIODS**

OUTCOMES:

The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- Vairam S, Kalyani P and SubaRamesh., "Engineering Chemistry"., Wiley India PvtLtd., New 1. Delhi., 2011.
- 2. DaraS.S,UmareS.S."Engineering Chemistry", S. Chand & Company Ltd., New Delhi, 2010.

REFERENCES:

- Kannan P. and Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing 1 Company Pvt. Ltd. Chennai, 2009.
- 2. AshimaSrivastava and Janhavi N N., "Concepts of Engineering Chemistry", ACME Learning Private Limited., New Delhi., 2010.
- 3. RenuBapna and Renu Gupta., "Engineering Chemistry", Macmillan India Publisher Ltd., 2010.
- 4 Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010.

9

9

GE6251 BASIC CIVIL AND MECHANICAL ENGINEERING

OBJECTIVES

- To impart basic knowledge on Civil and Mechanical Engineering.
- To explain the materials used for the construction of civilized structures.
- To make the understand the fundamentals of construction of structure.
- To explain the component of power plant units and detailed explanation to IC engines their working principles.
- To explain the R & AC system.

A – CIVIL ENGINEERING

UNITI SURVEYING AND CIVIL ENGINEERING MATERIALS

Surveying: Objects - types - classification - principles - measurements of distances - angles leveling – determination of areas – illustrative examples.

Civil Engineering Materials: Bricks – stones – sand – cement – concrete – steel sections.

BUILDING COMPONENTS AND STRUCTURES UNIT II

Foundations: Types, Bearing capacity – Requirement of good foundations.

Superstructure: Brick masonry - stone masonry - beams - columns - lintels - roofing - flooring plastering – Mechanics – Internal and external forces – stress – strain – elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping.

TOTAL: 30 PERIODS

B – MECHANICAL ENGINEERING

POWER PLANT ENGINEERING UNIT III

Introduction, Classification of Power Plants – Working principle of steam, Gas, Diesel, Hydro-electric and Nuclear Power plants - Merits and Demerits - Pumps and turbines - working principle of Reciprocating pumps (single acting and double acting) - Centrifugal Pump.

UNIT IV IC ENGINES

Internal combustion engines as automobile power plant - Working principle of Petrol and Diesel Engines - Four stroke and two stroke cycles - Comparison of four stroke and two stroke engines -Boiler as a power plant.

REFRIGERATION AND AIR CONDITIONING SYSTEM UNIT V

Terminology of Refrigeration and Air Conditioning. Principle of vapour compression and absorption system - Layout of typical domestic refrigerator - Window and Split type room Air conditioner.

TOTAL: 30 PERIODS

OUTCOMES:

- Ability to explain the usage of construction material and proper selection of construction materials.
- Ability to design building structures.
- Ability to identify the components use in power plant cycle.
- Ability to demonstrate working principles of petrol and diesel engine.

LTPC 4004

15

10

15

10

Ability to explain the components of refrigeration and Air conditioning cycle.

TEXT BOOKS:

1. Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engineering", Tata McGraw Hill Publishing Co., New Delhi, 1996.

REFERENCES:

- 1. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co. (P) Ltd. 1999.
- 2. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, 2005.
- 3. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, 2000.
- 4. Shantha Kumar S R J., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, 2000.

EE6201

CIRCUIT THEORY

OBJECTIVES:

- To introduce electric circuits and its analysis
- To impart knowledge on solving circuits using network theorems •
- To introduce the phenomenon of resonance in coupled circuits. •
- To educate on obtaining the transient response of circuits. •
- To Phasor diagrams and analysis of three phase circuits

BASIC CIRCUITS ANALYSIS UNIT I

Ohm's Law - Kirchoffs laws - DC and AC Circuits - Resistors in series and parallel circuits -Mesh current and node voltage method of analysis for D.C and A.C. circuits – Phasor Diagram – Power, Power Factor and Energy.

UNIT II NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS

Network reduction: voltage and current division, source transformation - star delta conversion. Thevenins and Novton & Theorem – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem.

UNIT III **RESONANCE AND COUPLED CIRCUITS**

Series and paralled resonance - their frequency response - Quality factor and Bandwidth - Self and mutual inductance - Coefficient of coupling - Tuned circuits - Single tuned circuits.

UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS

Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. with sinusoidal input – Characterization of two port networks in terms of Z, Y and h parameters.

UNIT V THREE PHASE CIRCUITS

Three phase balanced / unbalanced voltage sources - analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced - phasor diagram of voltages and currents – power and power factor measurements in three phase circuits.

12

12

LTPC 3 1 0 4

12

12

OUTCOMES:

- Ability analyse electrical circuits
- Ability to apply circuit theorems
- Ability to analyse AC and DC Circuits

TEXT BOOKS:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 6th edition, New Delhi, 2003.
- 2. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McGraw-Hill, New Delhi, 2001.

REFERENCES:

- 1. Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, 1996.
- 2. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, 2007.
- 3. Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.
- 4. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2003.

GE6262 PHYSICS AND CHEMISTRY LABORATORY – II

L T P C 0 0 2 1

PHYSICS LABORATORY – II

OBJECTIVES:

• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1. Determination of Young's modulus by uniform bending method
- 2. Determination of band gap of a semiconductor
- 3. Determination of Coefficient of viscosity of a liquid –Poiseuille's method
- 4. Determination of Dispersive power of a prism Spectrometer
- 5. Determination of thickness of a thin wire Air wedge method
- 6. Determination of Rigidity modulus Torsion pendulum

OUTCOMES:

• The students will have the ability to test materials by using their knowledge of applied physics principles in optics and properties of matter.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Traveling microscope, meter scale, Knife edge, weights
- 2. Band gap experimental set up
- 3. Burette, Capillary tube, rubber tube, stop clock, beaker and weighing balance
- 4. spectrometer, prism, sodium vapour lamp.
- 5. Air-wedge experimental set up.

6. Torsion pendulum set up.

(vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY - II

OBJECTIVES:

• To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of hardness, alkalinity, metal ion content, corrosion in metals and cement analysis.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1 Determination of alkalinity in water sample
- 2 Determination of total, temporary & permanent hardness of water by EDTA method
- 3 Estimation of copper content of the given solution by EDTA method
- 4 Estimation of iron content of the given solution using potentiometer
- 5 Estimation of sodium present in water using flame photometer
- 6 Corrosion experiment weight loss method
- 7 Conductometric precipitation titration using BaCl₂ and Na₂SO₄
- 8 Determination of CaO in Cement.

OUTCOMES:

TOTAL: 30 PERIODS

• The students will be conversant with hands-on knowledge in the quantitative chemical analysis of water quality related parameters, corrosion measurement and cement analysis.

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York, 2001.
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry, LBS Singapore ,1994.
- 3. Jeffery G.H, Bassett J., Mendham J. and Denny R.C., "Vogel's Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M. and Sandell E.B. et al. Quantitative chemical analysis, McMillan, Madras 1980
- Laboratory classes on alternate weeks for Physics and Chemistry.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	Potentiometer	-	5 Nos
2.	Flame photo meter	-	5 Nos
3.	Weighing Balance	-	5 Nos
4.	Conductivity meter	-	5 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (30 Nos each)

GE6263	COMPUTER PROGRAMMING LABORATORY	L T P C 0 1 2 2
Be exposeBe familiLearn to	hould be made to sed to Unix shell commands ar with an editor on Unix program in Shell script write C programme for Unix platform	
	LIST OF EXPERIMENTS	
1. UNIX COMM	ANDS	15
Study of Unix O	S - Basic Shell Commands - Unix Editor	
2. SHELL PROC	GRAMMING	15
Simple Shell pro	ogram - Conditional Statements - Testing and Loops	
3. C PROGRAM	IMING ON UNIX	15
OUTCOMES: At the end of the • Use She • Design o	e Allocation-Pointers-Functions-File Handling e course the students should be able to: Il commands if Implement Unix shell scripts d execute C programs on Unix	TOTAL: 45 PERIODS
HARDWARE / S	SOFTWARE REQUIREMENTS FOR A BATCH OF 30 STUDE	NTS

Hardware

- UNIX Clone Server
- 33 Nodes (thin client or PCs)
- Printer 3 Nos.

Software

- OS UNIX Clone (33 user license or License free Linux)
 Compiler C

EE6211

ELECTRIC CIRCUITS LABORATORY

OBJECTIVES :

• To provide practical experience with simulation of electrical circuits and verifying circuit theorems.

LIST OF EXPERIMENTS

- 1. Experimental verification of Kirchhoff's voltage and current laws
- 2. Experimental verification of network theorems (Thevenin, Norton, Superposition and maximum power transfer Theorem).
- 3. Study of CRO and measurement of sinusoidal voltage, frequency and power factor.
- 4. Experiental determination of time constant of series R-C electric circuits.
- 5. Experimental determination of frequency response of RLC circuits.
- 6. Design and Simulation of series resonance circuit.
- 7. Design and Simulation of parallel resonant circuits.
- 8. Simulation of low pass and high pass passive filters.
- 9. Simulation of three phase balanced and unbalanced star, delta networks circuits.
- 10. Experimental determination of power in three phase circuits by two-watt meter method .
- 11. Calibration of single phase energy meter.
- 12. Determination of two port network parameters.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and apply circuit theorems and concepts in engineering applications.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1 Regulated Power Supply: 0 15 V D.C 10 Nos / Distributed Power Source.
- 2 Function Generator (1 MHz) 10 Nos.
- 3 Single Phase Energy Meter 1 No.
- 4 Oscilloscope (20 MHz) 10 Nos.
- 5 Digital Storage Oscilloscope (20 MHz) 1 No.
- 6 Circuit Simulation Software (5 Users) (Pspice / Matlab /other Equivalent software Package) with PC(5 Nos.) and Printer (1 No.)
- 7 AC/DC Voltmeters (10 Nos.), Ammeters (10 Nos.) and Multi-meters (10 Nos.)
- 8 Single Phase Wattmeter 3 Nos.
- 9 Decade Resistance Box, Decade Inductance Box, Decade Capacitance Box Each 6 Nos.
- 10 Circuit Connection Boards 10 Nos.

Necessary Quantities of Resistors, Inductors, Capacitors of various capacities (Quarter Watt to 10 Watt)

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS MA6351 LTPC

3104

OBJECTIVES:

- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations - Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+3

Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V **Z-TRANSFORMS AND DIFFERENCE EQUATIONS**

Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

Veerarajan T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education 1. Pvt. Ltd., New Delhi, Second reprint, 2012.

9+3

9+3

9+3

9+3

- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES:

- 1. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd, 2007.
- 2. Ramana. B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 5. Ray Wylie C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
- 6. Datta K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

EE6301

DIGITAL LOGIC CIRCUITS

LT P C 3 1 0 4

OBJECTIVES:

- To study various number systems, simplify the logical expressions using Boolean functions
- To study implementation of combinational circuits
- To design various synchronous and asynchronous circuits.
- To introduce asynchronous sequential circuits and PLCs
- To introduce digital simulation for development of application oriented logic circuits.

UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code0- Digital Logic Families ,comparison of RTL, DTL, TTL, ECL and MOS families -operation, characteristics of digital logic family.

UNIT II COMBINATIONAL CIRCUITS

Combinational logic - representation of logic functions-SOP and POS forms, K-map representationsminimization using K maps - simplification and implementation of combinational logic - multiplexers and demultiplexers - code converters, adders, subtractors.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters - asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous sequential circuits – Moore and Melay models- Counters, state diagram; state reduction; state assignment.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

Asynchronous sequential logic circuits-Transition table, flow table-race conditions, hazards & errors in digital circuits; analysis of asynchronous sequential logic circuits-introduction to Programmable Logic Devices: PROM – PLA –PAL.

9

9

9

UNIT V VHDL

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to Packages – Subprograms – Test bench. (Simulation /Tutorial Examples: adders, counters, flipflops, FSM, Multiplexers /Demultiplexers).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. Raj Kamal, 'Digital systems-Principles and Design', Pearson Education 2nd edition, 2007.
- 2. M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education, 2013.
- 3. Comer "Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES:

- 1. Mandal "Digital Electronics Principles & Application, McGraw Hill Edu, 2013.
- 2. William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.
- 3. Floyd and Jain, 'Digital Fundamentals', 8th edition, Pearson Education, 2003.
- 4. Anand Kumar, Fundamentals of Digital Circuits, PHI, 2013.
- 5. Charles H.Roth, Jr, Lizy Lizy Kurian John, 'Digital System Design using VHDL, Cengage, 2013.
- 6. John M.Yarbrough, 'Digital Logic, Application & Design', Thomson, 2002.
- 7. Gaganpreet Kaur, VHDL Basics to Programming, Pearson, 2013.
- 8. Botros, HDL Programming Fundamental, VHDL& Verilog, Cengage, 2013.

EE6302 ELECTROMAGNETIC THEORY L T P C 3104

OBJECTIVES:

- To introduce the basic mathematical concepts related to electromagnetic vector fields
- To impart knowledge on the concepts of electrostatics, electrical potential, energy density and their applications.
- To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications.
- To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations
- To impart knowledge on the concepts of Concepts of electromagnetic waves and Pointing vector.

UNIT I ELECTROSTATICS – I

Sources and effects of electromagnetic fields – Coordinate Systems – Vector fields –Gradient, Divergence, Curl – theorems and applications - Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and applications.

UNIT II ELECTROSTATICS – II

Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor – Electric field in free space, conductors, dielectrics - Dielectric polarization - Dielectric strength - Electric field in multiple dielectrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, Energy density, Applications.

UNIT III MAGNETOSTATICS

Lorentz force, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media – Boundary conditions, scalar and vector potential, Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications.

UNIT IV ELECTRODYNAMIC FIELDS

Magnetic Circuits - Faraday's law – Transformer and motional EMF – Displacement current - Maxwell's equations (differential and integral form) – Relation between field theory and circuit theory – Applications.

UNIT V ELECTROMAGNETIC WAVES

Electromagnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance, propagation constant – Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting vector – Plane wave reflection and refraction – Standing Wave – Applications.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

- 1. Mathew N. O. Sadiku, 'Principles of Electromagnetics', 4 th Edition ,Oxford University Press Inc. First India edition, 2009.
- 2. Ashutosh Pramanik, 'Electromagnetism Theory and Applications', PHI Learning Private Limited, New Delhi, Second Edition-2009.
- 3. K.A. Gangadhar, P.M. Ramanthan ' Electromagnetic Field Theory (including Antennaes and wave propagation', 16th Edition, Khanna Publications, 2007.

REFERENCES:

- 1. Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline Series), Tata McGraw Hill, 2010
- 2. William H. Hayt and John A. Buck, 'Engineering Electromagnetics', Tata McGraw Hill 8th Revised edition, 2011.
- 3. Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 2010.
- 4. Bhag Singh Guru and Hüseyin R. Hiziroglu "Electromagnetic field theory Fundamentals", Cambridge University Press; Second Revised Edition, 2009.

9

9

ENVIRONMENTAL SCIENCE AND ENGINEERING

OBJECTIVES:

GE6351

To the study of nature and the facts about environment.

- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry-Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere formation of smog, PAN, acid rain, oxygen and ozone chemistry;- Mitigation procedures- Control of particulate and gaseous emission, Control of SO₂, NO_X, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins –Biochemical

10

10

degradation of pollutants, Bioconversion of pollutants. Field study of local area to document environmental assets - river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development - urban problems related to energy - water conservation, rain water harvesting, watershed management - resettlement and rehabilitation of people; its problems and concerns, case studies - role of non-governmental organizationenvironmental ethics: Issues and possible solutions - 12 Principles of green chemistry- nuclear accidents and holocaust, case studies. - wasteland reclamation - consumerism and waste products environment production act - Air act - Water act - Wildlife protection act - Forest conservation act -The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labeling of environmentally friendly products (Ecomark). enforcement machinery involved in environmental legislation- central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides.

Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations - population explosion - family welfare programme environment and human health - human rights - value education - HIV / AIDS - women and child welfare -Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology in environment and human health - Case studies.

TOTAL: 45 PERIODS

7

6

OUTCOMES:

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters •

TEXT BOOKS :

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.

REFERENCES:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II. Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press 2005.

PN junction diode -structure, operation and V-I characteristics, diffusion and transient capacitance -

BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristor and IGBT -Structure and characteristics.

UNIT III AMPLIFIERS

The student should be made to:

BJT small signal model - Analysis of CE, CB, CC amplifiers- Gain and frequency response -MOSFET small signal model- Analysis of CS and Source follower - Gain and frequency response-High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET input stages - Single tuned amplifiers - Gain and frequency response - Neutralization methods, power amplifiers –Types (Qualitative analysis).

UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS

Be familiar with the structure of basic electronic devices.

characteristics-Zener Reverse characteristics – Zener as regulator

PN JUNCTION DEVICES

TRANSISTORS

Be exposed to the operation and applications of electronic devices.

Advantages of negative feedback - voltage / current, series, Shunt feedback - positive feedback -Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- To explain the structure of the basic electronic devices.
- To design applications using the basic electronic devices.

TEXT BOOKS:

- 1. David A. Bell, "Electronic Devices and Circuits", Prentice Hall of India, 2004.
- 2. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2004.

REFERENCES:

- 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.
- 2. Floyd, "Electron Devices" Pearson Asia 5th Edition, 2001.
- 3. Donald A Neamen, "Electronic Circuit Analysis and Design" Tata McGraw Hill, 3rd Edition, 2003.
- 4. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2002.
- 5. Robert B. Northrop, "Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation", CRC Press, 2004.

ELECTRONIC DEVICES AND CIRCUITS

EC6202

•

UNIT I

UNIT II

OBJECTIVES:

Rectifiers – Half Wave and Full Wave Rectifier, – Display devices- LED, Laser diodes- Zener diode-

9

9

9

9

EE6303 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

OBJECTIVES:

- To study the IC fabrication procedure.
- To study characteristics; realize circuits; design for signal analysis using Op-amp ICs.
- To study the applications of Op-amp.
- To study internal functional blocks and the applications of special ICs like Timers, PLL
- circuits, regulator Circuits, ADCs.

UNIT I IC FABRICATION

IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realisation of monolithic ICs and packaging. Fabrication of diodes, capacitance, resistance and FETs.

UNIT II CHARACTERISTICS OF OPAMP

Ideal OP-AMP characteristics, DC characteristics, AC characteristics, differential amplifier; frequency response of OP-AMP; Basic applications of op-amp – Inverting and Non-inverting Amplifiers-V/I & I/V converters ,summer, differentiator and integrator.

UNIT III APPLICATIONS OF OPAMP

Instrumentation amplifier, Log and Antilog Amplifiers, first and second order active filters, , comparators, multivibrators, waveform generators, clippers, clampers, peak detector, S/H circuit, D/A converter (R- 2R ladder and weighted resistor types), A/D converters using opamps.

UNIT IV SPECIAL ICs

Functional block, characteristics & application circuits with 555 Timer Ic-566 voltage controlled oscillator Ic; 565-phase lock loop Ic ,Analog multiplier ICs.

UNIT V APPLICATION ICs

IC voltage regulators –LM78XX,79XX Fixed voltage regulators - LM317, 723 Variable voltage regulators, switching regulator- SMPS- LM 380 power amplifier- ICL 8038 function generator IC.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. David A.Bell, 'Op-amp & Linear ICs', Oxford, 2013.
- 2. D.Roy Choudhary, Sheil B.Jani, 'Linear Integrated Circuits', II edition, New Age, 2003.
- 3. Ramakant A.Gayakward, 'Op-amps and Linear Integrated Circuits', IV edition, Pearson Education, 2003 / PHI. 2000.

REFERENCES:

- 1. Fiore,"Opamps & Linear Integrated Circuits Concepts & Applications", Cengage, 2010.
- 2. Floyd ,Buchla,"Fundamentals of Analog Circuits, Pearson, 2013.
- 3. Jacob Millman, Christos C.Halkias, 'Integrated Electronics Analog and Digital circuits system', Tata McGraw Hill, 2003.
- 4. Robert F.Coughlin, Fredrick F. Driscoll, 'Op-amp and Linear ICs', PHI Learning, 6th edition, 2012.

LTPC 3 0 0 3

9

9

9

9

EC6361

ELECTRONICS LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

To enable the students to understand the behavior of semiconductor device based on experimentation

LIST OF EXPERIMENTS:

- 1. Characteristics of Semi conductor diode and Zener diode
- 2. Characteristics of a NPN Transistor under common emitter, common collector and common base configurations
- 3. Characteristics of JFET(Draw the equivalent circuit)
- 4. Characteristics of UJT and generation of saw tooth waveforms
- 5. Design and Frequency response characteristics of a Common Emitter amplifier
- 7. Characteristics of photo diode & photo transistor, Study of light activated relay circuit
- 8. Design and testing of RC phase shift, LC oscillators
- 9. Single Phase half-wave and full wave rectifiers with inductive and capacitive filters
- 10. Differential amplifiers using FET
- 11. Study of CRO for frequency and phase measurements
- 12. Astable and Monostable multivibrators
- 13. Realization of passive filters

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1.Semiconducter devices like Diode, Zener Diode, NPN Transistors, JFET, UJT, Photo diode, Photo Transistor
- 2. Resistors, Capacitors and inductors
- 3. Necessary digital IC 8

4. Function Generators	10
5. Regulated 3 output Power Supply 5, ± 15V	10
6. CRO	10
7. Storage Oscilloscope	1
8. Bread boards	10

9. Atleast one demo module each for the listed equipments.

10. Component data sheets to be provided

EE6311 LINEAR AND DIGITAL INTEGRATED CIRCUITS LABORATORY

OBJECTIVES:

Working Practice in simulators / CAD Tools / Experiment test bench to learn design, testing and characterizing of circuit behaviour with digital and analog ICs.

LIST OF EXPERIMENTS:

- 1. Implementation of Boolean Functions, Adder/ Subtractor circuits.
- 2. Code converters: Excess-3 to BCD and Binary to Gray code converter and vice-versa
- 3. Parity generator and parity checking
- 4. Encoders and Decoders
- 5. Counters: Design and implementation of 4-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.
- 6. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC's.
- 7. Study of multiplexer and demultiplexer
- 8 Timer IC application: Study of NE/SE 555 timer in Astable, Monostable operation.
- 9. Application of Op-Amp: inverting and non-inverting amplifier, Adder, comparator, Integrator and Differentiator.
- 10. Study of VCO and PLL ICs:
 - i. Voltage to frequency characteristics of NE/ SE 566 IC.
 - ii. Frequency multiplication using NE/SE 565 PLL IC.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

(3 per Batch)			
S.No	Name of the equipments / Components	Quantity Required	Remarks
1	Dual ,(0-30V) variable Power Supply	10	-
2	CRO	9	30MHz
3	Digital Multimeter	10	Digital
4	Function Generator	8	1 MHz
5	IC Tester (Analog)	2	
6	Bread board	10	
7	Computer (PSPICE installed)	1	

...

- . . .

Consumables (Minimum of 25 Nos. each)			
1	IC 741/ IC NE555/566/565	25	
2	Digital IC types	25	
3	LED	25	
4	LM317	25	
5	LM723	25	
6	ICSG3524 / SG3525	25	
7	Transistor – 2N3391	25	
8	Diodes,	25	IN4001,BY126
9	Zener diodes	25	
10	Potentiometer		
11	Step-down transformer	1	230V/12-0-12V
12	Capacitor		
13	Resistors 1/4 Watt Assorted	25	
14	Single Strand Wire		

MA6459

NUMERICAL METHODS

LTPC 3 1 0 4

OBJECTIVES:

This course aims at providing the necessary basic concepts of a few numerical methods and • give procedures for solving numerically different kinds of problems occurring in engineering and technology

UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 10+3

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Matrix Inversion by Gauss Jordan method - Eigen values of a matrix by Power method.

UNIT II INTERPOLATION AND APPROXIMATION

Interpolation with unequal intervals - Lagrange's interpolation - Newton's divided difference interpolation - Cubic Splines - Interpolation with equal intervals - Newton's forward and backward difference formulae.

NUMERICAL DIFFERENTIATION AND INTEGRATION UNIT III

Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson's 1/3 rule - Romberg's method - Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.

8+3

9+3

UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

9+3

LTPC 3104

Single Step methods - Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order equations - Multi step methods - Milne's and Adams-Bash forth predictor corrector methods for solving first order equations.

UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 9+3

Finite difference methods for solving two-point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace's and Poisson's equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• The students will have a clear perception of the power of numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.

TEXT BOOKS:

- 1. Grewal. B.S., and Grewal. J.S.,"Numerical methods in Engineering and Science", Khanna Publishers, 9th Edition, New Delhi, 2007.
- 2. Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6th Edition, New Delhi, 2006.

REFERENCES:

- 1. Chapra. S.C., and Canale.R.P., "Numerical Methods for Engineers, Tata McGraw Hill, 5th Edition, New Delhi, 2007.
- 2. Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia, New Delhi, 2007.
- 3. Sankara Rao. K., "Numerical methods for Scientists and Engineers", Prentice Hall of India Private, 3rd Edition, New Delhi, 2007.

EE6401

ELECTRICAL MACHINES – I

OBJECTIVES:

- To introduce techniques of magnetic-circuit analysis and introduce magnetic materials
- To familiarize the constructional details, the principle of operation, prediction of performance, the methods of testing the transformers and three phase transformer connections.
- To study the working principles of electrical machines using the concepts of electromechanical energy conversion principles and derive expressions for generated voltage and torque developed in all Electrical Machines.
- To study the working principles of DC machines as Generator types, determination of their noload/load characteristics, starting and methods of speed control of motors.
- To estimate the various losses taking place in D.C. Motor and to study the different testing methods to arrive at their performance.

DC GENERATORS

Construction and components of DC Machine - Principle of operation - Lap and wave windings-EMF equations- circuit model - armature reaction -methods of excitation-commutation and interpoles compensating winding -characteristics of DC generators.

UNIT V **DC MOTORS**

Principle and operations - types of DC Motors - Speed Torque Characteristics of DC Motors-starting and speed control of DC motors -Plugging, dynamic and regenerative braking- testing and efficiency Retardation test- Swinburne's test and Hopkinson's test - Permanent magnet dc motors(PMDC)-DC Motor applications.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

UNIT IV

Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

- 1. Nagrath I. J and Kothari D. P. 'Electric Machines', Fourth Edition, Tata McGraw Hill Publishing Company Ltd, 2010.
- 2. M.N.Bandyopadhyay, Electrical Machines Theory and Practice, PHI Learning PVT LTD., New Delhi. 2009.
- 3. Fitzgerald. A.E., Charles Kingsely Jr, Stephen D.Umans, 'Electric Machinery', Sixth edition, Tata McGraw Hill Books Company, 2003.

REFERENCES:

- 1. P. C. Sen., 'Principles of Electrical Machines and Power Electronics', John Wiley & Sons, 1997.
- 2. Syed A. Nasar, Electric Machines and Power Systems: Volume I, Mcgraw-Hill College; International Edition, January 1995.
- 3. Deshpande M. V., "Electrical Machines" PHI Learning Pvt. Ltd., New Delhi, 2011.
- 4. P.S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2003.
- 5. S.Sarma & K.Pathak "Electric Machines", Cengage Learning India (P) Ltd., Delhi, 2011.

UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS

Magnetic circuits – Laws governing magnetic circuits - Flux linkage, Inductance and energy – Statically and Dynamically induced EMF - Torque - Properties of magnetic materials, Hysterisis and Eddy Current losses - AC excitation, introduction to permanent magnets-Transformer as a magnetically coupled circuit.

UNIT II TRANSFORMERS

Construction - principle of operation - equivalent circuit parameters - phasor diagrams, losses testing - efficiency and voltage regulation-all day efficiency-Sumpner's test, per unit representation inrush current - three phase transformers-connections - Scott Connection - Phasing of transformerparallel operation of three phase transformers-auto transformer – tap changing transformers- tertiary winding.

ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN UNIT III **ROTATING MACHINES**

Energy in magnetic system - Field energy and coenergy-force and torque equations - singly and multiply excited magnetic field systems-mmf of distributed windings – Winding Inductances-, magnetic fields in rotating machines – rotating mmf waves – magnetic saturation and leakage fluxes.

9

9

9

9

CS6456	OBJECT ORIENTED PROGRAMMING	L T 3 0	
	ar understanding of object-oriented concepts. nd object oriented programming through C++.	30	03
Why Object-Orie	VERVIEW ented Programming in C++ - Native Types and Statements –Functions and DTs in the Base Language.	Poin	9 ters-
Data Hiding an	ASIC CHARACTERISTICS OF OOP nd Member Functions- Object Creation and Destruction- Polymorph itors and Containers.	ism	9 data
	DVANCED PROGRAMMING eric Programming, and STL-Inheritance-Exceptions-OOP Using C++.		9
	DVERVIEW OF JAVA riables and arrays, operators, control statements, classes, objects, m	ethoc	9 ds –
-	XCEPTION HANDLING Iterfaces, Exception handling, Multithreaded programming, Strings, Input/Ou	tput	9
	TOTAL : 45	PERIC	ODS
 Ability to develo 	knowledge on Object Oriented concepts. op applications using Object Oriented Programming Concepts. ment features of object oriented programming to solve real world problems.		
	ject-Oriented Programming Using C++", Pearson Education Asia, 2003.	to lim	ited

2. H.M.Deitel, P.J.Deitel, "Java : how to program", Fifth edition, Prentice Hall of India private limited, 2003.

REFERENCES:

- Herbert Schildt, "The Java 2: Complete Reference", Fourth edition, TMH, 2002
 Bjarne Stroustrup, "The C++ Programming Language", Pearson Education, 2004.
 Stanley B. Lippman and Josee Lajoie, "C++ Primer", Pearson Education, 2003.
 K.R.Venugopal, Rajkumar Buyya, T.Ravishankar, "Mastering C++", TMH, 2003.

EE6402

9

9

9

9

9

OBJECTIVES:

- To develop expressions for the computation of transmission line parameters.
- To obtain the equivalent circuits for the transmission lines based on distance and operating
- voltage for determining voltage regulation and efficiency. Also to improve the voltage profile of the transmission system.
- To analyses the voltage distribution in insulator strings and cables and methods to improve the same.
- To understand the operation of the different distribution schemes.

UNIT I STRUCTURE OF POWER SYSTEM

Structure of electric power system: generation, transmission and distribution; Types of AC and DC distributors – distributed and concentrated loads – interconnection – EHVAC and HVDC transmission - Introduction to FACTS.

UNIT II TRANSMISSION LINE PARAMETERS

Parameters of single and three phase transmission lines with single and double circuits - Resistance, inductance and capacitance of solid, stranded and bundled conductors, Symmetrical and unsymmetrical spacing and transposition - application of self and mutual GMD; skin and proximity effects - interference with neighboring communication circuits - Typical configurations, conductor types and electrical parameters of EHV lines, corona discharges.

UNIT III MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines - short line, medium line and long line - equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance; transmission efficiency and voltage regulation, real and reactive power flow in lines, Power - circle diagrams, surge impedance loading, methods of voltage control; Ferranti effect.

UNIT IV INSULATORS AND CABLES

Insulators - Types, voltage distribution in insulator string, improvement of string efficiency, testing of insulators. Underground cables - Types of cables, Capacitance of Single-core cable, Grading of cables, Power factor and heating of cables, Capacitance of 3- core belted cable, D.C cables.

UNIT V MECHANICAL DESIGN OF LINES AND GROUNDING

Mechanical design of transmission line – sag and tension calculations for different weather conditions, Tower spotting, Types of towers, Substation Layout (AIS, GIS), Methods of grounding.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. D.P.Kothari , I.J. Nagarath, 'Power System Engineering', Tata McGraw-Hill Publishing Company limited, New Delhi, Second Edition, 2008.
- 2. C.L.Wadhwa, 'Electrical Power Systems', New Academic Science Ltd, 2009.
- 3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2011.

REFERENCES:

- 1. B.R.Gupta, , S.Chand, 'Power System Analysis and Design'New Delhi, Fifth Edition, 2008.
- 2. Luces M.Fualken berry ,Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 2007.
- 3. Hadi Saadat, 'Power System Analysis,' PSA Publishing; Third Edition, 2010.
- 4. J.Brian, Hardy and Colin R.Bayliss 'Transmission and Distribution in Electrical Engineering', Newnes; Fourth Edition, 2012.
- 5. G.Ramamurthy, "Handbook of Electrical power Distribution," Universities Press, 2013.

EE6403 DISCRETE TIME SYSTEMS AND SIGNAL PROCESSING L T P C 3 0 0 3

OBJECTIVES:

- To classify signals and systems & their mathematical representation.
- To analyse the discrete time systems.
- To study various transformation techniques & their computation.
- To study about filters and their design for digital implementation.
- To study about a programmable digital signal processor & quantization effects.

UNIT I INTRODUCTION

Classification of systems: Continuous, discrete, linear, causal, stable, dynamic, recursive, time variance; classification of signals: continuous and discrete, energy and power; mathematical representation of signals; spectral density; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect.

UNIT II DISCRETE TIME SYSTEM ANALYSIS

Z-transform and its properties, inverse z-transforms; difference equation – Solution by ztransform,application to discrete systems - Stability analysis, frequency response – Convolution – Discrete TimeFourier transform, magnitude and phase representation.

UNIT III DISCRETE FOURIER TRANSFORM & COMPUTATION

Discrete Fourier Transform- properties, magnitude and phase representation - Computation of DFT using FFT algorithm – DIT &DIF using radix 2 FFT – Butterfly structure.

UNIT IV DESIGN OF DIGITAL FILTERS

FIR & IIR filter realization – Parallel & cascade forms. FIR design: Windowing Techniques – Need and choice of windows – Linear phase characteristics. Analog filter design – Butterworth and Chebyshev approximations; IIR Filters, digital design using impulse invariant and bilinear transformation - mWarping, pre warping.

UNIT V DIGITAL SIGNAL PROCESSORS

Introduction – Architecture – Features – Addressing Formats – Functional modes - Introduction to Commercial DSProcessors.

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

• Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

- 1. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithms and Applications', Pearson Education, New Delhi, PHI. 2003.
- 2. S.K. Mitra, 'Digital Signal Processing A Computer Based Approach', McGraw Hill Edu, 2013.
- 3. Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using Matlab", Cengage Learning, 2014.

REFERENCES:

- 1. Poorna Chandra S, Sasikala. B ,Digital Signal Processing, Vijay Nicole/TMH,2013.
- 2. B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford University Press, 2010
- 3. Taan S. ElAli, 'Discrete Systems and Digital Signal Processing with Mat Lab', CRC Press, 2009.
- 4. Sen M.kuo, woonseng...s.gan, "Digital Signal Processors, Architecture, Implementations & Applications, Pearson, 2013
- 5. Dimitris G.Manolakis, Vinay K. Ingle, applied Digital Signal Processing, Cambridge, 2012
- 6. Lonnie C.Ludeman, "Fundamentals of Digital Signal Processing", Wiley, 2013

EE6404MEASUREMENTS AND INSTRUMENTATIONL T P C3 0 0 3

OBJECTIVES:

- To introduce the basic functional elements of instrumentation
- To introduce the fundamentals of electrical and electronic instruments
- To educate on the comparison between various measurement techniques
- To introduce various storage and display devices
- To introduce various transducers and the data acquisition systems

UNIT I INTRODUCTION

Functional elements of an instrument – Static and dynamic characteristics – Errors in measurement – Statistical evaluation of measurement data – Standards and calibration.

9

9

9

UNIT II ELECTRICAL AND ELECTRONICS INSTRUMENTS

Principle and types of analog and digital voltmeters, ammeters, multimeters – Single and three phase wattmeters and energy meters – Magnetic measurements – Determination of B-H curve and measurements of iron loss – Instrument transformers – Instruments for measurement of frequency and phase.

UNIT III COMPARISON METHODS OF MEASUREMENTS

D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops - Electrostatic and electromagnetic interference – Grounding techniques.

STORAGE AND DISPLAY DEVICES UNIT IV

Magnetic disk and tape - Recorders, digital plotters and printers, CRT display, digital CRO, LED, LCD & dot matrix display – Data Loggers.

UNIT V TRANSDUCERS AND DATA ACQUISITION SYSTEMS

Classification of transducers - Selection of transducers - Resistive, capacitive & inductive transducers - Piezoelectric, Hall effect, optical and digital transducers - Elements of data acquisition system – A/D, D/A converters – Smart sensors.

TOTAL :45 PERIODS

OUTCOMES:

Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

- 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004.
- 2. J. B. Gupta, 'A Course in Electronic and Electrical Measurements', S. K. Kataria & Sons, Delhi, 2003.
- 3. Doebelin E.O. and Manik D.N., Measurement Systems Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.

REFERENCES:

- 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004.
- 2. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.
- 3. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997.
- 4. Martin Reissland, 'Electrical Measurements', New Age International (P) Ltd., Delhi, 2001.
- 5. Alan. S. Morris, Principles of Measurements and Instrumentation, 2nd Edition, Prentice Hall of India, 2003.

CS6461 **OBJECT ORIENTED PROGRAMMING LABORATORY** LTPC

OBJECTIVES:

- To get a clear understanding of object-oriented concepts.
- To understand object oriented programming through C++ & JAVA.

LIST OF EXPERIMENTS:

C++:

- 1. program using functions
 - functions with default arguments
 - implementation of call by value, address, reference
- 2. simple classes for understanding objects, member functions & constructors
 - classes with primitive data members.
 - classes with arrays as data members
 - classes with pointers as data members
 - classes with constant data members.
 - classes with static member functions
- 3. compile time polymorphism
 - operator overloading

0 0 3 2

9

9

- function overloading
- 4. run time polymorphism
 - inheritance
 - virtual functions
 - virtual base classes
 - templates
- 5. file handling
 - sequential access
 - random access

JAVA:

- 6. simple java applications
 - for understanding references to an instant of a class
 - handling strings in JAVA
- 7. simple package creation
- developing user defined packages in java
- 8. interfaces
 - developing user defined interfaces
 - use predefined interfaces
- 9. threading
 - creation of threading in java applications
 - multi threading
- 10. exception handling mechanism in java
 - handling predefined exceptions
 - handling user defined exceptions

TOTAL :45 PERIODS

OUTCOMES:

- Gain the basic knowledge on Object Oriented concepts.
- Ability to develop applications using Object Oriented Programming Concepts.
- Ability to implement features of object oriented programming to solve real world problems.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C++ complier 30 Nos.

(or)

Server with C++ compiler supporting 30 terminals or more.

EE6411

OBJECTIVES :

To expose the students to the operation of D.C. machines and transformers and give them experimental skill.

LIST OF EXPERIMENTS:

- 1. Open circuit and load characteristics of DC shunt generator- critical resistance and critical speed.
- 2. Load characteristics of DC compound generator with differential and cumulative connections.
- 3. Load test on DC shunt and compound motor.
- 4. Load test on DC series motor.
- 5. Swinburne's test and speed control of DC shunt motor.
- 6. Hopkinson's test on DC motor generator set.
- 7. Load test on single-phase transformer and three phase transformers.
- 8. Open circuit and short circuit tests on single phase transformer.
- 9. Polarity Test and Sumpner's test on single phase transformers.
- 10.Separation of no-load losses in single phase transformer.
- 11. Study of starters and 3-phase transformers connections

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to model and analyze electrical apparatus and their application to power system

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. DC Shunt Motor with Loading Arrangement 3 nos
- 2. DC Shunt Motor Coupled With Three phase Alternator 1 No.
- 3. Single Phase Transformer 4 nos
- 4. DC Series Motor with Loading Arrangement 1 No.
- 5. DC compound Motor with Loading Arrangement 1 No.
- 6. Three Phase Induction Motor with Loading Arrangement 2 nos
- 7. Single Phase Induction Motor with Loading Arrangement 1 No.
- 8. DC Shunt Motor Coupled With DC Compound Generator 2 nos
- 9. DC Shunt Motor Coupled With DC Shunt Motor 1 No.
- 10. Tachometer -Digital/Analog 8 nos
- 11. Single Phase Auto Transformer 2 nos
- 12. Three Phase Auto Transformer 1 No.
- 13. Single Phase Resistive Loading Bank 2 nos
- 14. Three Phase Resistive Loading Bank. 2 nos
- 15. SPST switch 2 nos

EE6501

POWER SYSTEM ANALYSIS

LTPC 3 0 0 3

9

9

OBJECTIVES:

- To model the power system under steady state operating condition.
- To apply numerical methods to solve the power flow problem.
- To model and analyze the system under faulted conditions.
- To model and analyze the transient behaviour of power system when it is subjected to
- a fault.

UNIT I INTRODUCTION

Need for system planning and operational studies – basic components of a power system.-Introduction to restructuring - Single line diagram - per phase and per unit analysis - Generator - transformer transmission line and load representation for different power system studies.- Primitive network construction of Y-bus using inspection and singular transformation methods - z-bus.

UNIT II POWER FLOW ANALYSIS

Importance of power flow analysis in planning and operation of power systems - statement of power flow problem - classification of buses - development of power flow model in complex variables form iterative solution using Gauss-Seidel method - Q-limit check for voltage controlled buses - power flow model in polar form - iterative solution using Newton-Raphson method .

UNIT III FAULT ANALYSIS – BALANCED FAULTS

Importance of short circuit analysis - assumptions in fault analysis - analysis using Thevenin's theorem - Z-bus building algorithm - fault analysis using Z-bus - computations of short circuit capacity, post fault voltage and currents.

UNIT IV FAULT ANALYSIS – UNBALANCED FAULTS

Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machine, transformer and transmission lines - sequence networks analysis of single line to ground, line to line and double line to ground faults using Thevenin's theorem and Z-bus matrix.

UNIT V STABILITY ANALYSIS

Importance of stability analysis in power system planning and operation - classification of power system stability - angle and voltage stability - Single Machine Infinite Bus (SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time - solution of swing equation by modified Euler method and Runge-Kutta fourth order method.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. John J. Grainger and W.D. Stevenson Jr., 'Power System Analysis', Tata McGraw-Hill, Sixth reprint. 2010.
- 3. P. Venkatesh, B.V. Manikandan, S. Charles Raja, A. Srinivasan, 'Electrical Power Systems-Analysis, Security and Deregulation', PHI Learning Private Limited, New Delhi, 2012.

REFERENCES:

1. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.

9

9

- 2. Kundur P., 'Power System Stability and Control, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.
- 3. Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- 4. J. Duncan Glover, Mulukutla S. Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
- 5. Olle. I. Elgerd, 'Electric Energy Systems Theory An Introduction', Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2012.
- 6. C.A.Gross, "Power System Analysis," Wiley India, 2011.

EE6502 MICROPROCESSORS AND MICROCONTROLLERS L T P C

OBJECTIVES:

- To study the Architecture of uP8085 & uC 8051
- To study the addressing modes & instruction set of 8085 & 8051.
- To introduce the need & use of Interrupt structure 8085 & 8051.
- To develop skill in simple applications development with programming 8085 & 8051
- To introduce commonly used peripheral / interfacing

UNIT I 8085 PROCESSOR

Hardware Architecture, pinouts – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Timing Diagram – Interrupts.

UNIT II PROGRAMMING OF 8085 PROCESSOR

Instruction -format and addressing modes – Assembly language format – Data transfer, data manipulation& control instructions – Programming: Loop structure with counting & Indexing – Look up table - Subroutine instructions - stack.

UNIT III 8051 MICRO CONTROLLER

Hardware Architecture, pintouts – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Timing Diagram – Interrupts-Comparison to Programming concepts with 8085.

UNIT IV PERIPHERAL INTERFACING

Study on need, Architecture, configuration and interfacing, with ICs: 8255, 8259, 8254, 8237, 8279, - A/D and D/A converters &Interfacing with 8085& 8051.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS

Data Transfer, Manipulation, Control Algorithms& I/O instructions – Simple programming exerciseskey board and display interface – Closed loop control of servo motor- stepper motor control – Washing Machine Control.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to understand and analyse, linear and digital electronic circuits.
- To understand and apply computing platform and software for engineering problems.

9

9

9

3 0 0 3

9

TEXT BOOKS:

- 1. Krishna Kant, "Microprocessor and Microcontrollers", Eastern Company Edition, Prentice Hall of India. New Delhi . 2007.
- 2. R.S. Gaonkar, 'Microprocessor Architecture Programming and Application', with 8085, Wiley Eastern Ltd., New Delhi, 2013,
- 3. Soumitra Kumar Mandal, Microprocessor & Microcontroller Architecture, Programming & Interfacing using 8085,8086,8051,McGraw Hill Edu,2013.

REFERENCES:

ME6701

OBJECTIVES:

- 1. Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely 'The 8051 Micro Controller and Embedded Systems', PHI Pearson Education, 5th Indian reprint, 2003.
- 2. N.Senthil Kumar, M.Saravanan, S.Jeevananthan, 'Microprocessors and Microcontrollers', Oxford.2013.
- 3. Valder Perez, "Microcontroller Fundamentals and Applications with Pic," Yeesdee Publishers, Tayler & Francis, 2013.

Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

POWER PLANT ENGINEERING

UNIT I COAL BASED THERMAL POWER PLANTS

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants - Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

UNIT III **NUCLEAR POWER PLANTS**

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium-Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

UNIT IV POWER FROM RENEWABLE ENERGY

Hydro Electric Power Plants - Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS 8

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

10

10

LTPC 3003

10

OUTCOMES:

- Upon completion of this course, the Students can able to understand different types of power plant, and its functions and their flow lines and issues related to them.
- Analyse and solve energy and economic related issues in power sectors.

TEXT BOOK:

1. P.K. Nag, Power Plant Engineering, Tata McGraw – Hill Publishing Company Ltd., Third Edition, 2008.

REFERENCES:

- 1. M.M. El-Wakil, Power Plant Technology, Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Black & Veatch, Springer, Power Plant Engineering, 1996.
- 3. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, Standard Handbook of Power Plant Engineering, Second Edition, McGraw Hill, 1998.
- 4. Godfrey Boyle, Renewable energy, Open University, Oxford University Press in association with the Open University, 2004.

EE6503

POWER ELECTRONICS

L T P C 3 0 0 3

OBJECTIVES:

- To get an overview of different types of power semiconductor devices and their switching characteristics.
- To understand the operation, characteristics and performance parameters of controlled rectifiers
- To study the operation, switching techniques and basics topologies of DC-DC switching regulators.
- To learn the different modulation techniques of pulse width modulated inverters and to understand harmonic reduction methods.
- To study the operation of AC voltage controller and various configurations.

UNIT I POWERSEMI-CONDUCTOR DEVICES

Study of switching devices, Diode, SCR, TRIAC, GTO, BJT, MOSFET, IGBT-Static and Dynamic characteristics - Triggering and commutation circuit for SCR- Design of Driver and snubber circuit.

UNIT II PHASE-CONTROLLED CONVERTERS

2-pulse,3-pulse and 6-pulseconverters– performance parameters –Effect of source inductance— Gate Circuit Schemes for Phase Control–Dual converters.

UNIT III DC TO DC CONVERTER

Step-down and step-up chopper-control strategy–Forced commutated chopper–Voltage commutated, Current commutated, Load commutated, Switched mode regulators- Buck, boost, buck- boost converter, Introduction to Resonant Converters.

9

9

UNIT IV INVERTERS

Single phase and three phase voltage source inverters(both120⁰modeand180⁰mode)–Voltage& harmonic control--PWM techniques: Sinusoidal PWM, modified sinusoidal PWM - multiple PWM – Introduction to space vector modulation –Current source inverter.

UNIT V AC TO AC CONVERTERS

Single phase and Three phase AC voltage controllers–Control strategy- Power Factor Control – Multistage sequence control -single phase and three phase cyclo converters –Introduction to Matrix converters.

TOTAL:45 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education, PHI Third Edition, New Delhi, 2004.
- 2. P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition, 2003.
- 3. L. Umanand, "Power Electronics Essentials and Applications", Wiley, 2010.

REFERENCES:

- Joseph Vithayathil,' Power Electronics, Principles and Applications', McGraw Hill Series, 6th Reprint, 2013.
- 2. Ashfaq Ahmed Power Electronics for Technology Pearson Education, Indian reprint, 2003.
- 3. Philip T. Krein, "Elements of Power Electronics" Oxford University Press, 2004 Edition.
- 4. Ned Mohan, Tore. M. Undel and, William. P. Robbins, Power Electronics: Converters, Applications and Design', John Wiley and sons, third edition, 2003.
- 5. Daniel.W.Hart, "Power Electronics", Indian Edition, Mc Graw Hill, 3rd Print, 2013.
- 6. M.D. Singh and K.B. Khanchandani, "Power Electronics," Mc Graw Hill India, 2013.

EE6504

ELECTRICAL MACHINES – II L T P C

3 1 0 4

OBJECTIVES:

- To impart knowledge on Construction and performance of salient and non salient type synchronous generators.
- To impart knowledge on Principle of operation and performance of synchronous motor.
- To impart knowledge on Construction, principle of operation and performance of induction machines.
- To impart knowledge on Starting and speed control of three-phase induction motors.
- To impart knowledge on Construction, principle of operation and performance of single phase induction motors and special machines.

UNIT I SYNCHRONOUS GENERATOR

9

Constructional details – Types of rotors –winding factors- emf equation – Synchronous reactance – Armature reaction – Phasor diagrams of non salient pole synchronous generator connected to infinite bus--Synchronizing and parallel operation – Synchronizing torque -Change of excitation and

9

mechanical input- Voltage regulation – EMF, MMF, ZPF and A.S.A methods – steady state powerangle characteristics– Two reaction theory –slip test -short circuit transients - Capability Curves

UNIT II SYNCHRONOUS MOTOR

Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves – Power input and power developed equations – Starting methods – Current loci for constant power input, constant excitation and constant power developed-Hunting – natural frequency of oscillations – damper windings- synchronous condenser.

UNIT III THREE PHASE INDUCTION MOTOR

Constructional details – Types of rotors – Principle of operation – Slip –cogging and crawling-Equivalent circuit – Torque-Slip characteristics - Condition for maximum torque – Losses and efficiency – Load test - No load and blocked rotor tests - Circle diagram – Separation of losses – Double cage induction motors –Induction generators – Synchronous induction motor.

UNIT IV STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Star-delta starters – Speed control – Voltage control, Frequency control and pole changing – Cascaded connection-V/f control – Slip power recovery scheme-Braking of three phase induction motor: Plugging, dynamic braking and regenerative braking.

UNIT V SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES

Constructional details of single phase induction motor – Double field revolving theory and operation – Equivalent circuit – No load and blocked rotor test – Performance analysis – Starting methods of single-phase induction motors – Capacitor-start capacitor run Induction motor- Shaded pole induction motor - Linear induction motor – Repulsion motor - Hysteresis motor - AC series motor- Servo motors-Stepper motors - introduction to magnetic levitation systems.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

- 1. A.E. Fitzgerald, Charles Kingsley, Stephen. D.Umans, 'Electric Machinery', Tata Mc Graw Hill publishing Company Ltd, 2003.
- 2. D.P. Kothari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2002.
- 3. P.S. Bhimbhra, 'Electrical Machinery', Khanna Publishers, 2003.

REFERENCES:

- 1. M.N.Bandyopadhyay, Electrical Machines Theory and Practice, PHI Learning PVT LTD., New Delhi, 2009.
- 2. Charless A. Gross, "Electric /Machines, "CRC Press, 2010.
- 3. K. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, 2002.
- 4. Syed A. Nasar, Electric Machines and Power Systems: Volume I, Mcgraw -Hill College; International ed Edition, January 1995.
- 5. Alexander S. Langsdorf, Theory of Alternating-Current Machinery, Tata McGraw Hill Publications, 2001.

9

9

9

CONTROL SYSTEMS

OBJECTIVES:

- To understand the use of transfer function models for analysis physical systems and introduce the control system components.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed-loop frequency responses of systems.
- To introduce stability analysis and design of compensators •
- To introduce state variable representation of physical systems and study the effect of state feedback

UNIT I SYSTEMS AND THEIR REPRESENTATION

Basic elements in control systems - Open and closed loop systems - Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques - Signal flow graphs.

UNIT II TIME RESPONSE

Time response - Time domain specifications - Types of test input - I and II order system response -Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis.

UNIT III FREQUENCY RESPONSE

Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis.

UNIT IV STABILITY AND COMPENSATOR DESIGN

Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks - Lag/Lead compensator design using bode plots.

UNIT V STATE VARIABLE ANALYSIS

Concept of state variables - State models for linear and time invariant Systems - Solution of state and output equation in controllable canonical form - Concepts of controllability and observability -Effect of state feedback.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 Ability to understand and apply basic science, circuit theory, theory control theory Signal processing and apply them to electrical engineering problems.

TEXT BOOKS:

- 1. M. Gopal, 'Control Systems, Principles and Design', 4th Edition, Tata McGraw Hill, New Delhi, 2012
- 2. S.K.Bhattacharya, Control System Engineering, 3rd Edition, Pearson, 2013.
- 3. Dhanesh. N. Manik, Control System, Cengage Learning, 2012.

REFERENCES:

- 1. Arthur, G.O.Mutambara, Design and Analysis of Control; Systems, CRC Press, 2009.
- 2. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Pearson Prentice Hall, 2012.
- 3. Benjamin C. Kuo, Automatic Control systems, 7th Edition, PHI, 2010.
- 4. K. Ogata, 'Modern Control Engineering', 5th edition, PHI, 2012.

9

9

9

9

- 5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.
- 6. S.Palani, Anoop. K.Jairath, Automatic Control Systems including Mat Lab, Vijay Nicole/ Mcgraw Hill Education, 2013.

EE6511 CONTROL AND INSTRUMENTATION LABORATORY LT P C

0032

OBJECTIVES:

To provide knowledge on analysis and design of control system along with basics of instrumentation

LIST OF EXPERIMENTS:

CONTROLSYSTEMS:

- 1. P, PI and PID controllers
- 2. Stability Analysis
- 3. Modeling of Systems Machines, Sensors and Transducers
- 4. Design of Lag, Lead and Lag-Lead Compensators
- 5. Position Control Systems
- 6. Synchro-Transmitter- Receiver and Characteristics
- 7. Simulation of Control Systems by Mathematical development tools.

INSTRUMENTATION:

- 8. Bridge Networks –AC and DC Bridges
- 9. Dynamics of Sensors/Transducers a.

Temperature

- b. Pressure
- c. Displacement
- d. Optical
- e. Strain f. Flow
- 10. Power and Energy Measurement
- 11. Signal Conditioning
 - a. Instrumentation Amplifier
 - b. Analog Digital and Digital –Analog converters (ADC and DACs)
- 12. Process Simulation.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory

control theory and apply them to electrical engineering problems.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CONTROLSYSTEMS:

- 1. PID kit 1 No. DSO – 1 No. CRO Probe – 2 nos
- 2. Personal computers
- DC motor 1 No. Generator – 1 No. Rheostats – 2 nos Ammeters Voltmeters Connecting wires (3/20)
- CRO 30MHz 1 No.
 2MHz Function Generator 1No.
- 5. Position Control Systems Kit (with manual) 1 No., Tacho Generator Coupling set
- AC Synchro transmitter& receiver 1No. Digital multi meters

INSTRUMENTATION:

- 7. R, L, C Bridge kit (with manual)
- a) Electric heater 1No. Thermometer – 1No.Thermistor (silicon type) RTD nickel type – 1No.

b) 30 psi Pressure chamber (complete set) – 1No. Current generator (0 - 20mA)Air foot pump – 1 No. (with necessary connecting tubes)

- c) LVDT20mm core length movable type 1No. CRO 30MHz 1No.
- d) Optical sensor 1 No. Light source

e) Strain Gauge Kit with Handy lever beam – 1No. 100gm weights – 10 nos

f) Flow measurement Trainer kit – 1 No.(1/2 HP Motor, Water tank, Digital Milliammeter, complete set)

- Single phase Auto transformer 1No.
 Watthour meter (energy meter) 1No. Ammeter Voltmeter Rheostat Stop watch Connecting wires (3/20)
- 10. IC Transistor kit 1No.

GE6674 COMMUNICATION AND SOFT SKILLS- LABORATORY BASED LTPC 0 0 4 2

OBJECTIVES:

To enable learners to.

- Develop their communicative competence in English with specific reference to speaking and listening
- Enhance their ability to communicate effectively in interviews.
- Strengthen their prospects of success in competitive examinations.

UNIT I LISTENING AND SPEAKING SKILLS

Conversational skills (formal and informal)- group discussion- making effective presentations using computers, listening/watching interviews conversations, documentaries. Listening to lectures, discussions from TV/ Radio/ Podcast.

UNIT II READING AND WRITING SKILLS

Reading different genres of tests ranging from newspapers to creative writing. Writing job applications- cover letter- resume- emails- letters- memos- reports. Writing abstracts- summariesinterpreting visual texts.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS

International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) - Civil Service(Language related)- Verbal Ability.

UNIT IV INTERVIEW SKILLS

Different types of Interview format- answering questions- offering information- mock interviews-body language(paralinguistic features)- articulation of sounds- intonation.

UNIT V SOFT SKILLS

Motivation- emotional intelligence-Multiple intelligences- emotional intelligence- managing changes-time management-stress management-leadership straits-team work- career planning intercultural communication- creative and critical thinking

TOTAL: 60 PERIODS

Teaching Methods:

- 1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
- 2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
- 3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
- 4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
- 5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.

12

12

12

12

	Lab Infrastructure:	
S. No.	Description of Equipment (minimum configuration)	Qty Required
1	Server	1 No.
	PIV System	
	 1 GB RAM / 40 GB HDD 	
	OS: Win 2000 server	
	 Audio card with headphones 	
	• JRE 1.3	
2	Client Systems	60 Nos.
	PIII or above	
	 256 or 512 MB RAM / 40 GB HDD 	
	• OS: Win 2000	
	 Audio card with headphones 	
	• JRE 1.3	
3	Handicam	1 No.
4	Television 46"	1 No.
5	Collar mike	1 No.
6	Cordless mike	1 No.
7	Audio Mixer	1 No.
8	DVD recorder/player	1 No.
9	LCD Projector with MP3/CD/DVD provision for	1 No.
	Audio/video facility	

Lob Infractructura

Evaluation:

Internal: 20 marks

Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

External: 80 marks

Online Test	- 35 marks
Interview	- 15 marks
Presentation	- 15 marks
Group Discussion	- 15 marks

Note on Internal and External Evaluation:

- 1. Interview mock interview can be conducted on one-on-one basis.
- 2. Speaking example for role play:
 - a. Marketing engineer convincing a customer to buy his product.
 - b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
- 3. Presentation should be extempore on simple topics.
- 4. Discussion topics of different kinds; general topics, and case studies.

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:

1. Business English Certificate Materials, Cambridge University Press.

- 2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD-ROM), Times Multimedia, Mumbai.
- 6. Robert M Sherfield and et al. "Developing Soft Skills" 4th edition, New Delhi: Pearson Education, 2009.

Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion

http://www.washington.edu/doit/TeamN/present_tips.html

http://www.oxforddictionaries.com/words/writing-job-applications

http://www.kent.ac.uk/careers/cv/coveringletters.htm

http://www.mindtools.com/pages/article/newCDV_34.htm

EE6512	ELECTRICAL MACHINES LABORATORY - II	LT P C
		0032

OBJECTIVES:

To expose the students to the operation of synchronous machines and induction motors and give them experimental skill.

LIST OF EXPERIMENTS:

- 1. Regulation of three phase alternator by emf and mmf methods.
- 2. Regulation of three phase alternator by ZPF and ASA methods.
- 3. Regulation of three phase salient pole alternator by slip test.
- 4. Measurements of negative sequence and zero sequence impedance of alternators.
- 5. V and Inverted V curves of Three Phase Synchronous Motor.
- 6. Load test on three-phase induction motor.
- 7. No load and blocked rotor test on three-phase induction motor(Determination of equivalent circuit parameters).
- 8. Separation of No-load losses of three-phase induction motor.
- 9. Load test on single-phase induction motor.
- 10. No load and blocked rotor test on single-phase induction motor.
- 11. Study of Induction motor Starters

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to model and analyze electrical apparatus and their application to power system

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Synchronous Induction motor 3HP 1 No.
- 2. DC Shunt Motor Coupled With Three phase Alternator 4 nos
- 3. DC Shunt Motor Coupled With Three phase Slip ring Induction motor 1 No.

- 4. Three Phase Induction Motor with Loading Arrangement 2 nos
- 5. Single Phase Induction Motor with Loading Arrangement 2 nos
- 6. Tachometer -Digital/Analog 8 nos
- 7. BLDC Motor 1 No.
- 8. Single Phase Auto Transformer 2 nos
- 9. Three Phase Auto Transformer 3 nos
- 10. Single Phase Resistive Loading Bank 2 nos
- 11. Three Phase Resistive Loading Bank 2 nos
- 12. Capacitor Bank 1 No.
- 13. SPST switch 2 nos

EC6651

COMMUNICATION ENGINEERING

LT P C 3003

OBJECTIVES:

- To introduce different methods of analog communication and their significance
- To introduce Digital Communication methods for high bit rate transmission
- To introduce the concepts of source and line coding techniques for enhancing rating of transmission of minimizing the errors in transmission.
- To introduce MAC used in communication systems for enhancing the number of users.
- To introduce various media for digital communication

UNIT I ANALOG COMMUNICATION

AM – Frequency spectrum – vector representation – power relations – generation of AM – DSB, DSB/SC, SSB, VSB AM Transmitter & Receiver; FM and PM – frequency spectrum – power relations : NBFM & WBFM, Generation of FM and DM, Amstrong method & Reactance modulations : FM & PM frequency.

UNIT II DIGITAL COMMUNICATION

Pulse modulations – concepts of sampling and sampling theormes, PAM, PWM, PPM, PTM, quantization and coding : DCM, DM, slope overload error. ADM, DPCM, OOK systems – ASK, FSK, PSK, BSK, QPSK, QAM, MSK, GMSK, applications of Data communication.

UNIT III SOURCE CODES, LINE CODES & ERROR CONTROL (Qualitative only)

Primary communication – entropy, properties, BSC, BEC, source coding : Shaum, Fao, Huffman coding : noiseless coding theorum, BW – SNR trade off codes: NRZ, RZ, AMI, HDBP, ABQ, MBnBcodes : Efficiency of transmissions, error control codes and applications: convolutions & block codes.

UNIT IV MULTIPLE ACCESS TECHNIQUES

SS&MA techniques : FDMA, TDMA, CDMA, SDMA application in wire and wireless communication : Advantages (merits) :

9

9

9

UNIT V SATELLITE, OPTICAL FIBER – POWERLINE, SCADA

Orbits : types of satellites : frequency used link establishment, MA techniques used in satellite communication, earth station; aperture actuators used in satellite - Intelsat and Insat: fibers - types: sources, detectors used, digital filters, optical link: power line carrier communications: SCADA

TOTAL: 45 PERIODS

9

OUTCOMES:

Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

1. Taub & Schiling "Principles of Communication Systems" Tata McGraw Hill 2007.

2. J.Das "Principles of Digital Communication" New Age International, 1986.

REFERENCES:

- 1. Kennedy and Davis "Electronic Communication Systems" Tata McGraw hill, 4th Edition, 1993.
- 2. Sklar "Digital Communication Fundamentals and Applications" Pearson Education, 2001.
- 3. Bary le, Memuschmidt, Digital Communication, Kluwer Publication, 2004.
- 4. B.P.Lathi "Modern Digital and Analog Communication Systems" Oxford University Press, 1998.

EE6601

SOLID STATE DRIVES

OBJECTIVES:

- To understand steady state operation and transient dynamics of a motor load system.
- To study and analyze the operation of the converter/chopper fed dc drive, both qualitatively and quantitatively.
- To study and understand the operation and performance of AC motor drives.
- To analyze and design the current and speed controllers for a closed loop solid state DC motor drive.

UNIT I DRIVE CHARACTERISTICS

Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, starting & stopping - typical load torgue characteristics -Selection of motor.

UNIT II **CONVERTER / CHOPPER FED DC MOTOR DRIVE**

Steady state analysis of the single and three phase converter fed separately excited DC motor drive-continuous and discontinuous conduction- Time ratio and current limit control - 4 quadrant operation of converter / chopper fed drive.

UNIT III **INDUCTION MOTOR DRIVES**

Stator voltage control-energy efficient drive-v/f control-constant airgap flux-field weakening mode - voltage / current fed inverter - closed loop control.

UNIT IV SYNCHRONOUS MOTOR DRIVES

V/f control and self control of synchronous motor: Margin angle control and power factor control –

LTPC

3003

9

9

9

UNIT V DESIGN OF CONTROLLERS FOR DRIVES

Transfer function for DC motor / load and converter – closed loop control with Current and speed feedback–armature voltage control and field weakening mode – Design of controllers; current controller and speed controller- converter selection and characteristics.

TOTAL: 45 PERIODS

9

OUTCOMES:

• Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

- 1. Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, 1992.
- 2. Bimal K.Bose. Modern Power Electronics and AC Drives, Pearson Education, 2002.
- 3. R.Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Prentice Hall of India, 2001.

REFERENCES:

- 1. John Hindmarsh and Alasdain Renfrew, "Electrical Machines and Drives System," Elsevier 2012.
- 2. Shaahin Felizadeh, "Electric Machines and Drives", CRC Press(Taylor and Francis Group), 2013.
- 3. S.K.Pillai, A First course on Electrical Drives, Wiley Eastern Limited, 1993.
- 4. S. Sivanagaraju, M. Balasubba Reddy, A. Mallikarjuna Prasad "Power semiconductor drives" PHI, 5th printing, 2013.
- 5. N.K.De., P.K.SEN"Electric drives" PHI, 2012.
- 6. Vedam Subramanyam, "Thyristor Control of Electric Drives", Tata McGraw Hill, 2007.

EE6602

EMBEDDED SYSTEMS

LT P C 3003

OBJECTIVES:

- To introduce the Building Blocks of Embedded System
- To Educate in Various Embedded Development Strategies
- To Introduce Bus Communication in processors, Input/output interfacing.
- To impart knowledge in Various processor scheduling algorithms.
- To introduce Basics of Real time operating system and example tutorials to discuss on one realtime operating system tool

UNIT I INTRODUCTION TO EMBEDDED SYSTEMS

Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.

UNIT II EMBEDDED NETWORKING

Embedded Networking: Introduction, I/O Device Ports & Buses- Serial Bus communication protocols -RS232 standard – RS422 – RS485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I²C) –need for device drivers.

UNIT III EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT

Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.

UNIT IV RTOS BASED EMBEDDED SYSTEM DESIGN

Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communicationshared memory, message passing-, Inter process Communication - synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, C/OS-II, RT Linux.

UNIT V EMBEDDED SYSTEM APPLICATION DEVELOPMENT

Case Study of Washing Machine- Automotive Application- Smart card System Application,.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. Rajkamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 2. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 3. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013

REFERENCES:

- 1. Shibu. K.V., "Introduction to Embedded Systems", Tata Mcgraw Hill, 2009.
- 2. Elicia White," Making Embedded Systems", O' Reilly Series, SPD, 2011.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.
- 5. Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.

9

9

9

EE6603 POWER SYSTEM OPERATION AND CONTROL

OBJECTIVES:

- To have an overview of power system operation and control.
- To model power-frequency dynamics and to design power-frequency controller.
- To model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- To study the economic operation of power system.
- To teach about SCADA and its application for real time operation and control of power systems.

UNIT I INTRODUCTION

An overview of power system operation and control - system load variation - load characteristics - load curves and load-duration curve - load factor - diversity factor - Importance of load forecasting and quadratic and exponential curve fitting techniques of forecasting – plant level and system level controls .

UNIT II REAL POWER - FREQUENCY CONTROL

Basics of speed governing mechanism and modeling - speed-load <u>characteristics</u> – load sharing between two synchronous machines in parallel - control area concept - LFC control of a single-area system - static and dynamic analysis of uncontrolled and controlled cases - two-area system – modeling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model - integration of economic dispatch control with LFC.

UNIT III REACTIVE POWER-VOLTAGE CONTROL

Generation and absorption of reactive power - basics of reactive power control - excitation systems – modeling - static and dynamic analysis - stability compensation - methods of voltage control: tapchanging transformer, SVC (TCR + TSC) and STATCOM – secondary voltage control.

UNIT IV UNIT COMMITMENT AND ECONOMIC DISPATCH

Formulation of economic dispatch problem – I/O cost characterization – incremental cost curve - coordination equations without and with loss (No derivation of loss coefficients) - solution by direct method and -iteration method - statement of unit commitment problem – priority-list method - forward dynamic programming.

UNIT V COMPUTER CONTROL OF POWER SYSTEMS

Need for computer control of power systems - concept of energy control centre - functions - system monitoring - data acquisition and control - system hardware configuration – SCADA and EMS functions - network topology - state estimation – WLSE - Contingency Analysis - state transition diagram showing various state transitions and control strategies.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. Olle.I.Elgerd, 'Electric Energy Systems theory An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- 2. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2003.
- 3. Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

9

9

9

REFERENCES:

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. Kundur P., 'Power System Stability and Control, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.
- 3. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- 4. N.V.Ramana, "Power System Operation and Control," Pearson, 2011.
- 5. C.A.Gross, "Power System Analysis," Wiley India, 2011.

EE6604

DESIGN OF ELECTRICAL MACHINES

LT P C 3 1 0 4

9

9

OBJECTIVES:

- To study mmf calculation and thermal rating of various types of electrical machines.
- To design armature and field systems for D.C. machines.
- To design core, yoke, windings and cooling systems of transformers.
- To design stator and rotor of induction machines.
- To design stator and rotor of synchronous machines and study their thermal behaviour.

UNIT I INTRODUCTION

Major considerations in Electrical Machine Design - Electrical Engineering Materials – Space factor – Choice of Specific Electrical and Magnetic loadings - Thermal considerations - Heat flow – Temperature rise and Insulating Materials - Rating of machines – Standard specifications.

UNIT II DC MACHINES

Output Equations – Main Dimensions – Choice of Specific Electric and Magnetic Loading - Maganetic Circuits Calculations - Carter's Coefficient - Net length of Iron –Real & Apparent flux densities – Selection of number of poles – Design of Armature – Design of commutator and brushes – performance prediction using design values.

UNIT III TRANSFORMERS

Output Equations – Main Dimensions - kVA output for single and three phase transformers – Window space factor – Design of core and winding – Overall dimensions – Operating characteristics – No load current – Temperature rise in Transformers – Design of Tank - Methods of cooling of Transformers.

UNIT IV INDUCTION MOTORS

Output equation of Induction motor – Main dimensions – Choice of Average flux density – Length of air gap- Rules for selecting rotor slots of squirrel cage machines – Design of rotor bars & slots – Design of end rings – Design of wound rotor – Magnetic leakage calculations – Leakage reactance of polyphase machines- Magnetizing current - Short circuit current – Operating characteristics- Losses and Efficiency.

UNIT V SYNCHRONOUS MACHINES

Output equations – choice of Electrical and Magnetic Loading – Design of salient pole machines – Short circuit ratio – shape of pole face – Armature design – Armature parameters – Estimation of air

9

9

gap length – Design of rotor –Design of damper winding – Determination of full load field mmf – Design of field winding – Design of turbo alternators – Rotor design.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

- 1. Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai & Sons, New Delhi, 1984.
- 2. M.V.Deshpande "Design and Testing of Electrical Machine Design" Wheeler Publications, 2010.

REFERENCES:

- 1. A.Shanmuga Sundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint, 2007.
- 2. R.K.Agarwal "Principles of Electrical Machine Design" Esskay Publications, Delhi, 2002.
- 3. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1987.

EE6611POWER ELECTRONICS AND DRIVES LABORATORYLT P C

0032

OBJECTIVES:

To provide hands on experience with power electronic converter design and testing

LIST OF EXPERIMENTS:

- 1. Gate Pulse Generation using R,RC and UJT.
- 2. Characteristics of SCR and Triac
- 3. Characteristics of MOSFET and IGBT
- 4. AC to DC half controlled converter
- 5. AC to DC fully controlled Converter
- 6. Step down and step up MOSFET based choppers
- 7. IGBT based single phase PWM inverter
- 8. IGBT based three phase PWM inverter
- 9. AC Voltage controller
- 10. Switched mode power converter.
- 11. SimulationofPEcircuits(1 &3 semiconverter,1 &3 fullconverter,dc-dc converters, ac voltage controllers).

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Device characteristics(for SCR, MOSFET, TRIAC and IGBT kit with builtin / discrete power supply and meters) - 2 each

- 2. SinglephaseSCRbasedhalfcontrolledconverterandfullycontrolledconverteralong with built-in/separate/firing circuit/module and meter 2 each
- 3. MOSFET based step up and step down choppers(Built in/ Discrete) 1 each
- IGBT based single phase PWM inverter module/Discrete Component – 2
- 5. IGBT based three phase PWM inverter module/Discrete Component 2
- Switched mode power converter module/Discrete Component – 2
- 7. SCR &TRIAC based 1 phase AC controller along with lamp or rheostat load 2
- 8. Cyclo converter kit with firing module -
- 9. Dual regulated Dc power supply with common ground
- 10. Cathode ray Oscilloscope -10
- 11. Isolation Transformer 5
- 12. Single phase Auto transformer -3
- 13. Components (Inductance, Capacitance) 3 set for each
- 14. Multimeter 5
- 15. LCR meter 3
- 16. Rheostats of various ranges 2 sets of 10 value
- 17. Work tables 10
- 18. DC and AC meters of required ranges 20
- 19. Component data sheets to be provided

EE6612 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY LT P C

0032

OBJECTIVES:

To provide training on programming of microprocessors and microcontrollers and understand the interface requirements.

LIST OF EXPERIMENTS:

- 1. Simple arithmetic operations: addition / subtraction / multiplication / division.
- 2. Programming with control instructions:
 - (i) Ascending / Descending order, Maximum / Minimum of numbers
 - (ii) Programs using Rotate instructions
 - (iii) Hex / ASCII / BCD code conversions.
- 3. Interface Experiments: with 8085
 - (i) A/D Interfacing. & D/A Interfacing.
- 4. Traffic light controller.
- 5. I/O Port / Serial communication
- 6. Programming Practices with Simulators/Emulators/open source

- 7. Read a key ,interface display
- 8. Demonstration of basic instructions with 8051 Micro controller execution, including:
 - (i) Conditional jumps, looping (ii) Calling subroutines.
- 9.. Programming I/O Port 8051
 - (i) study on interface with A/D & D/A
 - (ii) study on interface with DC & AC motor .
- 10. Mini project development with processors.

OUTCOMES:

- Ability to understand and analyse, linear and digital electronic circuits.
- To understand and apply computing platform and software for engineering problems.

TOTAL: 45 PERIODS

0021

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SI.No.	Description of Equipment	Quantity required
1.	8085 Microprocessor Trainer with Power Supply	15
2.	8051 Micro Controller Trainer Kit with power supply	15
3.	8255 Interface board	5
4.	8251 Interface board	5
5.	8259 Interface board	5
6.	8279 Keyboard / Display Interface board	5
7.	8254 timer counter	5
8.	ADC and DAC card	5
9.	AC & DC motor with Controller	5
10.	Traffic Light Control System	5

EE6613 PRESENTATION SKILLS AND TECHNICAL SEMINAR LT P C

OBJECTIVES:

- To encourage the students to study advanced engineering developments
- To prepare and present technical reports.
- To encourage the students to use various teaching aids such as over head projectors, power point presentation and demonstrative models.

METHOD OF EVALUATION :

During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a duration of about 8 to 10 minutes. In a session of three periods per week, 15 students are expected to present the seminar. Each student is expected to present atleast twice during the semester and the student is evaluated based on that. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report. A Faculty

guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also. Evaluation is 100% internal.

TOTAL : 30 PERIODS

OUTCOMES:

- Ability to review, prepare and present technological developments
- Ability to face the placement interviews

EE6701 HIGH VOLTAGE ENGINEERING LT P C 3 0 0 3

OBJECTIVES:

- To understand the various types of over voltages in power system and protection methods.
- Generation of over voltages in laboratories.
- Measurement of over voltages.
- Nature of Breakdown mechanism in solid, liquid and gaseous dielectrics.
- Testing of power apparatus and insulation coordination.

UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS

Causes of over voltages and its effects on power system – Lightning, switching surges and temporary overvoltages, Corona and its effects – Reflection and Refraction of Travelling waves- Protection against overvoltages.

UNIT II DIELECTRIC BREAKDOWN

Gaseous breakdown in uniform and non-uniform fields – Corona discharges – Vacuum breakdown – Conduction and breakdown in pure and commercial liquids, Maintenance of oil Quality – Breakdown mechanisms in solid and composite dielectrics.

UNIT III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS

Generation of High DC, AC, impulse voltages and currents - Triggering and control of impulse generators.

UNIT IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

High Resistance with series ammeter – Dividers, Resistance, Capacitance and Mixed dividers - Peak Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers, Electrostatic Voltmeters – Sphere Gaps - High current shunts- Digital techniques in high voltage measurement.

UNIT V HIGH VOLTAGE TESTING & INSULATION COORDINATION

High voltage testing of electrical power apparatus as per International and Indian standards – Power frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing, isolators and transformers- Insulation Coordination.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. S.Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.
- 2. E. Kuffel and W.S. Zaengl, J.Kuffel, 'High voltage Engineering fundamentals', Newnes Second

9

9

9

9

Edition Elsevier, New Delhi, 2005.

3. Subir Ray,' An Introduction to High Voltage Engineering' PHI Learning Private Limited, New Delhi, Second Edition, 2013.

REFERENCES:

- 1. L.L. Alston, 'High Voltage Technology', Oxford University Press, First Indian Edition, 2011.
- 2. C.L. Wadhwa, 'High voltage Engineering', New Age International Publishers, Third Edition, 2010.

EE6702 PROTECTION AND SWITCHGEAR

LTPC 3003

OBJECTIVES:

- To educate the causes of abnormal operating conditions (faults, lightning and switching surges) of the apparatus and system.
- To introduce the characteristics and functions of relays and protection schemes.
- To impart knowledge on apparatus protection
- To introduce static and numerical relays
- To impart knowledge on functioning of circuit breakers

UNIT I PROTECTION SCHEMES

Principles and need for protective schemes – nature and causes of faults – types of faults – fault current calculation using symmetrical components – Methods of Neutral grounding – Zones of protection and essential qualities of protection – Protection schemes

UNIT II ELECTROMAGNETIC RELAYS

Operating principles of relays - the Universal relay – Torque equation – R-X diagram – Electromagnetic Relays – Overcurrent, Directional, Distance, Differential, Negative sequence and Under frequency relays.

UNIT III APPARATUS PROTECTION

Current transformers and Potential transformers and their applications in protection schemes - Protection of transformer, generator, motor, busbars and transmission line.

UNIT IV STATIC RELAYS AND NUMERICAL PROTECTION

Static relays – Phase, Amplitude Comparators – Synthesis of various relays using Static comparators – Block diagram of Numerical relays – Overcurrent protection, transformer differential protection, distant protection of transmission lines.

UNIT V CIRCUIT BREAKERS

Physics of arcing phenomenon and arc interruption - DC and AC circuit breaking – re-striking voltage and recovery voltage - rate of rise of recovery voltage - resistance switching - current chopping - interruption of capacitive current - Types of circuit breakers – air blast, air break, oil, SF6 and vacuum circuit breakers – comparison of different circuit breakers – Rating and selection of Circuit breakers.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

9

9

9

9

TEXT BOOKS:

- 1. Sunil S.Rao, 'Switchgear and Protection', Khanna Publishers, New Delhi, 2008.
- B.Rabindranath and N.Chander, 'Power System Protection and Switchgear', New Age International (P) Ltd., First Edition 2011.
- 3. M.L.Soni, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, 'A Text Book on Power System Engineering', Dhanpat Rai & Co., 1998.

REFERENCES:

- 1. Badri Ram ,B.H. Vishwakarma, 'Power System Protection and Switchgear', New Age International Pvt Ltd Publishers, Second Edition 2011.
- 2. Y.G.Paithankar and S.R.Bhide, 'Fundamentals of power system protection', Second Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2010.
- 3. C.L.Wadhwa, 'Electrical Power Systems', 6th Edition, New Age International (P) Ltd., 2010
- 4. Ravindra P.Singh, 'Switchgear and Power System Protection', PHI Learning Private Ltd., New Delhi, 2009.
- 5. Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani, 'Protection and Switchgear' Oxford University Press, 2011.

EE6703

SPECIAL ELECTRICAL MACHINES

LT P C 3 0 0 3

OBJECTIVES:

- To impart knowledge on Construction, principle of operation and performance of synchronous reluctance motors.
- To impart knowledge on the Construction, principle of operation, control and performance of stepping motors.
- To impart knowledge on the Construction, principle of operation, control and performance of switched reluctance motors.
- To impart knowledge on the Construction, principle of operation, control and performance of permanent magnet brushless D.C. motors.
- To impart knowledge on the Construction, principle of operation and performance of permanent magnet synchronous motors.

UNIT I SYNCHRONOUS RELUCTANCE MOTORS

Constructional features – Types – Axial and Radial flux motors – Operating principles – Variable Reluctance Motors – Voltage and Torque Equations - Phasor diagram - performance characteristics – Applications.

UNIT II STEPPER MOTORS

Constructional features – Principle of operation – Variable reluctance motor – Hybrid motor – Single and multi stack configurations – Torque equations – Modes of excitation – Characteristics – Drive circuits – Microprocessor control of stepper motors – Closed loop control-Concept of lead angle– Applications.

9

UNIT III SWITCHED RELUCTANCE MOTORS (SRM)

Constructional features – Rotary and Linear SRM - Principle of operation – Torque production – Steady state performance prediction- Analytical method -Power Converters and their controllers – Methods of Rotor position sensing – Sensor less operation – Characteristics and Closed loop control – Applications.

UNIT IV PERMANENT MAGNET BRUSHLESS D.C. MOTORS

Permanent Magnet materials – Minor hysteresis loop and recoil line-Magnetic Characteristics – Permeance coefficient -Principle of operation – Types – Magnetic circuit analysis – EMF and torque equations –Commutation - Power Converter Circuits and their controllers – Motor characteristics and control– Applications.

UNIT V PERMANENT MAGNET SYNCHRONOUS MOTORS (PMSM)

Principle of operation – Ideal PMSM – EMF and Torque equations – Armature MMF – Synchronous Reactance – Sine wave motor with practical windings - Phasor diagram – Torque/speed characteristics - Power controllers - Converter Volt-ampere requirements – Applications.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

- 1. K.Venkataratnam, 'Special Electrical Machines', Universities Press (India) Private Limited, 2008.
- 2. T.J.E. Miller, 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon Press, Oxford, 1989.
- 3. T. Kenjo, 'Stepping Motors and Their Microprocessor Controls', Clarendon Press London, 1984.

REFERENCES:

- 1. R.Krishnan, 'Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design and Application', CRC Press, New York, 2001.
- 2. P.P. Aearnley, 'Stepping Motors A Guide to Motor Theory and Practice', Peter Perengrinus London, 1982.
- 3. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988.
- 4. E.G. Janardanan, 'Special electrical machines', PHI learning Private Limited, Delhi, 2014.

PRINCIPLES OF MANAGEMENT

3003

OBJECTIVES:

MG6851

• To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.

9

9

9

LT P C

UNIT II PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

UNIT IV DIRECTING

Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – communication – process of communication – barrier in communication – effective communication – communication and IT.

UNIT V CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

OUTCOMES:

• Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXT BOOKS:

- 1. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 10th Edition, 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 6th Edition, 2004.

REFERENCES:

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of Management" Tata McGraw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

9

9

TOTAL: 45 PERIODS

EE6711 POWER SYSTEM SIMULATION LABORATORY

OBJECTIVES:

To provide better understanding of power system analysis through digital simulation

LIST OF EXPERIMENTS:

- 1. Computation of Parameters and Modelling of Transmission Lines
- 2. Formation of Bus Admittance and Impedance Matrices and Solution of Networks.
- 3. Load Flow Analysis I : Solution of load flow and related problems using Gauss-Seidel Method
- 4. Load Flow Analysis II: Solution of load flow and related problems using Newton Raphson.
- 5. Fault Analysis
- 6. Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System
- 7. Transient Stability Analysis of Multi machine Power Systems
- 8. Electromagnetic Transients in Power Systems
- 9. Load Frequency Dynamics of Single- Area and Two-Area Power Systems
- 10. Economic Dispatch in Power Systems.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Personal computers (Pentium-IV, 80GB, 512 MBRAM) 25 nos
- 2. Printer laser- 1 No.
- 3. Dot matrix- 1 No.
- 4. Server (Pentium IV, 80GB, 1GBRAM) (High Speed Processor) 1 No.
- 5. Software: any power system simulation software 5 licenses
- 6. Compliers: C, C++, VB, VC++ 25 users

EE6712

COMPREHENSION

L T P C 0 0 2 1

OBJECTIVES:

OUTCOMES:

To encourage the students to comprehend the knowledge acquired from the first Semester to Sixth Semester of B.E Degree Course through periodic exercise.

METHOD OF EVALUATION:

The students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics

TOTAL : 30 PERIODS

• Ability to review, prepare and present technological developments

OBJECTIVES:

- To analyze the various concepts behind renewable energy resources.
- To introduce the energy saving concept by different ways of illumination.
- To understand the different methods of electric heating and electric welding.
- To introduce knowledge on Solar Radiation and Solar Energy Collectors
- To introduce concepts of Wind Energy and its utilization

UNIT I ELECTRIC DRIVES AND TRACTION

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services - traction motors - characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear.

UNIT II ILLUMINATION

Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps - design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - energy saving lamps, LED.

UNIT III HEATING AND WELDING

Introduction - advantages of electric heating – modes of heat transfer - methods of electric heating - resistance heating - arc furnaces - induction heating - dielectric heating - electric welding – types - resistance welding - arc welding - power supply for arc welding - radiation welding.

UNIT IV SOLAR RADIATION AND SOLAR ENERGY COLLECTORS

Introduction - solar constant - solar radiation at the Earth's surface - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency - concentrating collector - advantages and disadvantages of concentrating collectors - performance analysis of a cylindrical - parabolic concentrating collector – Feedin Invertors.

UNIT V WIND ENERGY

Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind Turbines - analysis of aerodynamic forces acting on the blade - performances of wind.

TOTAL : 45 PERIODS

OUTCOMES:

- Ability to understand and analyze power system operation, stability, control and protection.
- Ability to handle the engineering aspects of electrical energy generation and utilization.

TEXT BOOKS:

- 1. N.V. Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1993.
- 2. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and Sons, 2000.
- 3. G.D.Rai, "Non-Conventional Energy Sources", Khanna Publications Ltd., New Delhi, 1997.

REFERENCES:

1. R.K.Rajput, Utilisation of Electric Power, Laxmi publications Private Limited., 2007.

LT P C 3 0 0 3

9

9

9

9

- 2. H.Partab, Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., New Delhi, 2004.
- 3. C.L.Wadhwa, "Generation, Distribution and Utilisation of Electrical Energy", New Age International Pvt.Ltd., 2003.
- 4. S. Sivanagaraju, M. Balasubba Reddy, D. Srilatha,' Generation and Utilization of Electrical Energy', Pearson Education, 2010.
- 5. Donals L. Steeby,' Alternative Energy Sources and Systems', Cengage Learning, 2012.

EE6811

PROJECT WORK

L T P C 0 0 12 6

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 180 PERIODS

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

OBJECTIVES:

- To study about the concepts of windows programming models, MFC applications, drawing with the GDI, getting inputs from Mouse and the Keyboard.
- To study the concepts of Menu basics, menu magic and classic controls of the windows programming using VC++.
- To study the concept of Document/View Architecture with single & multiple document interface, toolbars, status bars and File I/O Serialization.
- To study about the integrated development programming event driven programming, variables, constants, procedures and basic ActiveX controls in visual basic.
- To understand the database and the database management system, visual data manager, data bound controls and ADO controls in VB.

UNIT I FUNDAMENTALS OF WINDOWS AND MFC

Messages - Windows programming - SDK style - Hungarian notation and windows data types - SDK programming in perspective. The benefits of C++ and MFC - MFC design philosophy – Document / View architecture - MFC class hierarchy - AFX functions. Application object - Frame window object -Message map. Drawing the lines – Curves – Ellipse – Polygons and other shapes, GDI pens – Brushes - GDI fonts - Deleting GDI objects and deselecting GDI objects. Getting input from the mouse: Client & Non-client - Area mouse messages - Mouse wheel - Cursor. Getting input from the keyboard: Input focus - Keystroke messages - Virtual key codes - Character & dead key messages.

UNIT II **RESOURCES AND CONTROLS**

Creating a menu – Loading and displaying a menu – Responding to menu commands – Command ranges - Updating the items in menu, update ranges – Keyboard accelerators. Creating menus programmatically - Modifying menus programmatically - The system menu - Owner draw menus -Cascading menus - Context menus. The C button class - C list box class - C static class - The font view application - C edit class - C combo box class - C scrollbar class. Model dialog boxes -Modeless dialog boxes.

UNIT III **DOCUMENT / VIEW ARCHITECTURE**

The in existence function revisited - Document object - View object - Frame window object -Dynamic object creation. SDI document template - Command routing. Synchronizing multiple views of a document - Mid squares application - Supporting multiple document types - Alternatives to MDI. Splitter Windows: Dynamic splitter window - Static splitter windows. Creating & initializing a toolbar -Controlling the toolbar's visibility - Creating & initializing a status bar - Creating custom status bar panes – Status bar support in appwizard. Opening, closing and creating the files - Reading & Writing - C file derivatives - Serialization basics - Writing serializable classes.

FUNDAMENTALS OF VISUAL BASIC UNIT IV

Menu bar – Tool bar – Project explorer – Toolbox – Properties window – Form designer – Form layout – Intermediate window. Designing the user interface: Aligning the controls – Running the application – Visual development and event driven programming.

Variables: Declaration – Types – Converting variable types – User defined data types - Lifetime of a variable. Constants - Arrays - Types of arrays. Procedures: Subroutines - Functions - Calling procedures. Text box controls - List box & Combo box controls - Scroll bar and slider controls - File controls.

9

9

9

UNIT V DATABASE PROGRAMMING WITH VB

Record sets – Data control – Data control properties, methods. Visual data manager: Specifying indices with the visual data manager – Entering data with the visual data manager. Data bound list control – Data bound combo box – Data bound grid control. Mapping databases: Database object – Table def object, Query def object. Programming the active database objects – ADO object model – Establishing a connection - Executing SQL statements – Cursor types and locking mechanism – Manipulating the record set object – Simple record editing and updating.

OUTCOMES:

• To understand and apply computing platform and software for engineering problems.

TEXT BOOKS:

- 1. Jeff Prosise, 'Programming Windows With MFC', Second Edition, WP Publishers & Distributors (P) Ltd, Reprinted, 2002.
- 2. Evangelos Petroutsos, 'Mastering Visual Basic 6.0', BPB Publications, 2002.

REFERENCES:

- 1. Herbert Schildt, 'MFC Programming From the Ground Up', Second Edition, Tata McGraw Hill, reprinted, 2002.
- 2. John Paul Muller, 'Visual C++ 6 From the Ground Up Second Edition', Tata McGraw Hill, Reprinted, 2002.
- 3. Curtis Smith & Micheal Amundsen, 'Teach Yourself Database Programming with Visual Basic 6 in 21 days', Techmedia Pub, 1999.

IC6601	ADVANCED CONTROL SYSTEM	L	т	Ρ	С
		3	0	0	3

OBJECTIVES :

- To provide knowledge on design in state variable form
- To provide knowledge in phase plane analysis.
- To give basic knowledge in describing function analysis.
- To study the design of optimal controller.
- To study the design of optimal estimator including Kalman Filter

UNIT I STATE VARIABLE DESIGN

Introduction to state Model- effect of state Feedback- Necessary and Sufficient Condition for Arbitrary Pole-placement- pole placement Design- design of state Observers- separation principle- servo design: -State Feedback with integral control.

UNIT II PHASE PLANE ANALYSIS

Features of linear and non-linear systems - Common physical non-linearities – Methods of linearization Concept of phase portraits – Singular points – Limit cycles – Construction of phase portraits – Phase plane analysis of linear and non-linear systems – Isocline method.

UNIT III DESCRIBING FUNCTION ANALYSIS

Basic concepts, derivation of describing functions for common non-linearities – Describing function analysis of non-linear systems – limit cycles – Stability of oscillations.

9

9

9

9

TOTAL = 45 PERIODS

UNIT IV OPTIMAL CONTROL

Introduction - Time varying optimal control – LQR steady state optimal control – Solution of Ricatti's equation – Application examples.

UNIT V OPTIMAL ESTIMATION

Optimal estimation – Kalman Bucy Filter-Solution by duality principle-Discrete systems- Kalman Filter- Application examples.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to apply advanced control theory to practical engineering problems.

TEXT BOOKS :

- 1. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.
- 2. G. J. Thaler, "Automatic Control Systems", Jaico Publishing House, 1993.
- 3. M.Gopal, Modern Control System Theory, New Age International Publishers, 2002.

REFERENCES:

- 1. William S Levine, "Control System Fundamentals," The Control Handbook, CRC Press, Tayler and Francies Group, 2011.
- 2. Ashish Tewari, 'Modern Control Design with Matlab and Simulink', John Wiley, New Delhi, 2002.
- 3. K. Ogata, 'Modern Control Engineering', 4th edition, PHI, New Delhi, 2002.
- 4. T. Glad and L. Ljung,, "Control Theory –Multivariable and Non-Linear Methods", Taylor & Francis, 2002.
- 5. D.S.Naidu, "Optimal Control Systems" First Indian Reprint, CRC Press, 2009.

EE6002

POWER SYSTEM TRANSIENTS

LT P C 3 0 0 3

OBJECTIVES:

- To study the generation of switching transients and their control using circuit theoretical concept.
- To study the mechanism of lighting strokes and the production of lighting surges.
- To study the propagation, reflection and refraction of travelling waves.
- To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.

UNIT I INTRODUCTION AND SURVEY

Review and importance of the study of transients - causes for transients. RL circuit transient with sine wave excitation - double frequency transients - basic transforms of the RLC circuit transients. Different types of power system transients - effect of transients on power systems – role of the study of transients in system planning.

UNIT II SWITCHING TRANSIENTS

Over voltages due to switching transients - resistance switching and the equivalent circuit for interrupting the resistor current - load switching and equivalent circuit - waveforms for transient

9

9

9

86

voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple restriking transients - ferro resonance.

UNIT III LIGHTNING TRANSIENTS

Review of the theories in the formation of clouds and charge formation - rate of charging of thunder clouds – mechanism of lightning discharges and characteristics of lightning strokes – model for lightning stroke - factors contributing to good line design - protection using ground wires - tower footing resistance - Interaction between lightning and power system.

UNIT IV TRAVELING WAVES ON TRANSMISSION LINE COMPUTATION OF TRANSIENTS

Computation of transients - transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept - step response - Bewely's lattice diagram - standing waves and natural frequencies - reflection and refraction of travelling waves.

UNIT V TRANSIENTS IN INTEGRATED POWER SYSTEM

The short line and kilometric fault - distribution of voltages in a power system - Line dropping and load rejection - voltage transients on closing and reclosing lines - over voltage induced by faults -switching surges on integrated system Qualitative application of EMTP for transient computation. **TOTAL : 45 PERIODS**

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- Allan Greenwood, 'Electrical Transients in Power Systems', Wiley Inter Science, New York, 2nd Edition, 1991.
- 2. Pritindra Chowdhari, "Electromagnetic transients in Power System", John Wiley and Sons Inc., Second Edition, 2009.
- 3. C.S. Indulkar, D.P.Kothari, K. Ramalingam, 'Power System Transients A statistical approach', PHI Learning Private Limited, Second Edition, 2010.

REFERENCES:

- 1. M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.
- R.D. Begamudre, 'Extra High Voltage AC Transmission Engineering', Wiley Eastern Limited, 1986.
- 3. Y.Hase, Handbook of Power System Engineering," Wiley India, 2012.
- 4. J.L.Kirtley, "Electric Power Principles, Sources, Conversion, Distribution and use," Wiley, 2012.

9

9

OBJECTIVES:
 To introduce the basic concepts of linear programming To educate on the advancements in Linear programming techniques To introduce non-linear programming techniques To introduce the interior point methods of solving problems To introduce the dynamic programming method
UNIT I LINEAR PROGRAMMING 9
Introduction - formulation of linear programming model-Graphical solution-solving LPP using simplex algorithm – Revised Simplex Method.
UNIT II ADVANCES IN LPP 9
Dualit theory- Dual simplex method - Sensitivity analysis—-Transportation problems— Assignment problems-Traveling sales man problem -Data Envelopment Analysis.
UNIT III NON LINEAR PROGRAMMING 9
Classification of Non Linear programming – Lagrange multiplier method – Karush – Kuhn Tucker conditions–Reduced gradient algorithms–Quadratic programming method – Penalty and Barrier method.
UNIT IV INTERIOR POINT METHODS 9
Karmarkar's algorithm-Projection Scaling method-Dual affine algorithm-Primal affine algorithm

Karmarkar's algorithm–Projection Scaling method–Dual affine algorithm–Primal affine algorithm Barrier algorithm.

UNIT V DYNAMIC PROGRAMMING

Formulation of Multi stage decision problem–Characteristics–Concept of sub-optimization and the principle of optimality–Formulation of Dynamic programming–Backward and Forward recursion–Computational procedure–Conversion offinal value problem in to Initial value problem.

OUTCOMES:

• To understand ethical issues, environmental impact and acquire management skills.

TEXT BOOKS:

1. Hillier and Lieberman "Introduction to Operations Research", TMH, 2000.

2. R.Panneerselvam, "Operations Research", PHI, 2006

3. Hamdy ATaha, "Operations Research – An Introduction", Prentice Hall India, 2003.

REFERENCES:

1. Philips, Ravindran and Solberg, "Operations Research", John Wiley, 2002.

2. Ronald L.Rardin, "Optimization in Operation Research" Pearson Education Pvt. Ltd. New Delhi, 2005.

EE6003

OPTIMISATION TECHNIQUES

9

TOTAL: 45 PERIODS

EI6703

FIBRE OPTICS AND LASER INSTRUMENTS

OBJECTIVES:

- To expose the basic concepts of optical fibers and their industrial applications.
- To provide adequate knowledge about Industrial application of optical fibres.
- To provide basic concepts of lasers.
- To provide knowledge about Industrial application of lasers
- To provide knowledge about Industrial application of Holography and Medical applications of Lasers.

UNIT I OPTICAL FIBRES AND THEIR PROPERTIES

Principles of light propagation through a fibre - Different types of fibres and their properties, fibre characteristics – Absorption losses – Scattering losses – Dispersion – Connectors and splicers – Fibre termination – Optical sources – Optical detectors.

UNIT II INDUSTRIAL APPLICATION OF OPTICAL FIBRES

Fibre optic sensors – Fibre optic instrumentation system – Different types of modulators – Interferometric method of measurement of length – Moire fringes – Measurement of pressure, temperature, current, voltage, liquid level and strain.

UNIT III LASER FUNDAMENTALS

Fundamental characteristics of lasers – Three level and four level lasers – Properties of laser – Laser modes – Resonator configuration – Q-switching and mode locking – Cavity damping – Types of lasers – Gas lasers, solid lasers, liquid lasers, semiconductor lasers.

UNIT IV INDUSTRIAL APPLICATION OF LASERS

Laser for measurement of distance, length, velocity, acceleration, current, voltage and Atmospheric effect – Material processing – Laser heating, welding, melting and trimming of material – Removal and vaporization.

UNIT V HOLOGRAM AND MEDICAL APPLICATIONS

Holography – Basic principle - Methods – Holographic interferometry and application, Holography for non-destructive testing – Holographic components – Medical applications of lasers, laser and tissue interactive – Laser instruments for surgery, removal of tumors of vocal cards, brain surgery, plastic surgery, gynaecology and oncology.

OUTCOMES:

• Ability to understand and analyze Instrumentation systems and their applications to various industries.

TEXT BOOKS:

- 1. R.P.Khare, Fiber Optics and Optoelectronics, Oxford university press, 2008.
- 2. J. Wilson and J.F.B. Hawkes, Introduction to Opto Electronics, Prentice Hall of India, 2001.

REFERENCES:

- 1. Asu Ram Jha, Fiber Optic Technology Applications to commercial, Industrial, Military and Space Optical systems, PHI learning Private limited, 2009.
- 2. M. Arumugam, Optical Fibre Communication and Sensors, Anuradha Agencies, 2002.
- 3. John F. Read, Industrial Applications of Lasers, Academic Press, 1978.

TOTAL: 45 PERIODS

9

9

9

9

- **OBJECTIVES:** To Introduce Fundamentals of Biomedical Engineering •
- To study the communication mechanics in a biomedical system with few examples
- To study measurement of certain important electrical and non-electrical parameters •
- To understand the basic principles in imaging techniques
- To have a basic knowledge in life assisting and therapeutic devices

UNIT I FUNDAMENTALS OF BIOMEDICAL ENGINEERING

Cell and its structure – Resting and Action Potential – Nervous system and its fundamentals - Basic components of a biomedical system- Cardiovascular systems- Respiratory systems -Kidney and blood flow - Biomechanics of bone - Biomechanics of soft tissues - Basic mechanics of spinal column and limbs -Physiological signals and transducers - Transducers - selection criteria - Piezo electric, ultrasonic transducers - Temperature measurements - Fibre optic temperature sensors.

BIOMEDICAL INSTRUMENTATION

UNIT II NON ELECTRICAL PARAMETERS MEASUREMENT AND DIAGNOSTIC PROCEDURES

Measurement of blood pressure - Cardiac output - Heart rate - Heart sound - Pulmonary function measurements - spirometer - Photo Plethysmography, Body Plethysmography - Blood Gas analysers, pH of blood -measurement of blood pCO2, pO2, finger-tip oxymeter - ESR, GSR measurements.

UNIT III ELECTRICAL PARAMETERS ACQUISITION AND ANALYSIS

Electrodes - Limb electrodes - floating electrodes - pregelled disposable electrodes - Micro, needle and surface electrodes - Amplifiers, Preamplifiers, differential amplifiers, chopper amplifiers -Isolation amplifier - ECG - EEG - EMG - ERG - Lead systems and recording methods - Typical waveforms - Electrical safety in medical environment, shock hazards - leakage current-Instruments for checking safety parameters of biomedical equipments.

UNIT IV IMAGING MODALITIES AND ANALYSIS

Radio graphic and fluoroscopic techniques - Computer tomography - MRI - Ultrasonography -Endoscopy - Thermography - Different types of biotelemetry systems - Retinal Imaging - Imaging application in Biometric systems - Analysis of digital images.

UNIT V LIFE ASSISTING, THERAPEUTIC AND ROBOTIC DEVICES

Pacemakers – Defibrillators – Ventilators – Nerve and muscle stimulators – Diathermy – Heart – Lung machine - Audio meters - Dialysers - Lithotripsy - ICCU patient monitoring system - Nano Robots -Robotic surgery – Advanced 3D surgical techniques- Orthopedic prostheses fixation.

TOTAL: 45 PERIODS

OUTCOMES:

Ability to understand and analyze Instrumentation systems and their applications to various industries.

TEXT BOOKS:

- 1. Leslie Cromwell, Biomedical Instrumentation and Measurement, Prentice hall of India, New Delhi, 2007.
- 2. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.

EI6704

9

9

9

9

3. Khandpur R.S, Handbook of Biomedical Instrumentation, , Tata McGraw-Hill, New Delhi, 2nd Edition, 2003.

REFERENCES:

- 1. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, New York, 1998.
- 2. Duane Knudson, Fundamentals of Biomechanics, Springer, 2nd Edition, 2007.
- 3. Suh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care Systems, Technology and Techniques, Springer, 1st Edition, 2011.
- 4. Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, Third Edition, Boca Raton, CRC Press LLC, 2006.
- 5. M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2003.

EE6004

FLEXIBLE AC TRANSMISSION SYSTEMS

L T P C 3 0 0 3

OBJECTIVES:

- To introduce the reactive power control techniques
- To educate on static VAR compensators and their applications
- To provide knowledge on Thyristor controlled series capacitors
- To educate on STATCOM devices
- To provide knowledge on FACTS controllers

UNIT I INTRODUCTION

Reactive power control in electrical power transmission lines -Uncompensated transmission line - series compensation – Basic concepts of Static Var Compensator (SVC) – Thyristor Controlled Series capacitor (TCSC) – Unified power flow controller (UPFC).

UNIT II STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS

Voltage control by SVC – Advantages of slope in dynamic characteristics – Influence of SVC on system voltage – Design of SVC voltage regulator –Modelling of SVC for power flow and fast transient stability – Applications: Enhancement of transient stability – Steady state power transfer – Enhancement of power system damping.

UNIT III THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATIONS

Operation of the TCSC – Different modes of operation – Modelling of TCSC – Variable reactance model – Modelling for Power Flow and stability studies. Applications: Improvement of the system stability limit – Enhancement of system damping.

UNIT IV VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS

Static Synchronous Compensator (STATCOM) – Principle of operation – V-I Characteristics. Applications: Steady state power transfer-enhancement of transient stability - prevention of voltage instability. SSSC-operation of SSSC and the control of power flow –modelling of SSSC in load flow and transient stability studies.

UNIT V CO-ORDINATION OF FACTS CONTROLLERS

Controller interactions – SVC – SVC interaction – Co-ordination of multiple controllers using linear control techniques – Control coordination using genetic algorithms.

9

9

9

~

9

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. R.Mohan Mathur, Rajiv K.Varma, "Thyristor Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, Inc, 2002.
- 2. Narain G. Hingorani, "Understanding FACTS -Concepts and Technology of Flexible AC Transmission Systems", Standard Publishers Distributors, Delhi- 110 006, 2011.
- 3. K.R.Padiyar," FACTS Controllers in Power Transmission and Distribution", New Age International(P) Limited, Publishers, New Delhi, 2008.

REFERENCES:

- 1. A.T.John, "Flexible A.C. Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 1999.
- 2. V.K.Sood, HVDC and FACTS controllers Applications of Static Converters in Power System, APRIL 2004, Kluwer Academic Publishers, 2004.
- 3. Xiao Ping Zang, Christian Rehtanz and Bikash Pal, "Flexible AC Transmission System: Modelling and Control" Springer, 2012.

EE6005

POWER QUALITY

OBJECTIVES:

- To introduce the power quality problem
- To educate on production of voltages sags, over voltages and harmonics and methods of control.
- To study overvoltage problems
- To study the sources and effect of harmonics in power system
- To impart knowledge on various methods of power quality monitoring.

UNIT I INTRODUCTION TO POWER QUALITY

Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients - short duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve.

UNIT II VOLTAGE SAGS AND INTERRUPTIONS

Sources of sags and interruptions - estimating voltage sag performance. Thevenin's equivalent source - analysis and calculation of various faulted condition. Voltage sag due to induction motor starting. Estimation of the sag severity - mitigation of voltage sags, active series compensators. Static transfer switches and fast transfer switches.

UNIT III OVERVOLTAGES

Sources of over voltages - Capacitor switching – lightning - ferro resonance. Mitigation of voltage swells - surge arresters - low pass filters - power conditioners. Lightning protection – shielding - line

9

LTPC 3003

9

arresters - protection of transformers and cables. An introduction to computer analysis tools for transients, PSCAD and EMTP.

UNIT IV HARMONICS

Harmonic sources from commercial and industrial loads, locating harmonic sources.Power system response characteristics - Harmonics Vs transients. Effect of harmonics - harmonic distortion - voltage and current distortion - harmonic indices - inter harmonics – resonance. Harmonic distortion evaluation - devices for controlling harmonic distortion - passive and active filters. IEEE and IEC standards.

UNIT V POWER QUALITY MONITORING

Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modeling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer – quality measurement equipment - harmonic / spectrum analyzer - flicker meters - disturbance analyzer. Applications of expert systems for power quality monitoring.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. Roger. C. Dugan, Mark. F. McGranagham, Surya Santoso, H.Wayne Beaty, 'Electrical Power Systems Quality' McGraw Hill,2003.(For Chapters1,2,3, 4 and 5).
- 2. Eswald.F.Fudis and M.A.S.Masoum, "Power Quality in Power System and Electrical Machines," Elseviar Academic Press, 2013.
- 3. J. Arrillaga, N.R. Watson, S. Chen, 'Power System Quality Assessment', Wiley, 2011.

REFERENCES:

- 1. G.T. Heydt, 'Electric Power Quality', 2nd Edition. (West Lafayette, IN, Stars in a Circle Publications, 1994). (For Chapter 1, 2, 3 and 5)
- 2. M.H.J Bollen, 'Understanding Power Quality Problems: Voltage Sags and Interruptions', (New York: IEEE Press, 1999). (For Chapters 1, 2, 3 and 5)
- 3. G.J.Wakileh, "Power Systems Harmonics Fundamentals, Analysis and Filter Design," Springer 2007.
- 4. E.Aeha and M.Madrigal, "Power System Harmonics, Computer Modelling and Analysis, "Wiley India, 2012.
- 5. R.S.Vedam, M.S.Sarma, "Power Quality VAR Compensation in Power Systems," CRC Press 2013.
- 6. C. Sankaran, 'Power Quality', CRC press, Taylor & Francis group, 2002.

9

APPLIED SOFT COMPUTING

OBJECTIVES:

- To expose the students to the concepts of feed forward neural networks.
- To provide adequate knowledge about feedback neural networks
- To provide adequate knowledge about fuzzy and neuro-fuuzy systems
- To provide comprehensive knowledge of fuzzy logic control to real time systems.
- To provide adequate knowledge of genetic algorithms and its application to economic dispatch and unit commitment problems.

UNIT I ARCHITECTURES – ANN

Introduction – Biological neuron – Artificial neuron – Neuron model – Supervised and unsupervised learning- Single layer – Multi layer feed forward network – Learning algorithm- Back propagation network.

UNIT II NEURAL NETWORKS FOR CONTROL

Feedback networks – Discrete time Hopfield networks – Transient response of continuous time system – Applications of artificial neural network - Process identification – Neuro controller for inverted pendulum.

UNIT III FUZZY SYSTEMS

Classical sets – Fuzzy sets – Fuzzy relations – Fuzzification – Defuzzification – Fuzzy rules -Membership function – Knowledge base – Decision-making logic – Introduction to neuro fuzzy system- Adaptive fuzzy system.

UNIT IV APPLICATION OF FUZZY LOGIC SYSTEMS

Fuzzy logic control: Home heating system - liquid level control - aircraft landing- inverted pendulum – fuzzy PID control, Fuzzy based motor control.

UNIT V GENETIC ALGORITHMS

Introduction-Gradient Search – Non-gradient search – Genetic Algorithms: binary and real representation schemes, selection methods, crossover and mutation operators for binary and real coding - constraint handling methods – applications to economic dispatch and unit commitment problems.

OUTCOMES:

- Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.
- To understand and apply computing platform and software for engineering problems.

TEXT BOOKS:

- 1. Laurance Fausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Education, 1992.
- 2. Timothy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997.
- 3. S.N.Sivanandam and S.N.Deepa, Principles of Soft computing, Wiley India Edition, 2nd Edition, 2013.

REFERENCES:

- 1. Simon Haykin, 'Neural Networks', Pearson Education, 2003.
- 2. John Yen & Reza Langari, 'Fuzzy Logic Intelligence Control & Information', Pearson Education, New Delhi, 2003.

9

9

9

9

9

TOTAL: 45 PERIODS

- 3. M.Gen and R,Cheng, Genetic algorithms and Optimization, Wiley Series in Engineering Design and Automation, 2000.
- 4. Hagan, Demuth, Beale, "Neural Network Design", Cengage Learning, 2012.
- 5. N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford, 2013.
- 6. William S.Levine, "Control System Advanced Methods," The Control Handbook CRC Press, 2011.

GE6081 FUNDAMENTALS OF NANOSCIENCE

OBJECTIVES:

To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilmsmultilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays-functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications.

UNIT IV CHARACTERIZATION TECHNIQUES

X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation.

UNIT V APPLICATIONS

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.

TOTAL : 45 PERIODS

OUTCOMES:

- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
- Will develop knowledge in characteristic nanomaterial

8

L T P C 3 0 0 3

12

9

9 0r

TEXT BOOKS :

- 1. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
- 2. N John Dinardo, "Nanoscale Charecterisation of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH, 2000.

REFERENCES:

- 1. G Timp, "Nanotechnology", AIP press/Springer, 1999.
- 2. Akhlesh Lakhtakia, "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.

IC6002 SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL LT P C

OBJECTIVES:

- To introduce Non parametric methods
- To impart knowledge on parameter estimation methods
- To impart knowledge on Recursive identification methods
- To impart knowledge on Adaptive control schemes
- To introduce stability, Robustness and Applications of adaptive control method

UNIT I NON PARAMETRIC METHODS

Non parametric methods: Transient analysis-frequency analysis-Correlation analysis-Spectral analysis.

UNIT II PARAMETER ESTIMATION METHODS

Least square estimation – best linear unbiased estimation under linear constraints – updating the parameter estimates for linear regression models–prediction error methods: description of prediction methods – optimal prediction – relation between prediction error methods and other identification methods – theoretical analysis - Instrumental variable methods: Description of instrumental variable methods – Input signal design for identification.

UNIT III RECURSIVE IDENTIFICATION METHODS

The recursive least square method – the recursive instrumental variable methods- the recursive prediction error methods – Maximum likelihood. Identification of systems operating in closed loop: Identifiability considerations – direct identification – indirect identification.

UNIT IV ADAPTIVE CONTROL SCHEMES

Introduction – Types of adaptive control–Gain scheduling controller–Model reference adaptive control schemes–Self tuning controller–MRAC and STC: Approaches–The Gradient approach – Lyapunov functions – Passivity theory – pole placement method – Minimum variance control – Predictive control.

UNIT V ISSUES INADAPTIVE CONTROL AND APPLICATIONS

Stability – Convergence – Robustness – Applications of adaptive control.

OUTCOMES:

• Ability to apply advanced control theory to practical engineering problems.

TOTAL: 45 PERIODS

9

9

9

9

q

3 0 0 3

TEXT BOOKS:

- 1. Soder Storm T and Peter Stoica, System Identification, Prentice Hall International, 1989.
- 2. Astrom,K.J. and Wittenmark,B., "Adaptive Control",Pearson Education, 2nd Edition, 2001.
- 3. Sastry, S. and Bodson, M., "Adaptive Control– Stability, Convergence and Robustness", Prentice Hall inc., New Jersey, 1989.

REFERENCES:

- 1. Ljung L, System Identification: Theory for the user, Prentice Hall, Engle wood Cliffs, 1987.
- 2. Bela.G.Liptak., "Process Control and Optimization"., Instrument Engineers' Handbook., volume 2, CRC press and ISA, 2005.
- 3. William S.Levine, "Control Systems Advanced Methods, the Control Handbook, CRC Press, 2011.

EE6007 MICRO ELECTRO MECHANICAL SYSTEMS

OBJECTIVES:

- To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- To educate on the rudiments of Micro fabrication techniques.
- To introduce various sensors and actuators
- To introduce different materials used for MEMS
- To educate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering.

UNIT I INTRODUCTION

Intrinsic Characteristics of MEMS – Energy Domains and Transducers- Sensors and Actuators – Introduction to Micro fabrication - Silicon based MEMS processes – New Materials – Review of Electrical and Mechanical concepts in MEMS – Semiconductor devices – Stress and strain analysis – Flexural beam bending- Torsional deflection.

UNIT II SENSORS AND ACTUATORS-I

Electrostatic sensors – Parallel plate capacitors – Applications – Interdigitated Finger capacitor – Comb drive devices – Micro Grippers – Micro Motors - Thermal Sensing and Actuation – Thermal expansion – Thermal couples – Thermal resistors – Thermal Bimorph - Applications – Magnetic Actuators – Micromagnetic components – Case studies of MEMS in magnetic actuators- Actuation using Shape Memory Alloys.

UNIT III SENSORS AND ACTUATORS-II

Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanical elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric sensors and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia , Acoustic, Tactile and Flow sensors.

UNIT IV MICROMACHINING

Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasma Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural and Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction methods – LIGA Process - Assembly of 3D MEMS – Foundry process.

9

9

9

LT P C

3003

UNIT V POLYMER AND OPTICAL MEMS

Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensors- Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS.

TOTAL : 45 PERIODS

9

OUTCOMES:

- Ability to understand the operation of micro devices, micro systems and their applications.
- Ability to design the micro devices, micro systems using the MEMS fabrication process.

TEXT BOOKS:

- 1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.
- 2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCES:

- 1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 2. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.
- 3. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.
- 4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.
- 5. Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application," Springer, 2010.

EE6008 MICROCONTROLLER BASED SYSTEM DESIGN LTPC

3003

OBJECTIVES:

- To introduce the architecture of PIC microcontroller
- To educate on use of interrupts and timers
- To educate on the peripheral devices for data communication and transfer
- To introduce the functional blocks of ARM processor
- To educate on the architecture of ARM processors

UNIT I INTRODUCTION TO PIC MICROCONTROLLER

Introduction to PIC Microcontroller–PIC 16C6x and PIC16C7x Architecture–PIC16cxx–- Pipelining - Program Memory considerations – Register File Structure - Instruction Set - Addressing modes – Simple Operations.

UNIT II INTERRUPTS AND TIMER

PIC micro controller Interrupts- External Interrupts-Interrupt Programming–Loop time subroutine -Timers-Timer Programming– Front panel I/O-Soft Keys– State machines and key switches– Display of Constant and Variable strings.

UNIT III PERIPHERALS AND INTERFACING

I²C Bus for Peripherals Chip Access– Bus operation-Bus subroutines– Serial EEPROM—Analog to

9

9

Digital Converter–UART-Baud rate selection–Data handling circuit–Initialization - LCD and keyboard Interfacing -ADC, DAC, and Sensor Interfacing.

UNIT IV INTRODUCTION TO ARM PROCESSOR

ARM Architecture –ARM programmer's model –ARM Development tools- Memory Hierarchy –ARM Assembly Language Programming–Simple Examples–Architectural Support for Operating systems.

UNIT V ARM ORGANIZATION

3-Stage Pipeline ARM Organization– 5-Stage Pipeline ARM Organization–ARM Instruction Execution- ARM Implementation– ARM Instruction Set– ARM coprocessor interface– Architectural support for High Level Languages – Embedded ARM Applications.

OUTCOMES:

- To understand and apply computing platform and software for engineering problems.
- To understand ethical issues, environmental impact and acquire management skills.

TEXT BOOKS:

- 1. Peatman, J.B., "Design with PIC Micro Controllers" Pearson Education, 3rd Edition, 2004.
- 2. Furber, S., "ARM System on Chip Architecture" Addison Wesley trade Computer Publication, 2000.

REFERENCE:

1. Mazidi, M.A., "PIC Microcontroller" Rollin Mckinlay, Danny causey Printice Hall of India, 2007.

EE6009 POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS LT P C 3 0 0 3

OBJECTIVES:

- To Provide knowledge about the stand alone and grid connected renewable energy systems.
- To equip with required skills to derive the criteria for the design of power converters for renewable energy applications.
- To analyse and comprehend the various operating modes of wind electrical generators and solar energy systems.
- To design different power converters namely AC to DC, DC to DC and AC to AC converters for renewable energy systems.
- To develop maximum power point tracking algorithms.

UNIT I INTRODUCTION

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

UNIT II ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION

Reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

TOTAL: 45 PERIODS

9

9

9

UNIT III POWER CONVERTERS

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing, array sizing Wind: Three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

UNIT IV ANALYSIS OF WIND AND PV SYSTEMS

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG, SCIG Based WECS, grid Integrated solar system

UNIT V HYBRID RENEWABLE ENERGY SYSTEMS

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

OUTCOMES:

- Ability to understand and analyze power system operation, stability, control and protection.
- Ability to handle the engineering aspects of electrical energy generation and utilization.

TEXT BOOK:

- 1. S. N. Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford University Press, 2005.
- 2. B.H.Khan Non-conventional Energy sources Tata McGraw-hill Publishing Company, New Delhi,2009.

REFERENCES:

- 1. Rashid .M. H "power electronics Hand book", Academic press, 2001.
- 2. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 3. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.
- 4. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995.
- 5. Andrzej M. Trzynnadlowski, 'Introduction to Modern Power Electronics', Second edition, wiley India Pvt. Ltd, 2012.

EE6010 HIGH VOLTAGE DIRECT CURRENT TRANSMISSION

OBJECTIVES:

- To understand the concept, planning of DC power transmission and comparison with AC Power transmission.
- To analyze HVDC converters.
- To study about the HVDC system control.
- To analyze harmonics and design of filters.
- To model and analysis the DC system under study state.

UNIT I INTRODUCTION

DC Power transmission technology – Comparison of AC and DC transmission – Application of DC transmission – Description of DC transmission system – Planning for HVDC transmission – Modern trends in HVDC technology – DC breakers – Operating problems – HVDC transmission based on VSC – Types and applications of MTDC systems.

99

TOTAL: 45 PERIODS

9

9

9

LT P C 3 0 0 3

UNIT II ANALYSIS OF HVDC CONVERTERS

Line commutated converter - Analysis of Graetz circuit with and without overlap - Pulse number – Choice of converter configuration – Converter bridge characteristics – Analysis of a 12 pulse converters – Analysis of VSC topologies and firing schemes.

UNIT III CONVERTER AND HVDC SYSTEM CONTROL

Principles of DC link control – Converter control characteristics – System control hierarchy – Firing angle control – Current and extinction angle control – Starting and stopping of DC link – Power control – Higher level controllers – Control of VSC based HVDC link.

UNIT IV REACTIVE POWER AND HARMONICS CONTROL

Reactive power requirements in steady state – Sources of reactive power – SVC and STATCOM – Generation of harmonics – Design of AC and DC filters – Active filters.

UNIT V POWER FLOW ANALYSIS IN AC/DC SYSTEMS

Per unit system for DC quantities – DC system model – Inclusion of constraints – Power flow analysis – case study.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. Padiyar, K. R., "HVDC power transmission system", New Age International (P) Ltd., New Delhi, Second Edition, 2010.
- 2. Edward Wilson Kimbark, "Direct Current Transmission", Vol. I, Wiley interscience, New York, London, Sydney, 1971.
- 3. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age International (P) Ltd., New Delhi, 1990.

REFERENCES:

- 1. Kundur P., "Power System Stability and Control", McGraw-Hill, 1993.
- 2. Colin Adamson and Hingorani N G, "High Voltage Direct Current Power Transmission", Garraway Limited, London, 1960.
- 3. Arrillaga, J., "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
- 4. S. Kamakshaiah, V. Kamaraju, 'HVDC Transmission', Tata McGraw Hill Education Private Limited, 2011.

EE6011

POWER SYSTEM DYNAMICS

L T P C 3 0 0 3

OBJECTIVES:

- To introduce the basics of dynamics and stability problems
- To educate on modeling of synchronous machines
- To educate on the excitation system and speed-governing controllers.
- To study small signal stability of a single-machine infinite bus system with excitation system and power system stabilizer.
- To educate on the transient stability simulation of multi machine power system.

9

9

UNIT I INTRODUCTION

Basics of system dynamics – numerical techniques – introduction to software packages to study the responses. Concept and importance of power system stability in the operation and design - distinction between transient and dynamic stability - complexity of stability problem in large system – necessity for reduced models - stability of interconnected systems.

UNIT II SYNCHRONOUS MACHINE MODELLING

Synchronous machine - flux linkage equations - Park's transformation - per unit conversion - normalizing the equations - equivalent circuit - current space model - flux linkage state space model. Sub-transient and transient inductances - time constants. Simplified models (one axis and constant flux linkage) - steady state equations and phasor diagrams.

UNIT III MACHINE CONTROLLERS

Exciter and voltage regulators - function and types of excitation systems - typical excitation system configuration - block diagram and state space representation of IEEE type 1 excitation system - saturation function - stabilizing circuit. Function of speed governing systems - block diagram and state space representation of IEEE mechanical hydraulic governor and electrical hydraulic governors for hydro turbines and steam turbines.

UNIT IV TRANSIENT STABILITY

State equation for multi machine system with one axis model and simulation – modelling of multi machine power system with one axis machine model including excitation system and speed governing system and simulation using R-K method of fourth order (Gill's technique) for transient stability analysis - power system stabilizer. For all simulations, the algorithm and flow chart have to be discussed.

UNIT V DYNAMIC STABILITY

System response to small disturbances - linear model of the unregulated synchronous machine and its modes of oscillation - regulated synchronous machine - distribution of power impact - linearization of the load equation for the one machine problem – simplified linear model - effect of excitation on dynamic stability - approximate system representation - supplementary stabilizing signals - dynamic performance measure - small signal performance measures.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. P.M. Anderson and A.A.Fouad, 'Power System Control and Stability', Galgotia Publications, New Delhi, 2003.
- 2. P. Kundur, 'Power System Stability and Control', McGraw Hill Inc., USA, 1994.
- 3. R.Ramanujam, "Power System Dynamics Analysis and Simulation", PHI, 2009.

REFERENCES:

- 1. M.A.Pai and W.Sauer, 'Power System Dynamics and Stability', Pearson Education Asia, India, 2002.
- 2. James A.Momoh, Mohamed. E. El-Hawary. " Electric Systems, Dynamics and Stability with Artificial Intelligence applications", Marcel Dekker, USA First Edition, 2000.
- 3. C.A.Gross, "Power System Analysis," Wiley India, 2011.
- 4. B.M.Weedy, B.J.Lory, N.Jenkins, J.B.Ekanayake and G.Strbac," Electric Power Systems", Wiley India, 2013.
- 5. K.Umarao, "Computer Techniques and Models in Power System," I.K. International, 2007.

9

9

9

PRINCIPLES OF ROBOTICS

OBJECTIVES:

IC6003

- To introduce the functional elements of Robotics
- To impart knowledge on the direct and inverse kinematics
- To introduce the manipulator differential motion and control
- To educate on various path planning techniques
- To introduce the dynamics and control of manipulators •

UNIT I **BASIC CONCEPTS**

Brief history-Types of Robot-Technology-Robot classifications and specifications-Design and control issues- Various manipulators - Sensors - work cell - Programming languages.

UNIT II DIRECT AND INVERSE KINEMATICS

Mathematical representation of Robots - Position and orientation -Homogeneous transformation-Various joints- Representation using the Denavit Hattenberg parameters -Degrees of freedom-Direct kinematics-Inverse kinematics-PUMA560 & SCARA robots- Solvability - Solution methods-Closed form solution.

MANIPULATOR DIFFERENTIAL MOTION AND STATICS UNIT III

Linear and angular velocities-Manipulator Jacobian-Prismatic and rotary joints-Inverse -Wrist and arm singularity - Static analysis - Force and moment Balance.

PATH PLANNING UNIT IV

Definition-Joint space technique-Use of p-degree polynomial-Cubic polynomial-Cartesian space technique - Parametric descriptions - Straight line and circular paths - Position and orientation planning.

UNIT V DYNAMICS AND CONTROL

Lagrangian mechanics-2DOF Manipulator-Lagrange Euler formulation-Dynamic model -Manipulator control problem-Linear control schemes-PID control scheme-Force control of robotic manipulator.

TOTAL: 45 PERIODS

OUTCOMES:

 Ability to understand and analyze Instrumentation systems and their applications to various industries.

TEXT BOOKS:

- 1. R.K.Mittal and I.J.Nagrath, Robotics and Control, Tata McGraw Hill, New Delhi, 4th Reprint, 2005.
- 2. JohnJ.Craig, Introduction to Robotics Mechanics and Control, Third edition, Pearson Education, 2009.
- 3. M.P.Groover, M.Weiss, R.N. Nageland N. G.Odrej, Industrial Robotics, McGraw-Hill Singapore, 1996.

REFERENCES:

- 1. Ashitava Ghoshal, Robotics-Fundamental Concepts and Analysis', Oxford University Press, Sixth impression, 2010.
- 2. K. K.Appu Kuttan, Robotics, I K International, 2007.
- 3. Edwin Wise, Applied Robotics, Cengage Learning, 2003.
- 4. R.D.Klafter, T.A. Chimielewski and M.Negin, Robotic Engineering–An Integrated Approach, Prentice Hall of India, New Delhi, 1994.

9

9

LTPC 3003

9

9

GE6083 **DISASTER MANAGEMENT**

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks - Disasters: Types of disasters -Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj

Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level-State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation - Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man

5. B.K.Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

6. S.Ghoshal, "Embedded Systems & Robotics" - Projects using the 8051 Microcontroller", Cengage Learning, 2009.

9

9

LTPC 3003

9

9

Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

OUTCOMES:

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

TEXTBOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES

- 1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

GE6075 PROFESSIONAL ETHICS IN ENGINEERING LT P C

OBJECTIVES:

• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk -

10

9

9

9

Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

UNIT V GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility.

OUTCOMES:

• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCES:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.

Web sources:

- 1. www.onlineethics.org
- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.org

GE6757

TOTAL QUALITY MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

• To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Costs of quality.

UNIT II TQM PRINCIPLES

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal

9

9

8

TOTAL: 45 PERIODS

- Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

TQM TOOLS AND TECHNIQUES II UNIT IV

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) -Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY SYSTEMS

Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation, Quality Auditing -QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors.

OUTCOMES:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

1. Dale H. Besterfiled, et at., "Total quality Management", Pearson Education Asia, Third Edition, Indian Reprint, 2006.

REFERENCES:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

ADVANCED DIGITAL SIGNAL PROCESSING

OBJECTIVES:

EC6002

- To bring out the concepts related to stationary and non-stationary random signals
- To emphasize the importance of true estimation of power spectral density
- To introduce the design of linear and adaptive systems for filtering and linear prediction
- To introduce the concept of wavelet transforms in the context of image processing

UNIT I DISCRETE-TIME RANDOM SIGNALS

Discrete random process - Ensemble averages, Stationary and ergodic processes, Autocorrelation and Autocovariance properties and matrices, White noise, Power Spectral Density, Spectral Factorization, Innovations Representation and Process, Filtering random processes, ARMA, AR and MA processes.

9

LTPC 3 0 0 3

9

9

9

TOTAL: 45 PERIODS

UNIT II SPECTRUM ESTIMATION

Bias and Consistency, Periodogram, Modified periodogram, Blackman-Tukey method, Welch method, Parametric methods of spectral estimation, Levinson-Durbin recursion.

UNIT III LINEAR ESTIMATION AND PREDICTION

Forward and Backward linear prediction, Filtering - FIR Wiener filter- Filtering and linear prediction, non-causal and causal IIR Wiener filters, Discrete Kalman filter.

UNIT IV ADAPTIVE FILTERS

Principles of adaptive filter – FIR adaptive filter – Newton's Steepest descent algorithm – LMS algorithm – Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellers.

UNIT V WAVELET TRANSFORM

Multiresolution analysis, Continuous and discrete wavelet transform, Short Time Fourier Transform, Application of wavelet transform, Cepstrum and Homomorphic filtering.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Explain the parametric methods for power spectrum estimation.
- Discuss adaptive filtering techniques using LMS algorithm and the applications of adaptive filtering.
- Analyze the wavelet transforms.

TEXT BOOKS:

- 1. Monson H, Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons Inc., New York, Indian Reprint, 2007.
- 2. John G.Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson, Fourth, 2007.
- 3. Dwight F. Mix, "Random Signal Processing", Prentice Hall, 1995.

REFERENCE:

1. Sophocles J. Orfanidis, "Optimum Signal Processing, An Introduction", McGraw Hill, 1990.

EE6012 COMPUTER AIDED DESIGN OF ELECTRICAL APPARATUS LT P C 3 0 0 3

OBJECTIVES:

- To introduce the importance of computer aided design method.
- To provide basic electromagnetic field equations and the problem formulation for CAD applications.
- To get familiarized with Finite Element Method as applicable for Electrical Engineering.
- To introduce the organization of a typical CAD package.
- To introduce Finite Element Method for the design of different Electrical apparatus.

UNIT I INTRODUCTION

Conventional design procedures – Limitations – Need for field analysis based design – Review of Basic principles of energy conversion – Development of Torque/Force.

9

9

9

9

108

UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS

Electromagnetic Field Equations - Magnetic Vector/Scalar potential - Electrical vector /Scalar potential – Stored energy in Electric and Magnetic fields – Capacitance - Inductance- Laplace and Poisson's Equations – Energy functional.

UNIT III PHILOSOPHY OF FEM

Mathematical models – Differential/Integral equations – Finite Difference method – Finite element method - Energy minimization - Variational method- 2D field problems - Discretisation - Shape functions - Stiffness matrix - Solution techniques.

UNIT IV CAD PACKAGES

Elements of a CAD System - Pre-processing - Modelling - Meshing - Material properties- Boundary Conditions – Setting up solution – Post processing.

UNIT V **DESIGN APPLICATIONS**

Voltage Stress in Insulators – Capacitance calculation - Design of Solenoid Actuator – Inductance and force calculation – Torque calculation in Switched Reluctance Motor.

OUTCOMES:

Ability to model and analyze electrical apparatus and their application to power system.

TEXT BOOKS:

- 1. S.J Salon, 'Finite Element Analysis of Electrical Machines', Springer, YesDEE publishers, Indian reprint, 2007.
- 2. Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor & Francis, 2005.

REFERENCES:

- 1. Joao Pedro, A. Bastos and Nelson Sadowski, 'Electromagnetic Modeling by Finite Element Methods', Marcell Dekker Inc., 2003.
- 2. P.P.Silvester and Ferrari, 'Finite Elements for Electrical Engineers', Cambridge University Press, 1983.
- 3. D.A.Lowther and P.P. Silvester, 'Computer Aided Design in Magnetics', Springer Verlag, New York. 1986.
- 4. S.R.H.Hoole, 'Computer Aided Analysis and Design of Electromagnetic Devices', Elsevier, New York, 1989.
- 5. User Manuals of MAGNET, MAXWELL & ANSYS Softwares.

EC6601

OBJECTIVES:

In this course, the MOS circuit realization of the various building blocks that is common to any microprocessor or digital VLSI circuit is studied.

VLSI DESIGN

- Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed.
- The main focus in this course is on the transistor circuit level design and realization for digital • operation and the issues involved as well as the topics covered are quite distinct from those encountered in courses on CMOS Analog IC design.

9

9

9

TOTAL: 45 PERIODS

LTPC 3003

UNIT I MOS TRANSISTOR PRINCIPLE

NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams

UNIT II COMBINATIONAL LOGIC CIRCUITS

Examples of Combinational Logic Design, Elmore's constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design, Power dissipation – Low power design principles

UNIT III SEQUENTIAL LOGIC CIRCUITS

Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design

UNIT IV DESIGNING ARITHMETIC BUILDING BLOCKS

Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders, accumulators, Multipliers, dividers, Barrel shifters, speed and area tradeoff

UNIT V IMPLEMENTATION STRATEGIES

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students should

- Explain the basic CMOS circuits and the CMOS process technology.
- Discuss the techniques of chip design using programmable devices.
- Model the digital system using Hardware Description Language.

TEXTBOOKS:

- 1. Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective", Second Edition, Prentice Hall of India, 2003.
- 2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997

REFERENCES:

- 1. N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 1993
- 2. R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India 2005
- 3. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of India, 2007.

9

9

9

9

HUMAN RIGHTS

OBJECTIVES:

• To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

GE6084

Human Rights – Meaning, origin and Development. Notion and classification of Rights – Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II

Evolution of the concept of Human Rights Magana carta – Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III

Theories and perspectives of UN Laws - UN Agencies to monitor and compliance.

UNIT IV

Human Rights in India - Constitutional Provisions / Guarantees.

UNIT V

Human Rights of Disadvantaged People – Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights – National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL : 45 PERIODS

OUTCOME :

• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

9

9

9

9

PROBABILITY AND STATISTICS

OBJECTIVES

This course aims at providing the required skill to apply the statistical tools in engineering problems.

UNIT I RANDOM VARIABLES

Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions.

UNIT II **TWO - DIMENSIONAL RANDOM VARIABLES**

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression - Transformation of random variables - Central limit theorem (for independent and identically distributed random variables).

UNIT III **TESTING OF HYPOTHESIS**

Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample test based on Normal distribution for single mean and difference of means -Tests based on t. Chi-square and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.

UNIT IV **DESIGN OF EXPERIMENTS**

One way and Two way classifications - Completely randomized design - Randomized block design -Latin square design - 2^2 factorial design.

UNIT V STATISTICAL QUALITY CONTROL

Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling. TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

The students will have a fundamental knowledge of the concepts of probability. Have knowledge of standard distributions which can describe real life phenomenon. Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

TEXT BOOKS:

- 1. Milton, J. S. and Arnold, J.C., "Introduction to Probability and Statistics", 4th Edition, Tata McGraw Hill, 2007.
- 2. Johnson. R.A. and Gupta. C.B., "Miller and Freund's Probability and Statistics for Engineers", 7th Edition, Pearson Education, Asia, 2007.
- 3. Papoulis. A and Unnikrishnapillai. S., "Probability, Random Variables and Stochastic Processes " 4th Edition, Mc Graw Hill Education India, New Delhi, 2010.

REFERENCES:

- 1. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", 8th Edition, Cengage Learning, New Delhi, 2012.
- 2. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007.
- 3. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 3rd Edition, Elsevier, 2004.

MA6468

9 + 3

9 + 3

9 + 3

9 + 3

9 + 3

LTPC 3104 4. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2004.

DATA STRUCTURES AND ALGORITHMS LT P C

OBJECTIVES:

EI6001

- To provide a good understanding of the fundamental data structures used in computer science
- To provide a good understanding of how several fundamental algorithms work, particularly those concerned with sorting, searching and graph manipulation
- To educate on the space and time efficiency of most algorithms
- To educate on design of new algorithms or modify existing ones for new applications
- To introduce graph algorithms

INTRODUCTION AND BASIC DATA STRUCTURES UNIT I

Problem solving techniques and examples-Abstract Data Type (ADT)-The list ADT Arrays- Stacks and Queues: Implementation and Application, Circular Queues.

UNIT II **ADVANCED DATA STRUCTURES**

Trees: Preliminaries-Binary Tree- Tree traversals-Binary search Trees-AVL Trees.

UNIT III SORTING AND HASHING

Sorting by Selection- Sorting by Insertion- Sorting by Exchange- Sorting by Diminishing Increment- Heap Sort- Heaps Maintaining the Heap Property-Building a Heap- Heap sort Algorithm-Quick sort-Description-Performance of guick sort-Analysis of Quick Sort. Hashing - General idea-Hash functions-Separate Chaining-Open Addressing-Rehashing-Extendible Hashing.

UNIT IV **ALGORITHM DESIGN TECHNIQUES**

The role of algorithms in computing-Getting Started-Growth of functions. Divide and conquerdynamic programming-Greedy Algorithm – Backtracking.

UNIT V **GRAPHS ALGORITHMS**

Elementary Graph Algorithms-Minimum Spanning Trees-Single-source shortest paths-All pairs shortest paths.

OUTCOMES:

• To understand and apply computing platform and software for engineering problems.

TEXT BOOKS:

- 1. M A Weiss," Data Structures and Algorithm Analysis in C++",3rd Edition, Pearson Education.2007.
- 2. D.Samantha, "Classic Data Structures", 2nd Edition, PHI Learning, 2012.
- 3. Thomas H Cormen, Charles E Leiserson and Ronald L Rivest," Introduction to Algorithms", 2nd Edition, prentice Hall of India, 2002

REFERENCES:

- 1. R G Dromey,"How to solve it by computers", Pearson Education Asia, 2005.
- 2. Robert L Kruse, Clovis L Tando and Bruce P Leung,"Data structures and Program Design in C",2nd Edition, Prentice Hall of India,1990.

TOTAL: 45 PERIODS

9

9

9

3003

9

- 3. D.S. Kushwaha & A.K. Misra, "Data Structures -4 Programming approach with C", PHI Learning, 2012.
- Varsha H. Patil, "Data Structures Using C++" Oxford University Press, 2012.
 Jean Paul Trembley, Paul G Sorenson, "An Introduction to Data Structures with Applications", 2nd Edition, Tata McGraw Hill, 2007.

ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

R-2013

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

I – VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEOP	RY					
1.	HS6151	<u>Technical English – I</u>	3	1	0	4
2.	MA6151	Mathematics – I	3	1	0	4
3.	PH6151	Engineering Physics – I	3	0	0	3
4.	CY6151	Engineering Chemistry – I	3	0	0	3
5.	GE6151	Computer Programming	3	0	0	3
6.	GE6152	Engineering Graphics	2	0	3	4
PRAC	TICALS					
7.	GE6161	Computer Practices Laboratory	0	0	3	2
8.	GE6162	Engineering Practices Laboratory	0	0	3	2
9.	GE6163	Physics and Chemistry Laboratory - I	0	0	2	1
		TOTAL	17	2	11	26

SEMESTER II

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEOP	RY					
1.	HS6251	<u>Technical English – II</u>	3	1	0	4
2.	MA6251	Mathematics – II	3	1	0	4
3.	PH6251	Engineering Physics – II	3	0	0	3
4.	CY6251	Engineering Chemistry – II	3	0	0	3
5.	EC6201	Electronic Devices	3	0	0	3
6.	EE6201	Circuit Theory	3	1	0	4
PRAC	TICALS					
7.	GE6262	Physics and Chemistry Laboratory - II	0	0	2	1
8.	EC6211	Circuits and Devices Laboratory	0	0	3	2
		TOTAL	18	3	5	24

SEMESTER III

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С		
THEO	THEORY							
1.	MA6351	Transforms and Partial Differential Equations	3	1	0	4		
2.	EE6352	Electrical Engineering and Instrumentation	3	1	0	4		
3.	EC6301	Object Oriented Programming and Data	3	0	0	3		
		Structures						
4.	EC6302	Digital Electronics	3	0	0	3		
5.	EC6303	Signals and Systems	3	1	0	4		
6.	EC6304	Electronic Circuits- I	3	1	0	4		
PRAC [®]	TICAL							
7.	EC6311	Analog and Digital Circuits Laboratory	0	0	3	2		
8.	EC6312	OOPS and Data Structures Laboratory	0	0	3	2		
		TOTAL	18	4	6	26		

SEMESTER IV

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С
THEOF	۲Y					
1.	MA6451	Probability and Random Processes	3	1	0	4
2.	EC6401	Electronic Circuits II	3	0	0	3
3.	EC6402	Communication Theory	3	0	0	3
4.	EC6403	Electromagnetic Fields	3	1	0	4
5.	EC6404	Linear Integrated Circuits	3	0	0	3
6.	EC6405	Control System Engineering	3	0	0	3
PRAC	TICAL					
7.	EC6411	Circuit and Simulation Integrated Laboratory	0	0	3	2
8.	EC6412	Linear Integrated Circuit Laboratory	0	0	3	2
9.	EE6461	Electrical Engineering and Control System Laboratory	0	0	3	2
		TOTAL	18	2	9	26

SEMESTER V

SL. No.	COURSE CODE	COURSE TITLE	L	т	Ρ	С		
THEOF	THEORY							
1.	EC6501	Digital Communication	3	0	0	3		
2.	EC6502	Principles of Digital Signal Processing	3	1	0	4		
3.	EC6503	Transmission Lines and Wave Guides	3	1	0	4		
4.	GE6351	Environmental Science and Engineering	3	0	0	3		
5.	EC6504	Microprocessor and Microcontroller	3	0	0	3		
PRAC	FICAL							
6.	EC6511	Digital Signal Processing Laboratory	0	0	3	2		
7.	EC6512	Communication System Laboratory	0	0	3	2		
8.	EC6513	Microprocessor and Microcontroller Laboratory	0	0	3	2		
		TOTAL	15	2	9	23		

SEMESTER VI

SL. No.	COURSE CODE	COURSE TITLE	L	т	Р	С				
THEO	THEORY									
1.	MG6851	Principles of Management	3	0	0	3				
2.	CS6303	Computer Architecture	3	0	0	3				
3.	CS6551	Computer Networks	3	0	0	3				
4.	EC6601	VLSI Design	3	0	0	3				
5.	EC6602	Antenna and Wave propagation	3	0	0	3				
6.		Elective I	3	0	0	3				
PRAC	TICAL	·								
7.	EC6611	Computer Networks Laboratory	0	0	3	2				
8.	EC6612	VLSI Design Laboratory	0	0	3	2				
9.	GE6674	Communication and Soft Skills - Laboratory Based	0	0	4	2				
		TOTAL	18	0	10	24				

SEMESTER VII

SL. No.	COURSE CODE	COURSE TITLE	L	т	Ρ	С		
THEOF	THEORY							
1.	EC6701	RF and Microwave Engineering	3	0	0	3		
2.	EC6702	Optical Communication and Networks	3	0	0	3		
3.	EC6703	Embedded and Real Time Systems	3	0	0	3		
4.		Elective II	3	0	0	3		
5.		Elective III	3	0	0	3		
6.		Elective IV	3	0	0	3		
PRAC	FICAL							
7.	EC6711	Embedded Laboratory	0	0	3	2		
8.	EC6712	Optical and Microwave Laboratory	0	0	3	2		
		TOTAL	18	0	6	22		

SEMESTER VIII

SL. No.	COURSE CODE	COURSE TITLE	L	т	Р	С			
THEOF	THEORY								
1.	EC6801	Wireless Communication	3	0	0	3			
2.	EC6802	Wireless Networks	3	0	0	3			
3.		Elective V	3	0	0	3			
4.		Elective VI	3	0	0	3			
PRAC1	FICAL								
5.	EC6811	Project Work	0	0	12	6			
		TOTAL	12	0	12	18			

TOTAL CREDITS:189

SEMESTER VI

ELECTIVE – I

SL. No.	COURSE CODE	COURSE TITLE	L	т	Ρ	С
1.	EC6001	Medical Electronics	3	0	0	3
2.	EC6002	Advanced Digital Signal Processing	3	0	0	3
3.	CS6401	Operating Systems	3	0	0	3
4.	EC6003	Robotics and Automation	3	0	0	3

SEMESTER VII

ELECTIVE-II

SL. No.	COURSE CODE	COURSE TITLE	L	т	Р	С
5.	EC6004	Satellite Communication	3	0	0	3
6.	EC6005	Electronic Testing	3	0	0	3
7.	EC6006	Avionics	3	0	0	3
8.	CS6012	Soft Computing	3	0	0	3
9.	IT6005	Digital Image Processing	3	0	0	3
10.	CS6013	Foundation Skills in Integrated Product Development	3	0	0	3

ELECTIVE- III

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С
11.	EC6007	Speech Processing	3	0	0	3
12.	EC6008	Web Technology	3	0	0	3
13.	EC6009	Advanced Computer Architecture	3	0	0	3
14.	EC 6010	Electronics Packaging	3	0	0	3
15.	EC6011	Electro Magnetic Interference and Compatibility	3	0	0	3

ELECTIVE – IV

SL. No.	COURSE CODE	COURSE TITLE	L	т	Ρ	С
16.	EC6012	CMOS Analog IC Design	3	0	0	3
17.	EC6013	Advanced Microprocessors and Microcontrollers	3	0	0	3
18.	EC6014	Cognitive Radio	3	0	0	3
19.	EC6015	Radar and Navigational Aids	3	0	0	3
20.	EC6016	Opto Electronic Devices	3	0	0	3

SEMESTER VIII

ELECTIVE --V

SL. No.	COURSE CODE	COURSE TITLE	L	т	Ρ	С
21.	EC6017	RF System Design	3	0	0	3
22.	CS6003	Ad hoc and Sensors Networks	3	0	0	3
23.	GE6082	Indian Constitution and Society	3	0	0	3
24.	EC6018	Multimedia Compression and Communication	3	0	0	3
25.	GE6075	Professional Ethics in Engineering	3	0	0	3
26.	GE6083	Disaster Management	3	0	0	3

ELECTIVE – VI

SL. No.	COURSE CODE	COURSE TITLE	L	т	Ρ	с
27.	EC6019	Data Converters	3	0	0	3
28.	CS6701	Cryptography and Network Security	3	0	0	3
29.	GE6757	Total Quality Management	3	0	0	3
30.	MG6071	Entrepreneurship Development	3	0	0	3
31.	MG6088	Software Project Management	3	0	0	3
32.	GE6084	Human Rights	3	0	0	3

7

OBJECTIVES:

- To enable learners of Engineering and Technology develop their basic communication skills in English.
- To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.
- To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.
- To inculcate the habit of reading and writing leading to effective and efficient communication.

UNIT I

Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds); Speaking - Speaking about one's place, important festivals etc. – Introducing oneself, one's family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one's leisure time activities, hometown, etc.); Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II

Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette; Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions; Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions - Recommendations – Instructions; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures – Picture-based activities.

UNIT III

Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation - Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing - Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) - Paraphrasing; Grammar - Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary - Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables for interpretations.

UNIT IV

Listening - Watching videos / documentaries and responding to questions based on them; Speaking - Responding to questions - Different forms of interviews - Speaking at different types of interviews; Reading - Making inference from the reading passage - Predicting the content of a reading passage; Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of essays; Grammar - Adverbs – Tenses – future time reference; Vocabulary - Single word substitutes - Use of abbreviations and acronyms; E-materials - Interactive exercises for Grammar and Vocabulary - Sample interviews - film scenes - dialogue writing.

9+3

9+3

9+3

UNIT V

Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials - Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents - Interpreting posters.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Learners should be able to:

- Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- Read different genres of texts adopting various reading strategies.
- Listen/view and comprehend different spoken discourses/excerpts in different accents.

TEXTBOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011
- 2. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006
- 3. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 4. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001
- 5. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008

EXTENSIVE Reading (Not for Examination)

1. Kalam, Abdul. Wings of Fire. Universities Press, Hyderabad. 1999.

WEBSITES:

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like self introduction, peer introduction, group poster making, grammar and vocabulary games, etc.
- Discussions
- Role play activities
- Short presentations
- Listening and viewing activities with follow up activities like discussion, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc.

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Reviews
- Creative writing
- Poster making, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual speaking activities, Pair work activities like role play, Interview, Group discussions
- Reading assessment: Reading passages with comprehension questions graded from simple to complex, from direct to inferential
- ✓ Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content.

End Semester Examination: 80%

MA6151

MATHEMATICS – I

L T P C 3 1 0 4

OBJECTIVES:

- To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
- To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES

Eigen values and Eigenvectors of a real matrix – Characteristic equation – Properties of eigenvalues and eigenvectors – Statement and applications of Cayley-Hamilton Theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

MULTIPLE INTEGRALS

Double integrals in cartesian and polar coordinates – Change of order of integration – Area enclosed by plane curves – Change of variables in double integrals – Area of a curved surface - Triple integrals - Volume of Solids.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

UNIT V

• This course equips students to have basic knowledge and understanding in one fields of materials, integral and differential calculus.

TEXT BOOKS:

- ^{1.} Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

REFERENCES:

- 1 Dass, H.K., and Er. Rainish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.
- 2 Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3 Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.
- 4 Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5 Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I. Second Edition, PEARSON Publishing, 2011.

PH6151

ENGINEERING PHYSICS – I

LTPC 3 0 0 3

OBJECTIVES:

• To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT II SEQUENCES AND SERIES

Sequences: Definition and examples - Series: Types and Convergence - Series of positive terms -Tests of convergence: Comparison test. Integral test and D'Alembert's ratio test – Alternating series – Leibnitz's test - Series of positive and negative terms - Absolute and conditional convergence.

UNIT III **APPLICATIONS OF DIFFERENTIAL CALCULUS**

Curvature in Cartesian co-ordinates - Centre and radius of curvature - Circle of curvature - Evolutes - Envelopes - Evolute as envelope of normals.

DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES UNIT IV

Limits and Continuity – Partial derivatives – Total derivative – Differentiation of implicit functions – Jacobian and properties - Taylor's series for functions of two variables - Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

9+3

9+3

UNIT I CRYSTAL PHYSICS

Lattice - Unit cell - Bravais lattice - Lattice planes - Miller indices - d spacing in cubic lattice -Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (gualitative treatment)-Crystal growth techniques -solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II **PROPERTIES OF MATTER AND THERMAL PHYSICS**

Elasticity- Hooke's law - Relationship between three modulii of elasticity (qualitative) - stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever -Young's modulus by uniform bending- I-shaped girders

Modes of heat transfer- thermal conductivity- Newton's law of cooling - Linear heat flow - Lee's disc method - Radial heat flow - Rubber tube method - conduction through compound media (series and parallel)

UNIT III QUANTUM PHYSICS

Black body radiation - Planck's theory (derivation) - Deduction of Wien's displacement law and Rayleigh - Jeans' Law from Planck's theory - Compton effect. Theory and experimental verification -Properties of Matter waves - G.P. Thomson experiment -Schrödinger's wave equation - Time independent and time dependent equations - Physical significance of wave function - Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber-Fechner law - Sabine's formula- derivation using growth and decay method - Absorption Coefficient and its determination -factors affecting acoustics of buildings and their remedies.

Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A.B and C – scan displays, Medical applications - Sonogram

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion -Einstein's A and B coefficients derivation. Types of lasers - Nd:YAG, CO₂, Semiconductor lasers (homojunction & heterojunction)-

Industrial and Medical Applications.

Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) - attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TOTAL: 45 PERIODS

OUTCOMES:

The students will have knowledge on the basics of physics related to properties of matter, Optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications

9

9

9

TEXT BOOKS:

- 1. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 2. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009
- 3. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Mani P. Engineering Physics I. Dhanam Publications, 2011.
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 4. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.
- 5. Rajagopal K. Engineering Physics. PHI, New Delhi, 2011.
- 6. Senthilkumar G. Engineering Physics I. VRB Publishers, 2011.

CY6151

ENGINEERING CHEMISTRY - I

L T P C 3 0 0 3

OBJECTIVES:

- To make the students conversant with basics of polymer chemistry.
- To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I POLYMER CHEMISTRY

Introduction: Classification of polymers – Natural and synthetic; Thermoplastic and Thermosetting. Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tg, Tacticity, Molecular weight – weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension. Preparation, properties and uses of Nylon 6,6, and Epoxy resin.

UNIT II CHEMICAL THERMODYNAMICS

Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van't Hoff isotherm and isochore(problems).

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY

Photochemistry: Laws of photochemistry - Grotthuss–Draper law, Stark–Einstein law and Lambert-Beer Law. Quantum efficiency – determination- Photo processes - Internal Conversion, Inter-system crossing, Fluorescence, Phosphorescence, Chemiluminescence and Photo-sensitization. Spectroscopy: Electromagnetic spectrum - Absorption of radiation – Electronic, Vibrational and rotational transitions. UV-visible and IR spectroscopy – principles, instrumentation (Block diagram only).

9

9

UNIT IV PHASE RULE AND ALLOYS

Phase rule: Introduction, definition of terms with examples, One Component System- water system - Reduced phase rule - Two Component Systems- classification – lead-silver system, zinc-magnesium system. Alloys: Introduction- Definition- Properties of alloys- Significance of alloying, Functions and effect of alloying elements- Ferrous alloys- Nichrome and Stainless steel – heat treatment of steel; Non-ferrous alloys – brass and bronze.

UNIT V NANOCHEMISTRY

Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties. nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrodeposition, chemical vapour deposition, laser ablation; Properties and applications

TOTAL :45 PERIODS

OUTCOMES:

The knowledge gained on polymer chemistry, thermodynamics. spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010
- 2. Kannan P., Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009.

REFERENCES:

- 1. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008.
- 3. Gowariker V.R., Viswanathan N.V. and Jayadev Sreedhar, "Polymer Science", New Age International P (Ltd.,), Chennai, 2006.
- 4. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.

GE6151	COMPUTER PROGRAMMING	L T PC
		3003

OBJECTIVES:

The students should be made to:

- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C.

UNIT I INTRODUCTION

Generation and Classification of Computers- Basic Organization of a Computer –Number System – Binary – Decimal – Conversion – Problems. Need for logical analysis and thinking – Algorithm – Pseudo code – Flow Chart.

9

9

STRUCTURES AND UNIONS

Introduction - need for structure data type - structure definition - Structure declaration - Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

OUTCOMES:

UNIT V

At the end of the course, the student should be able to:

- Design C Programs for problems.
- Write and execute C programs for simple applications

TEXTBOOKS:

- 1. Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Dorling Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
- 2. Pradip Dev. Manas Ghosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009
- 3. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.

REFERENCES:

- 1. Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2006.
- 2. Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint, 2007.
- 3. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006.

ENGINEERING GRAPHICS	LT	РС	
----------------------	----	----	--

OBJECTIVES:

GE6152

- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning.

UNIT II C PROGRAMMING BASICS

Problem formulation – Problem Solving - Introduction to 'C' programming –fundamentals – structure of a 'C' program - compilation and linking processes - Constants, Variables - Data Types -Expressions using operators in 'C' - Managing Input and Output operations - Decision Making and Branching – Looping statements – solving simple scientific and statistical problems.

UNIT III **ARRAYS AND STRINGS**

Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String- String operations – String Arrays. Simple programs- sorting- searching – matrix operations.

UNIT IV FUNCTIONS AND POINTERS

Function – definition of function – Declaration of function – Pass by value – Pass by reference – Recursion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays- Example Problems.

9

10

9

9

TOTAL: 45 PERIODS

1

UNIT I PLANE CURVES AND FREE HAND SKETCHING

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves, Scales: Construction of Diagonal and Vernier scales.

Visualization concepts and Free Hand sketching: Visualization principles -Representation of Three Dimensional objects - Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II **PROJECTION OF POINTS, LINES AND PLANE SURFACES**

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III **PROJECTION OF SOLIDS**

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids - Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT V **ISOMETRIC AND PERSPECTIVE PROJECTIONS**

Principles of isometric projection - isometric scale -Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

COMPUTER AIDED DRAFTING (Demonstration Only)

Introduction to drafting packages and demonstration of their use.

OUTCOMES:

On Completion of the course the student will be able to:

- Perform free hand sketching of basic geometrical constructions and multiple views of objects.
- Do orthographic projection of lines and plane surfaces.
- Draw projections and solids and development of surfaces.
- Prepare isometric and perspective sections of simple solids.
- Demonstrate computer aided drafting.

TEXT BOOK:

1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.

6+9

3

5+9

TOTAL: 75 PERIODS

5+9

5+9

REFERENCES:

- 1. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 2. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 3. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 5. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 6. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

COMPUTER PRACTICES LABORATORY L T P C 0 0 3 2

OBJECTIVES:

GE6161

The student should be made to:

- Be familiar with the use of Office software.
- Be exposed to presentation and visualization tools.
- Be exposed to problem solving techniques and flow charts.
- Be familiar with programming in C.
- Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:

- 1. Search, generate, manipulate data using MS office/ Open Office
- 2. Presentation and Visualization graphs, charts, 2D, 3D
- 3. Problem formulation, Problem Solving and Flowcharts
- 4. C Programming using Simple statements and expressions
- 5. Scientific problem solving using decision making and looping.
- 6. Simple programming for one dimensional and two dimensional arrays.
- 7. Solving problems using String functions
- 8. Programs with user defined functions Includes Parameter Passing
- 9. Program using Recursive Function and conversion from given program to flow chart.
- 10. Program using structures and unions.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos.

(or)

Server with C compiler supporting 30 terminals or more.

ENGINEERING PRACTICES LABORATORY L T P C 0 0 3 2

9

13

OBJECTIVES:

GE6162

 To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:

Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

(a) Study of the joints in roofs, doors, windows and furniture.

(b) Hands-on-exercise:

Wood work, joints by sawing, planning and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:

- (a) Preparation of arc welding of butt joints, lap joints and tee joints.
- (b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays, funnels, etc.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

- (a) Smithy operations, upsetting, swaging, setting down and bending. Example Exercise Production of hexagonal headed bolt.
- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and vee fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.

- 2. Fluorescent lamp wiring.
- 3. Stair case wiring

4. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit.

5. Measurement of energy using single phase energy meter.

6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
- 2. Study of logic gates AND, OR, EOR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

OUTCOMES:

- Ability to fabricate carpentry components and pipe connections including plumbing works.
- Ability to use welding equipments to join the structures.
- Ability to fabricate electrical and electronics circuits.

TOTAL: 45 PERIODS

10

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: CIVIL

1. Assorted components for plumbing consisting of metallic pipes plastic pipes, flexible pipes, couplings, unions, elbows, plugs a	
other fittings.	15 Sets.
2. Carpentry vice (fitted to work bench)	15 Nos.
3. Standard woodworking tools	15 Sets.
4. Models of industrial trusses, door joints, furniture joints	5 each
5. Power Tools: (a) Rotary Hammer	2 Nos
(b) Demolition Hammer	2 Nos
(c) Circular Saw	2 Nos
(d) Planer	2 Nos
(e) Hand Drilling Machine	2 Nos
(f) Jigsaw	2 Nos
MECHANICAL	
1. Arc welding transformer with cables and holders	5 Nos.
2. Welding booth with exhaust facility	5 Nos.
3. Welding accessories like welding shield, chipping hammer,	01100.
wire brush, etc.	5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other	0 0010.
welding outfit.	2 Nos.
5. Centre lathe	2 Nos.
6. Hearth furnace, anvil and smithy tools	2 Sets.
7. Moulding table, foundry tools	2 Sets.
8. Power Tool: Angle Grinder	2 Nos
•	ne each.
ELECTRICAL	
1. Assorted electrical components for house wiring	15 Sets
2. Electrical measuring instruments	10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency la	
4. Megger (250V/500V)	1 No.
5. Power Tools: (a) Range Finder	2 Nos
(b) Digital Live-wire detector	2 Nos
	21105
ELECTRONICS	
1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply	

REFERENCES:

- 1. Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Puplishing House Pvt.Ltd, (2006)
- 3. Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, (2007).
- 4. Rajendra Prasad A. & Sarma P.M.M.S., "Workshop Practice", Sree Sai Publication, (2002).
- 5. Kannaiah P. & Narayana K.L., "Manual on Workshop Practice", Scitech Publications, (1999).

GE6163

PHYSICS LABORATORY – I

OBJECTIVES:

To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1 (a) Determination of Wavelength, and particle size using Laser
 - (b) Determination of acceptance angle in an optical fiber.
- 2. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 3. Determination of wavelength of mercury spectrum spectrometer grating
- 4. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- 5. Determination of Young's modulus by Non uniform bending method
- 6. Determination of specific resistance of a given coil of wire Carey Foster's Bridge

OUTCOMES:

The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Diode laser, lycopodium powder, glass plate, optical fiber.
- 2. Ultrasonic interferometer
- 3. Spectrometer, mercury lamp, grating
- 4. Lee's Disc experimental set up
- 5. Traveling microscope, meter scale, knife edge, weights
- Carey foster's bridge set up (Vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY-I LIST OF EXPERIMENTS

(Any FIVE Experiments)

OBJECTIVES:

- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by vacometry.
- 1 Determination of DO content of water sample by Winkler's method.
- 2 Determination of chloride content of water sample by argentometric method
- 3 Determination of strength of given hydrochloric acid using pH meter
- 4 Determination of strength of acids in a mixture using conductivity meter
- 5 Estimation of iron content of the water sample using spectrophotometer (1,10- phenanthroline / thiocyanate method)
- 6 Determination of molecular weight of polyvinylalcohol using Ostwald viscometer
- 7 Conductometric titration of strong acid vs strong base

TOTAL: 30 PERIODS

OUTCOMES:

The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	lodine flask	-	30 Nos
2.	pH meter	-	5 Nos
3.	Conductivity meter	-	5 Nos
4.	Spectrophotometer	-	5 Nos
5.	Ostwald Viscometer	-	10 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (each 30 Nos.)

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New Yor (2001).
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry", LBS Singapore (1994).
- 3. Jeffery G.H., Bassett J., Mendham J.and Denny vogel's R.C, "Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M., Sandell E.B. et al. "Quantitative chemical analysis", Mcmillan, Madras 1980.

HS6251

TECHNICAL ENGLISH II

L T P C 3 1 0 4

OBJECTIVES:

- To make learners acquire listening and speaking skills in both formal and informal contexts.
- To help them develop their reading skills by familiarizing them with different types of reading strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components.

UNIT I

Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using 'emoticons' as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. 'can') - Homophones (e.g. 'some', 'sum'); E-materials - Interactive exercise on Grammar and vocabulary – blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II

Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success,

9+3

9+3

thanking one's friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary -Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary. Extensive reading activity (reading stories / novels). Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students' dialogues.

UNIT III

Listening - Listening to the conversation - Understanding the structure of conversations; Speaking -Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information - expressing feelings (affection, anger, regret, etc.); Reading - Speed reading - reading passages with time limit - Skimming; Writing - Minutes of meeting - format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles - elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. 'rock', 'train', 'ring'); E-materials - Interactive exercise on Grammar and vocabulary -Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials Attending a meeting and writing minutes.

UNIT IV

Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned scanning; Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary -Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview - recording the responses - e-résumé writing.

UNIT V

Listening - Viewing a model group discussion and reviewing the performance of each participant -Identifying the characteristics of a good listener; Speaking - Group discussion skills - initiating the discussion - exchanging suggestions and proposals - expressing dissent/agreement - assertiveness in expressing opinions - mind mapping technique; Reading - Note making skills - making notes from books, or any form of written materials - Intensive reading; Writing - Checklist - Types of reports -Feasibility / Project report - report format - recommendations / suggestions - interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary - Collocation; Ematerials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Learners should be able to

- speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
- write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- read different genres of texts, infer implied meanings and critically analyse and evaluate them • for ideas as well as for method of presentation.
- listen/view and comprehend different spoken excerpts critically and infer unspoken and implied • meanings.

9+3

9+3

9+3

TEXTBOOKS

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES

- 1. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008
- 2. Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011
- 3. Riordan, Daniel. G. Technical Communication. Cengage Learning, New Delhi. 2005
- 4. Sharma, Sangeetha & Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2009
- 5. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007

EXTENSIVE Reading (Not for Examination)

1. Khera, Shiv. You can Win. Macmillan, Delhi. 1998.

Websites

- 1. http://www.englishclub.com
- 2. http://owl.english.purdue.edu

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Report
- Creative writing, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual presentations, Group discussions
- Reading assessment: Reading passages with comprehension questions graded following Bloom's taxonomy
- ✓ Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom's taxonomy.

End Semester Examination: 80%

• To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electric current.

To make the student acquire sound knowledge of techniques in solving ordinary differential

• To acquaint the student with the concepts of vector calculus, needed for problems in all

• To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I **VECTOR CALCULUS**

engineering disciplines.

Gradient, divergence and curl - Directional derivative - Irrotational and solenoidal vector fields -Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II **ORDINARY DIFFERENTIAL EQUATIONS**

equations that model engineering problems.

Higher order linear differential equations with constant coefficients - Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties - Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem - Initial and final value theorems -Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

Functions of a complex variable - Analytic functions: Necessary conditions - Cauchy-Riemann equations and sufficient conditions (excluding proofs) - Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

UNIT V **COMPLEX INTEGRATION**

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXT BOOKS:

- 1. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

MATHEMATICS – II

MA6251

OBJECTIVES:

9+3

9+3

9+3

9+3

9+3

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics" Volume II, Second Edition, PEARSON Publishing 2011.

PH6251

ENGINEERING PHYSICS – II

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVES:

• To enrich the understanding of various types of materials and their applications in engineering and technology.

UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications

Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High T_c superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications

TOTAL: 45 PERIODS

OUTCOMES:

The students will have the knowledge on physics of materials and that knowledge will be used by them in different engineering and technology applications

TEXT BOOKS:

- 1. Arumugam M., Materials Science. Anuradha publishers, 2010
- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009

REFERENCES:

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011
- 3. Mani P. Engineering Physics II. Dhanam Publications, 2011
- 4. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009

CY6251

ENGINEERING CHEMISTRY-II

L T P C 3 0 0 3

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- Principles of electrochemical reactions, redox reactions in corrosiion of materials and methods for corrosion prevention and protection of materials.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.

UNIT I WATER TECHNOLOGY

Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement-boiler corrosion-priming and foaming- desalination of brackish water –reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

Electrochemical cell - redox reaction, electrode potential- origin of electrode potential- oxidation potential- reduction potential, measurement and applications - electrochemical series and its significance - Nernst equation (derivation and problems). Corrosion- causes- factors- types-chemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - electrochemical protection – sacrificial anode method and impressed current cathodic method. Paints- constituents and function. Electroplating of Copper and electroless plating of nickel.

UNIT III ENERGY SOURCES

Introduction- nuclear energy- nuclear fission- controlled nuclear fission- nuclear fusion- differences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generator- classification of nuclear reactor- light water reactor- breeder reactor- solar energy conversion- solar cells- wind energy. Batteries and fuel cells:Types of batteries- alkaline battery- lead storage battery- nickel-cadmium battery- lithium battery- fuel cell H_2 - O_2 fuel cell- applications.

9

9

UNIT IV ENGINEERING MATERIALS

Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties – refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement-waterproof and white cement-properties and uses. Glass - manufacture, types, properties and uses.

UNIT V FUELS AND COMBUSTION

Fuel: Introduction- classification of fuels- calorific value- higher and lower calorific values- coalanalysis of coal (proximate and ultimate)- carbonization- manufacture of metallurgical coke (Otto Hoffmann method) - petroleum- manufacture of synthetic petrol (Bergius process)- knocking- octane number - diesel oil- cetane number - natural gas- compressed natural gas(CNG)- liquefied petroleum gases(LPG)- producer gas- water gas. Power alcohol and bio diesel. Combustion of fuels: introduction- theoretical calculation of calorific value- calculation of stoichiometry of fuel and air ratioignition temperature- explosive range - flue gas analysis (ORSAT Method).

TOTAL: 45 PERIODS

OUTCOMES:

The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- 1. Vairam S, Kalyani P and SubaRamesh., "Engineering Chemistry"., Wiley India Pvt Ltd., New Delhi., 2011
- 2. Dara S.S and Umare S.S. "Engineering Chemistry", S. Chand & Company Ltd., New Delhi , 2010

REFERENCES:

- 1. Kannan P. and Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009
- 2. AshimaSrivastava and Janhavi N N., "Concepts of Engineering Chemistry", ACME Learning Private Limited., New Delhi., 2010.
- 3. RenuBapna and Renu Gupta., "Engineering Chemistry", Macmillan India Publisher Ltd., 2010.
- 4. Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010

EC6201

ELECTRONIC DEVICES

L T P C 3 0 0 3

9

OBJECTIVES:

The student should be made to:

- Be exposed to basic electronic devices
- Be familiar with the theory, construction, and operation of Basic electronic devices.

UNIT I SEMICONDUCTOR DIODE

PN junction diode, Current equations, Diffusion and drift current densities, forward and reverse bias characteristics, Switching Characteristics.

UNIT II BIPOLAR JUNCTION

NPN -PNP -Junctions-Early effect-Current equations – Input and Output characteristics of CE, CB CC-Hybrid - π model - h-parameter model, Ebers Moll Model- Gummel Poon-model, Multi Emitter Transistor.

UNIT III FIELD EFFECT TRANSISTORS

JFETs – Drain and Transfer characteristics,-Current equations-Pinch off voltage and its significance-MOSFET- Characteristics- Threshold voltage -Channel length modulation, D-MOSFET, E-MOSFET-, Current equation - Equivalent circuit model and its parameters, FINFET,DUAL GATE MOSFET.

UNIT IV SPECIAL SEMICONDUCTOR DEVICES

Metal-Semiconductor Junction- MESFET, Schottky barrier diode-Zener diode-Varactor diode – Tunnel diode- Gallium Arsenide device, LASER diode, LDR.

UNIT V POWER DEVICES AND DISPLAY DEVICES

UJT, SCR, Diac, Triac, Power BJT- Power MOSFET- DMOS-VMOS. LED, LCD, Photo transistor, Opto Coupler, Solar cell, CCD.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Explain the theory, construction, and operation of basic electronic devices.
- Use the basic electronic devices

TEXT BOOKS

1. Donald A Neaman, "Semiconductor Physics and Devices", Third Edition, Tata Mc GrawHill Inc. 2007.

REFERENCES:

- 1. Yang, "Fundamentals of Semiconductor devices", McGraw Hill International Edition, 1978.
- 2. Robert Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theory" Pearson Prentice Hall, 10th edition,July 2008.

EE6201

CIRCUIT THEORY

L T P C 3 1 0 4

12

OBJECTIVES:

- To introduce electric circuits and its analysis
- To impart knowledge on solving circuits using network theorems
- To introduce the phenomenon of resonance in coupled circuits.
- To educate on obtaining the transient response of circuits.
- To Phasor diagrams and analysis of three phase circuits

UNIT I BASIC CIRCUITS ANALYSIS

Ohm's Law – Kirchoffs laws – DC and AC Circuits – Resistors in series and parallel circuits – Mesh current and node voltage method of analysis for D.C and A.C. circuits – Phasor Diagram – Power, Power Factor and Energy

9

9

9

UNIT II NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS

Network reduction: voltage and current division, source transformation – star delta conversion. Thevenins and Novton & Theorem – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem.

UNIT III RESONANCE AND COUPLED CIRCUITS

Series and paralled resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.

UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS

Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. with sinusoidal input – Characterization of two port networks in terms of Z,Y and h parameters.

UNIT V THREE PHASE CIRCUITS

Three phase balanced / unbalanced voltage sources – analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power and power factor measurements in three phase circuits.

TOTAL: 60 PERIODS

OUTCOMES:

- Ability analyse electrical circuits
- Ability to apply circuit theorems
- Ability to analyse AC and DC Circuits

TEXT BOOKS:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 6th edition, New Delhi, 2003.
- 2. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McGraw-Hill, New Delhi, 2001.

REFERENCES:

- 1. Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, 1996.
- 2. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, 2007.
- 3. Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.
- 4. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2003.

GE6262

PHYSICS AND CHEMISTRY LABORATORY – II

L	т	Ρ	С
0	0	2	1

PHYSICS LABORATORY – II

OBJECTIVES:

• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

(Any FIVE Experiments)

1. Determination of Young's modulus by uniform bending method

12

12

- 2. Determination of band gap of a semiconductor
- 3. Determination of Coefficient of viscosity of a liquid –Poiseuille's method
- 4. Determination of Dispersive power of a prism Spectrometer
- 5. Determination of thickness of a thin wire Air wedge method
- 6. Determination of Rigidity modulus Torsion pendulum

OUTCOMES:

The students will have the ability to test materials by using their knowledge of applied physics principles in optics and properties of matter.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Traveling microscope, meter scale, Knife edge, weights
- 2. Band gap experimental set up
- 3. Burette, Capillary tube, rubber tube, stop clock, beaker and weighing balance
- 4. spectrometer, prism, sodium vapour lamp.
- 5. Air-wedge experimental set up.
- 6. Torsion pendulum set up.

(vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY -II (Any FIVE Experiments)

OBJECTIVES:

To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of hardness, alkalinity, metal ion content, corrosion in metals and cement analysis.

- 1 Determination of alkalinity in water sample
- 2 Determination of total, temporary & permanent hardness of water by EDTA method
- 3 Estimation of copper content of the given solution by EDTA method
- 4 Estimation of iron content of the given solution using potentiometer
- 5 Estimation of sodium present in water using flame photometer
- 6 Corrosion experiment weight loss method
- 7 Conductometric precipitation titration using BaCl₂ and Na₂SO₄
- 8 Determination of CaO in Cement.

TOTAL: 30 PERIODS

OUTCOMES:

The students will be conversant with hands-on knowledge in the quantitative chemical analysis of water quality related parameters, corrosion measurement and cement analysis.

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York 2001.
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry, LBS Singapore (1994).
- 3. Jeffery G.H, Bassett J., Mendham J. and Denny R.C., "Vogel's Text book of
- 4. quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 5. Kolthoff I.M. and Sandell E.B. et al. Quantitative chemical analysis, Mcmillan, Madras 1980

Laboratory classes on alternate weeks for Physics and Chemistry.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

5 Nos

- 1. Potentiometer-5 Nos2. Flame photo meter-5 Nos3. Weighing Balance-5 Nos
- 4. Conductivity meter -

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (30 Nos each)

EC6211

CIRCUITS AND DEVICES LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- Be exposed to the characteristics of basic electronic devices
- Be exposed to RL and RC circuits
- Be familiar with Thevinin & Norton theorem KVL & KCL, and Super Position Theorems

LIST OF EXPERIMENTS:

- 1. Characteristics of PN Junction Diode
- 2. Zener diode Characteristics & Regulator using Zener diode
- 3. Common Emitter input-output Characteristics
- 4. Common Base input-output Characteristics
- 5. FET Characteristics
- 6. SCR Characteristics
- 7. Clipper and Clamper & FWR
- 8. Verifications Of Thevinin & Norton theorem
- 9. Verifications Of KVL & KCL
- 10. Verifications Of Super Position Theorem
- 11. verifications of maximum power transfer & reciprocity theorem
- 12. Determination Of Resonance Frequency of Series & Parallel RLC Circuits
- 13. Transient analysis of RL and RC circuits

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Learn the characteristics of basic electronic devices
- Design RL and RC circuits
- Verify Thevinin & Norton theorem KVL & KCL, and Super Position Theorems

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

BC 107, BC 148,2N2646,BFW10	- 25 each
1N4007, Zener diodes	- 25 each
Resistors, Capacitors, Inductors	- sufficient quantities
Bread Boards	- 15 Nos
CRO (30MHz)	– 10 Nos.
Function Generators (3MHz)	– 10 Nos.
Dual Regulated Power Supplies (0 – 30V)	– 10 Nos.
CRO (30MHz) Function Generators (3MHz)	– 10 Nos. – 10 Nos.

UNIT IIFOURIER SERIES9+3Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series –
Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.9+3

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.

OUTCOMES:

• The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

- 1. Veerarajan. T., "Transforms and Partial Differential Equations", Second reprint, Tata Mc Graw Hill Education Pvt. Ltd., New Delhi, 2012.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES:

- 1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd, 2007.
- 2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-Graw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

OBJECTIVES:

- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

TOTAL (L:45+T:15): 60 PERIODS

9+3

9+3

9+3

9+3

LT P C 3 1 0 4

- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Sixth Edition, Tata Mc Graw Hill Education Pvt Ltd, New Delhi, 2012.
- 6. Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

EE6352 ELECTRICAL ENGINEERING AND INSTRUMENTATION LTPC

3 1 0 4

9

9

9

OBJECTIVES:

- To introduce three phase supply and power measurement.
- To understand concepts in electrical generators, motors and transformers.
- To introduce power generation, transmission and distribution concepts.
- To learn basic measurement concepts.
- To learn the concepts of electronic measurements.
- To learn about importance of digital instruments in measurements

UNIT I DC MACHINES

Three phase circuits, a review. Construction of DC machines – Theory of operation of DC generators – Characteristics of DC generators- Operating principle of DC motors – Types of DC motors and their characteristics – Speed control of DC motors- Applications.

UNIT II TRANSFORMER

Introduction – Single phase transformer construction and principle of operation – EMF equation of transformer-Transformer no–load phasor diagram — Transformer on–load phasor diagram — Equivalent circuit of transformer – Regulation of transformer –Transformer losses and efficiency-All day efficiency –auto transformers.

UNIT III INDUCTION MACHINES AND SYNCHRONOUS MACHINES

Principle of operation of three-phase induction motors – Construction –Types – Equivalent circuit – Construction of single-phase induction motors – Types of single phase induction motors – Double revolving field theory – starting methods - Principles of alternator – Construction details – Types – Equation of induced EMF – Voltage regulation. Methods of starting of synchronous motors – Torque equation – V curves – Synchronous motors.

UNIT IV BASICS OF MEASUREMENT AND INSTRUMENTATION

Static and Dynamic Characteristics of Measurement – Errors in Measurement - Classification of Transducers – Variable resistive – Strainguage, thermistor RTD – transducer - Variable Capacitive Transducer – Capacitor Microphone - Piezo Electric Transducer – Variable Inductive transducer – LVDT, RVDT

UNIT V ANALOG AND DIGITAL INSTRUMENTS

DVM, DMM – Storage Oscilloscope. Comparison of Analog and Digital Modes of operation, Application of measurement system, Errors. Measurement of R, L and C, Wheatstone, Kelvin, Maxwell, Anderson, Schering and Wien bridges Measurement of Inductance, Capacitance, Effective resistance at high frequency, Q-Meter.

TOTAL (L:45+T:15): 60 PERIODS

9

OUTCOMES:

Students will be able to understand

- The three phase supply and power measurement.
- The concepts in electrical generators, motors and transformers.
- The basic measurement and instrumentation based devices.
- The relevance of digital instruments in measurements.

TEXT BOOKS:

- 1. I.J Nagarath and Kothari DP, "Electrical Machines", McGraw-Hill Education (India) Pvt Ltd 4th Edition ,2010
- 2. A.K.Sawhney, "A Course in Electrical & Electronic Measurements and Instrumentation", Dhanpat Rai and Co, 2004.

REFERENCES:

- 1. Del Toro, "Electrical Engineering Fundamentals" Pearson Education, New Delhi, 2007.
- 2. W.D.Cooper & A.D.Helfrick, "Modern Electronic Instrumentation and Measurement Techniques", 5th Edition, PHI, 2002.
- 3. John Bird, "Electrical Circuit Theory and Technology", Elsevier, First Indian Edition, 2006.
- 4. Thereja .B.L, "Fundamentals of Electrical Engineering and Electronics", S Chand & Co Ltd, 2008.
- 5. H.S.Kalsi, "Electronic Instrumentation", Tata Mc Graw-Hill Education, 2004.
- 6. J.B.Gupta, "Measurements and Instrumentation", S K Kataria & Sons, Delhi, 2003.

EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES L T P C

OBJECTIVES:

- To comprehend the fundamentals of object oriented programming, particularly in C++.
- To use object oriented programming to implement data structures.
- To introduce linear, non-linear data structures and their applications.

UNIT I DATA ABSTRACTION & OVERLOADING

Overview of C++ – Structures – Class Scope and Accessing Class Members – Reference Variables – Initialization – Constructors – Destructors – Member Functions and Classes – Friend Function – Dynamic Memory Allocation – Static Class Members – Container Classes and Integrators – Proxy Classes – Overloading: Function overloading and Operator Overloading.

UNIT II INHERITANCE & POLYMORPHISM

Base Classes and Derived Classes – Protected Members – Casting Class pointers and Member Functions – Overriding – Public, Protected and Private Inheritance – Constructors and Destructors in derived Classes – Implicit Derived – Class Object To Base – Class Object Conversion – Composition Vs. Inheritance – Virtual functions – This Pointer – Abstract Base Classes and Concrete Classes – Virtual Destructors – Dynamic Binding.

UNIT III LINEAR DATA STRUCTURES

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list implementation — singly linked lists –Polynomial Manipulation - Stack ADT – Queue ADT - Evaluating arithmetic expressions

9

9

3 0 0 3

2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", Third Edition, Addison-

Upon completion of the course, students will be able to:
Explain the concepts of Object oriented programming.

Discuss the different methods of organizing large amount of data.

REFERENCES: 1. Bhushan Trivedi, "Programming with ANSI C++, A Step-By-Step approach", Oxford University Press, 2010.

1. Deitel and Deitel, "C++, How To Program", Fifth Edition, Pearson Education, 2005.

- 2. Goodrich, Michael T., Roberto Tamassia, David Mount, "Data Structures and Algorithms in C++", 7th Edition, Wiley. 2004.
- 3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Second Edition, Mc Graw Hill, 2002.
- 4. Bjarne Stroustrup, "The C++ Programming Language", 3rd Edition, Pearson Education, 2007.
- 5. Ellis Horowitz, Sartaj Sahni and Dinesh Mehta, "Fundamentals of Data Structures in C++", Galgotia Publications, 2007.

EC6302

DIGITAL ELECTRONICS

OBJECTIVES:

OUTCOMES:

TEXT BOOKS:

Wesley, 2007.

- To introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions
- To introduce the methods for simplifying Boolean expressions
- To outline the formal procedures for the analysis and design of combinational circuits
- and sequential circuits
- To introduce the concept of memories and programmable logic devices.
- To illustrate the concept of synchronous and asynchronous sequential circuits

UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES

Minimization Techniques: Boolean postulates and laws – De-Morgan's Theorem - Principle of Duality - Boolean expression - Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - Mc Cluskey method of minimization.

UNIT IV NON-LINEAR DATA STRUCTURES

Trees – Binary Trees – Binary tree representation and traversals – Application of trees: Set representation and Union-Find operations – Graph and its representations – Graph Traversals – Representation of Graphs – Breadth-first search – Depth-first search - Connected components.

UNIT V SORTING and SEARCHING

Write simple applications using C++.

Sorting algorithms: Insertion sort - Quick sort - Merge sort - Searching: Linear search –Binary Search

TOTAL: 45 PERIODS

L T P C 3 0 0 3

8

9

Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive–OR and Exclusive–NOR Implementations of Logic Functions using gates, NAND–NOR implementations – Multi

level gate implementations- Multi output gate implementations. TTL and CMOS Logic and their characteristics – Tristate gates

UNIT II COMBINATIONAL CIRCUITS

Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder/Subtractor - BCD adder – Binary Multiplier – Binary Divider - Multiplexer/ Demultiplexer – decoder - encoder – parity checker – parity generators – code converters - Magnitude Comparator.

UNIT III SEQUENTIAL CIRCUITS

Latches, Flip-flops - SR, JK, D, T, and Master-Slave – Characteristic table and equation –Application table – Edge triggering – Level Triggering – Realization of one flip flop using other flip flops – serial adder/subtractor- Asynchronous Ripple or serial counter – Asynchronous Up/Down counter - Synchronous counters – Synchronous Up/Down counters – Programmable counters – Design of Synchronous counters: state diagram- State table –State minimization –State assignment - Excitation table and maps-Circuit implementation - Modulo–n counter, Registers – shift registers - Universal shift registers – Shift register counters – Ring counter – Shift counters - Sequence generators.

UNIT IV MEMORY DEVICES

Classification of memories – ROM - ROM organization - PROM – EPROM – EEPROM – EAPROM, RAM – RAM organization – Write operation – Read operation – Memory cycle - Timing wave forms – Memory decoding – memory expansion – Static RAM Cell- Bipolar RAM cell – MOSFET RAM cell – Dynamic RAM cell – Programmable Logic Devices – Programmable Logic Array (PLA) -Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using ROM, PLA, PAL

UNIT V SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

Synchronous Sequential Circuits: General Model – Classification – Design – Use of Algorithmic State Machine – Analysis of Synchronous Sequential Circuits

Asynchronous Sequential Circuits: Design of fundamental mode and pulse mode circuits – Incompletely specified State Machines – Problems in Asynchronous Circuits – Design of Hazard Free Switching circuits. Design of Combinational and Sequential circuits using VERILOG.

TOTAL: 45 PERIODS

OUTCOMES:

Students will be able to:

- Analyze different methods used for simplification of Boolean expressions.
- Design and implement Combinational circuits.
- Design and implement synchronous and asynchronous sequential circuits.
- Write simple HDL codes for the circuits.

TEXT BOOK:

1. M. Morris Mano, "Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd., 2008 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.

9

9

9

REFERENCES:

- 1. John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 4. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
- 5. Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011
- 6. Donald D.Givone, "Digital Principles and Design", TMH, 2003.

EC6303

SIGNALS AND SYSTEMS

OBJECTIVES:

- To understand the basic properties of signal & systems and the various methods of classification
- To learn Laplace Transform & Fourier transform and their properties
- To know Z transform & DTFT and their properties
- To characterize LTI systems in the Time domain and various Transform domains

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous time signals (CT signals) - Discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Sinusoidal, Exponential, Classification of CT and DT signals - Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - CT systems and DT systems-Classification of systems – Static & Dynamic, Linear & Nonlinear, Time-variant & Time-invariant, Causal & Noncausal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series analysis-spectrum of Continuous Time (CT) signals- Fourier and Laplace Transforms in CT Signal Analysis - Properties.

UNIT III LINEAR TIME INVARIANT- CONTINUOUS TIME SYSTEMS

Differential Equation-Block diagram representation-impulse response, convolution integrals-Fourier and Laplace transforms in Analysis of CT systems

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS

Baseband Sampling - DTFT – Properties of DTFT - Z Transform – Properties of Z Transform

UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

Difference Equations-Block diagram representation-Impulse response - Convolution sum- Discrete Fourier and Z Transform Analysis of Recursive & Non-Recursive systems

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Upon the completion of the course, students will be able to:

- Analyze the properties of signals & systems
- Apply Laplace transform, Fourier transform, Z transform and DTFT in signal analysis
- Analyze continuous time LTI systems using Fourier and Laplace Transforms
- Analyze discrete time LTI systems using Z transform and DTFT

9

9

9

LTPC 3 1 0 4

9

TEXT BOOK:

1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2007.

REFERENCES:

- 1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.
- 2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson, 2007.
- 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.
- 4. M.J.Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2007.

EC6304ELECTRONIC CIRCUITS – IL T P C3 1 0 4

OBJECTIVES:

The student should be made to

- Learn about biasing of BJTs and MOSFETs
- Design and construct amplifiers
- · Construct amplifiers with active loads
- Study high frequency response of all amplifiers

UNIT I POWER SUPPLIES AND BIASING OF DISCRETE BJT AND MOSFET

Rectifiers with filters- DC Load line, operating point, Various biasing methods for BJT-Design-Stability-Bias compensation, Thermal stability, Design of biasing for JFET, Design of biasing for MOSFET

UNIT II BJT AMPLIFIERS

Small signal Analysis of Common Emitter-AC Load line, Voltage swing limitations, Common collector and common base amplifiers – Differential amplifiers- CMRR- Darlington Amplifier- Bootstrap technique - Cascaded stages - Cascode Amplifier-Large signal Amplifiers – Class A , Class B and Class C Power Amplifiers .

UNIT III JFET AND MOSFET AMPLIFIERS

Small signal analysis of JFET amplifiers- Small signal Analysis of MOSFET and JFET, Common source amplifier, Voltage swing limitations, Small signal analysis of MOSFET and JFET Source follower and Common Gate amplifiers, - BiMOS Cascode amplifier

UNIT IV FREQUENCY ANALYSIS OF BJT AND MOSFET AMPLIFIERS

Low frequency and Miller effect, High frequency analysis of CE and MOSFET CS amplifier, Short circuit current gain, cut off frequency – $f\alpha$ and $f\beta$ unity gain and Determination of bandwidth of single stage and multistage amplifiers

UNIT V IC MOSFET AMPLIFIERS

IC Amplifiers- IC biasing Current steering circuit using MOSFET- MOSFET current sources- PMOS and NMOS current sources. Amplifier with active loads - enhancement load, Depletion load and PMOS and NMOS current sources load- CMOS common source and source follower- CMOS differential amplifier- CMRR.

TOTAL (L: 45+T: 15): 60 PERIODS

9

9

9

9

OUTCOMES:

Upon Completion of the course, the students will be able to:

Design circuits with transistor biasing.

Design simple amplifier circuits.

Analyze the small signal equivalent circuits of transistors.

Design and analyze large signal amplifiers.

TEXT BOOK:

1. Donald .A. Neamen, Electronic Circuit Analysis and Design –2nd Edition,Tata Mc Graw Hill, 2009.

REFERENCES:

- 1. Adel .S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", 6th Edition, Oxford University Press, 2010.
- 2. David A., "Bell Electronic Devices and Circuits", Oxford Higher Education Press, 5th Edition, 2010
- 3. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata Mc Graw Hill, 2007.
- 4. Paul Gray, Hurst, Lewis, Meyer "Analysis and Design of Analog Integrated Circuits", 4th Edition ,John Willey & Sons 2005
- 5. Millman.J. and Halkias C.C, "Integrated Electronics", Mc Graw Hill, 2001.
- 6. D.Schilling and C.Belove, "Electronic Circuits", 3rd Edition, Mc Graw Hill, 1989.
- 7. Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson Education / PHI, 2008.

EC6311 ANALOG AND DIGITAL CIRCUITS LABORATORY L T P C

0032

OBJECTIVES:

The student should be made to:

- Study the characteristic of CE,CB and CC Amplifier
- Learn the frequency response of CS Amplifiers
- Study the Transfer characteristic of differential amplifier
- Perform experiment to obtain the bandwidth of single stage and multistage amplifiers
- Perform SPICE simulation of Electronic Circuits

LIST OF ANALOG EXPERIMENTS:

- 1. Half Wave and Full Wave Rectifiers, Filters, Power supplies
- 2. Frequency Response of CE, CB, CC and CS amplifiers
- 3. Darlington Amplifier
- 4. Differential Amplifiers- Transfer characteristic, CMRR Measurement
- 5. Cascode / Cascade amplifier
- 6. Class A and Class B Power Amplifiers
- 7. Determination of bandwidth of single stage and multistage amplifiers
- 8. Spice Simulation of Common Emitter and Common Source amplifiers

LIST OF DIGITAL EXPERIMENTS

- 9. Design and implementation of code converters using logic gates
 (i) BCD to excess-3 code and vice versa
 (ii) Binary to gray and vice-versa
- 10. Design and implementation of 4 bit binary Adder/ Subtractor and BCD adder using IC 7483
- 11. Design and implementation of Multiplexer and De-multiplexer using logic gates

- 12. Design and implementation of encoder and decoder using logic gates
- 13. Construction and verification of 4 bit ripple counter and Mod-10 / Mod-12 Ripple counters
- 14. Design and implementation of 3-bit synchronous up/down counter
- 15. Implementation of SISO, SIPO, PISO and PIPO shift registers using Flip- flops.

OUTCOMES:

TOTAL: 45 PERIODS

At the end of the course, the student should be able to:

- Differentiate cascade and cascade amplifier.
- Analyze the limitation in bandwidth of single stage and multi stage amplifier
- Simulate amplifiers using Spice
- Measure CMRR in differential amplifier

LAB REQUIREMENTS FOR A BATCH OF 30 STUDENTS, 2 STUDENTS / EXPERIMENT:

Equipments for Analog Lab CRO (30MHz) Signal Generator /Function Generators (3 MHz) Dual Regulated Power Supplies (0 – 30V) Standalone desktop PCs with SPICE software Transistor/FET (BJT-NPN-PNP and NMOS/PMOS) Components and Accessories	– 15 Nos. – 15 Nos – 15 Nos. – 15 Nos. – 50 Nos
Equipments for Digital Lab	

Dual power supply/ single mode power supply	- 15 Nos
IC Trainer Kit	- 15 Nos
Bread Boards	- 15 Nos
Computer with HDL software	- 15 Nos
Seven segment display	-15 Nos
Multimeter	- 15 Nos
ICs each 50 Nos	
7400/7402/7404/7486/7408/7432/7483/74150)/
74151 / 74147 / 7445 / 7476/7491/ 555 / 7494 / 7447	/ 74180 /
7485 / 7473 / 74138 / 7411 / 7474	

EC6312

OOPS AND DATA STRUCTURES LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- Learn C++ programming language.
- Be exposed to the different data structures
- Be familiar with applications using different data structures

LIST OF EXPERIMENTS:

- 1. Basic Programs for C++ Concepts
- 2. Array implementation of List Abstract Data Type (ADT)
- 3. Linked list implementation of List ADT
- 4. Cursor implementation of List ADT
- 5. Stack ADT Array and linked list implementations
- 6. The next two exercises are to be done by implementing the following source files

- i. Program source files for Stack Application 1
- ii. Array implementation of Stack ADT
- iii. Linked list implementation of Stack ADT
- iv. Program source files for Stack Application 2
- v. An appropriate header file for the Stack ADT should be included in (i) and (iv)
- 7. Implement any Stack Application using array implementation of Stack ADT (by implementing files (i) and (ii) given above) and then using linked list
- 8. Implementation of Stack ADT (by using files (i) and implementing file (iii))
- Implement another Stack Application using array and linked list implementations of Stack ADT (by implementing files (iv) and using file (ii), and then by using files (iv) and (iii))
- 11. Queue ADT Array and linked list implementations
- 12. Search Tree ADT Binary Search Tree
- 13. Implement an interesting application as separate source files and using any of the searchable ADT files developed earlier. Replace the ADT file alone with other appropriate ADT files. Compare the performance.
- 14. Quick Sort

TOTAL: 45 PERIODS

REFERENCE:

spoken-tutorial.org.

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement C++ programs for manipulating stacks, queues, linked lists, trees, and graphs.
- Apply good programming design methods for program development.
- Apply the different data structures for implementing solutions to practical problems.

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C++ Compiler - 30 Nos.

(or)

Server with C++ compiler supporting 30 terminals or more.

MA6451

PROBABILITY AND RANDOM PROCESSES

L T P C 3 1 0 4

OBJECTIVES:

To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems etc in communication engineering.

UNIT I RANDOM VARIABLES

Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions.

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables.

9+3

9+3

inputs to linear time invariant systems.

TEXT BOOKS:

OUTCOMES:

1. Ibe.O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier, 1st Indian Reprint, 2007.

• The students will have an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable. Able to analyze the response of random

Peebles. P.Z., "Probability, Random Variables and Random Signal Principles", Tata Mc Graw 2. Hill, 4th Edition, New Delhi, 2002.

REFERENCES:

- 1. Yates. R.D. and Goodman. D.J., "Probability and Stochastic Processes", 2nd Edition, Wiley India Pvt. Ltd., Bangalore, 2012.
- 2. Stark. H., and Woods. J.W., "Probability and Random Processes with Applications to Signal Processing", 3rd Edition, Pearson Education, Asia, 2002.
- 3. Miller. S.L. and Childers. D.G., "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, 2004.
- 4. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata Mc Graw Hill Edition, New Delhi, 2004.
- 5. Cooper. G.R., Mc Gillem. C.D., "Probabilistic Methods of Signal and System Analysis", 3rd Indian Edition, Oxford University Press, New Delhi, 2012.

EC6401

ELECTRONIC CIRCUITS II

LTPC 3 0 0 3

OBJECTIVES:

- To understand the advantages and method of analysis of feedback amplifiers.
- To understand the analysis and design of LC and RC oscillators, amplifiers, multivibrators, and time base generators.

UNIT I FEEDBACK AMPLIFIERS

General Feedback Structure - Properties of negative feedback - Basic Feedback Topologies -Feedback amplifiers - Series - Shunt, Series - Series, Shunt - Shunt and Shunt - Series Feedback -Determining the Loop Gain – Stability Problem – Nyquist Plot – Effect of feedback on amplifier poles – Frequency Compensation.

UNIT III RANDOM PROCESSES

Classification – Stationary process – Markov process - Poisson process – Random telegraph process.

CORRELATION AND SPECTRAL DENSITIES UNIT IV

Auto correlation functions – Cross correlation functions – Properties – Power spectral density – Cross spectral density - Properties.

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS

correlation and Cross correlation functions of input and output. TOTAL (L:45+T:15): 60 PERIODS

9+3

9+3

9+3 Linear time invariant system – System transfer function – Linear systems with random inputs – Auto

UNIT II OSCILLATORS

Classification, Barkhausen Criterion - Mechanism for start of oscillation and stabilization of amplitude, General form of an Oscillator, Analysis of LC oscillators - Hartley, Colpitts, Clapp, Franklin, Armstrong, Tuned collector oscillators, RC oscillators - phase shift –Wienbridge - Twin-T Oscillators, Frequency range of RC and LC Oscillators, Quartz Crystal Construction, Electrical equivalent circuit of Crystal, Miller and Pierce Crystal oscillators, frequency stability of oscillators.

UNIT III TUNED AMPLIFIERS

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers - Analysis of capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers – large signal tuned amplifiers – Class C tuned amplifier – Efficiency and applications of Class C tuned amplifier - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method.

UNIT IV WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

RC & RL Integrator and Differentiator circuits – Storage, Delay and Calculation of Transistor Switching Times – Speed-up Capaitor - Diode clippers, Diode comparator - Clampers. Collector coupled and Emitter coupled Astable multivibrator – Monostable multivibrator - Bistable multivibrators - Triggering methods for Bigtable multivibrators - Schmitt trigger circuit

UNIT V BLOCKING OSCILLATORS AND TIMEBASE GENERATORS

UJT saw tooth waveform generator, Pulse transformers – equivalent circuit – response - applications, Blocking Oscillator – Free running blocking oscillator - Astable Blocking Oscillators with base timing – Push-pull Astable blocking oscillator with emitter timing, Frequency control using core saturation, Triggered blocking oscillator – Monostable blocking oscillator with base timing – Monostable blocking oscillator with emitter timing, Time base circuits - Voltage-Time base circuit, Current-Time base circuit – Linearization through adjustment of driving waveform.

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able to

- Design and analyze feedback amplifiers.
- Design LC and RC oscillators, tuned amplifiers, wave shaping circuits, multivibrators, blocking oscillators and time base generators.
- Analyze performance of tuned amplifiers.

TEXT BOOK:

1. Sedra and Smith, "Micro Electronic Circuits"; Sixth Edition, Oxford University Press, 2011.

REFERENCES:

- 1. Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson Education / PHI, 2008
- 2. David A. Bell, "Electronic Devices and Circuits", Fifth Edition, Oxford University Press, 2008.
- 3. Millman J. and Taub H., "Pulse Digital and Switching Waveforms", TMH, 2000.
- 4. Millman and Halkias. C., Integrated Electronics, TMH, 2007.

9

9

COMMUNICATION THEORY

OBJECTIVES:

- To introduce the concepts of various analog modulations and their spectral characteristics.
- To understand the properties of random process.
- To know the effect of noise on communication systems.
- To study the limits set by Information Theory.

UNIT I AMPLITUDE MODULATION

Generation and detection of AM wave-spectra-DSBSC, Hilbert Transform, Pre-envelope & complex envelope - SSB and VSB –comparison -Superheterodyne Receiver.

UNIT II ANGLE MODULATION

Phase and frequency modulation-Narrow Band and Wind band FM - Spectrum - FM modulation and demodulation – FM Discriminator- PLL as FM Demodulator - Transmission bandwidth.

UNIT III RANDOM PROCESS

Random variables, Central limit Theorem, Random Process, Stationary Processes, Mean, Correlation & Covariance functions, Power Spectral Density, Ergodic Processes, Gaussian Process, Transmission of a Random Process Through a LTI filter.

UNIT IV NOISE CHARACTERIZATION

Noise sources and types – Noise figure and noise temperature – Noise in cascaded systems. Narrow band noise – PSD of in-phase and quadrature noise –Noise performance in AM systems – Noise performance in FM systems – Pre-emphasis and de-emphasis – Capture effect, threshold effect.

UNIT V INFORMATION THEORY

Entropy - Discrete Memoryless channels - Channel Capacity -Hartley - Shannon law - Source coding theorem - Huffman & Shannon - Fano codes

OUTCOMES:

At the end of the course, the students would

- Design AM communication systems.
- Design Angle modulated communication systems
- Apply the concepts of Random Process to the design of Communication systems
- Analyze the noise performance of AM and FM systems

TEXT BOOKS:

- 1. J.G.Proakis, M.Salehi, "Fundamentals of Communication Systems", Pearson Education 2006.
- 2. S. Haykin, "Digital Communications", John Wiley, 2005.

REFERENCES:

- 1. B.P.Lathi, "Modern Digital and Analog Communication Systems", 3rd Edition, Oxford University Press, 2007.
- B.Sklar, "Digital Communications Fundamentals and Applications", 2nd Edition Pearson Education 2007
- 3. H P Hsu, Schaum Outline Series "Analog and Digital Communications" TMH 2006
- 4. Couch.L., "Modern Communication Systems", Pearson, 2001.

TOTAL: 45 PERIODS

9

9

9

9

EC6403

ELECTROMAGNETIC FIELDS

LTPC 3 1 0 4

OBJECTIVES:

- To impart knowledge on the basics of static electric and magnetic field and the associated laws.
- To give insight into the propagation of EM waves and also to introduce the methods in computational electromagnetics.
- To make students have depth understanding of antennas, electronic devices, Waveguides is possible.

UNIT I STATIC ELECTRIC FIELD

Vector Algebra, Coordinate Systems, Vector differential operator, Gradient, Divergence, Curl, Divergence theorem, Stokes theorem, Coulombs law, Electric field intensity, Point, Line, Surface and Volume charge distributions, Electric flux density, Gauss law and its applications, Gauss divergence theorem, Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

UNIT II CONDUCTORS AND DIELECTRICS

Conductors and dielectrics in Static Electric Field, Current and current density, Continuity equation, Polarization, Boundary conditions, Method of images, Resistance of a conductor, Capacitance, Parallel plate, Coaxial and Spherical capacitors, Boundary conditions for perfect dielectric materials, Poisson's equation, Laplace's equation, Solution of Laplace equation, Application of Poisson's and Laplace's equations.

UNIT III STATIC MAGNETIC FIELDS

Biot -Savart Law, Magnetic field Intensity, Estimation of Magnetic field Intensity for straight and circular conductors, Ampere's Circuital Law, Point form of Ampere's Circuital Law, Stokes theorem, Magnetic flux and magnetic flux density, The Scalar and Vector Magnetic potentials, Derivation of Steady magnetic field Laws.

UNIT IV MAGNETIC FORCES AND MATERIALS

Force on a moving charge, Force on a differential current element, Force between current elements, Force and torque on a closed circuit, The nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions involving magnetic fields, The magnetic circuit, Potential energy and forces on magnetic materials, Inductance, Basic expressions for self and mutual inductances, Inductance evaluation for solenoid, toroid, coaxial cables and transmission lines, Energy stored in Magnetic fields.

UNIT V TIME VARYING FIELDS AND MAXWELL'S EQUATIONS

Fundamental relations for Electrostatic and Magnetostatic fields, Faraday's law for Electromagnetic induction, Transformers, Motional Electromotive forces, Differential form of Maxwell's equations, Integral form of Maxwell's equations, Potential functions, Electromagnetic boundary conditions, Wave equations and their solutions, Poynting's theorem, Time harmonic fields, Electromagnetic Spectrum.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Upon completion of the course, the students would be able to

- Analyze field potentials due to static changes and static magnetic fields.
- Explain how materials affect electric and magnetic fields.
- Analyze the relation between the fields under time varying situations.
- Discuss the principles of propagation of uniform plane waves.

9

9

9

9

9 Jrl

TEXT BOOKS:

- 1. William H Hayt and Jr John A Buck, "Engineering Electromagnetics", Tata Mc Graw-Hill Publishing Company Ltd, New Delhi, 2008
- 2. Sadiku MH, "Principles of Electromagnetics", Oxford University Press Inc, New Delhi, 2009

REFERENCES:

- 1. David K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Delhi, 2004
- 2. John D Kraus and Daniel A Fleisch, "Electromagnetics with Applications", Mc Graw Hill Book Co, 2005
- 3. Karl E Longman and Sava V Savov, "Fundamentals of Electromagnetics", Prentice Hall of India, New Delhi, 2006
- 4. Ashutosh Pramanic, "Electromagnetism", Prentice Hall of India, New Delhi, 2006

EC6404

LINEAR INTEGRATED CIRCUITS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the basic building blocks of linear integrated circuits.
- To learn the linear and non-linear applications of operational amplifiers.
- To introduce the theory and applications of analog multipliers and PLL.
- To learn the theory of ADC and DAC.
- To introduce the concepts of waveform generation and introduce some special function ICs.

UNIT I BASICS OF OPERATIONAL AMPLIFIERS

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic information about op-amps – Ideal Operational Amplifier - General operational amplifier stages -and internal circuit diagrams of IC 741, DC and AC performance characteristics, slew rate, Open and closed loop configurations.

UNIT II APPLICATIONS OF OPERATIONAL AMPLIFIERS

Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters, adder, subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, high-pass and band-pass Butterworth filters.

UNIT III ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell – Variable transconductance technique, analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing.

UNIT IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS

Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode $R \square 2R$ Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications - Flash type - Successive Approximation type - Single Slope type – Dual Slope type - A/D Converter using Voltage-to-Time Conversion - Over-sampling A/D Converters.

9

9

9

UNIT V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators – Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto-couplers and fibre optic IC.

OUTCOMES:

Upon Completion of the course, the students will be able to:

- Design linear and non linear applications of op amps.
- Design applications using analog multiplier and PLL.
- Design ADC and DAC using op amps.
- Generate waveforms using op amp circuits.
- Analyze special function ICs.

TEXT BOOKS:

- 1. D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2000.
- 2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 3rd Edition, Tata Mc Graw-Hill, 2007.

REFERENCES:

- 1. Ramakant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2001.
- 2. Robert F.Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth Edition, PHI, 2001.
- 3. B.S.Sonde, "System design using Integrated Circuits", 2nd Edition, New Age Pub, 2001
- 4. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 2005.
- 5. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.
- 6. William D.Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson Education, 2004.
- 7. S.Salivahanan & V.S. Kanchana Bhaskaran, "Linear Integrated Circuits", TMH, 2008.

EC6405

CONTROL SYSTEM ENGINEERING

OBJECTIVES:

- To introduce the elements of control system and their modeling using various Techniques.
- To introduce methods for analyzing the time response, the frequency response and the stability of systems
- To introduce the state variable analysis method

UNIT I CONTROL SYSTEM MODELING

Basic Elements of Control System – Open loop and Closed loop systems - Differential equation - Transfer function, Modeling of Electric systems, Translational and rotational mechanical systems - Block diagram reduction Techniques - Signal flow graph

47

9

LTPC 3 0 0 3

9

TOTAL: 45 PERIODS

UNIT II TIME RESPONSE ANALYSIS

Time response analysis - First Order Systems - Impulse and Step Response analysis of second order systems - Steady state errors – P, PI, PD and PID Compensation, Analysis using MATLAB

UNIT III FREQUENCY RESPONSE ANALYSIS

Frequency Response - Bode Plot, Polar Plot, Nyquist Plot - Frequency Domain specifications from the plots - Constant M and N Circles - Nichol's Chart - Use of Nichol's Chart in Control System Analysis. Series, Parallel, series-parallel Compensators - Lead, Lag, and Lead Lag Compensators, Analysis using MATLAB.

UNIT IV STABILITY ANALYSIS

Stability, Routh-Hurwitz Criterion, Root Locus Technique, Construction of Root Locus, Stability, Dominant Poles, Application of Root Locus Diagram - Nyquist Stability Criterion - Relative Stability, Analysis using MATLAB

UNIT V STATE VARIABLE ANALYSIS

State space representation of Continuous Time systems – State equations – Transfer function from State Variable Representation – Solutions of the state equations - Concepts of Controllability and Observability – State space representation for Discrete time systems. Sampled Data control systems – Sampling Theorem – Sampler & Hold – Open loop & Closed loop sampled data systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Perform time domain and frequency domain analysis of control systems required for stability analysis.
- Design the compensation technique that can be used to stabilize control systems.

TEXTBOOK:

1. J.Nagrath and M.Gopal, "Control System Engineering", New Age International Publishers, 5th Edition, 2007.

REFERENCES:

- 1. Benjamin.C.Kuo, "Automatic control systems", Prentice Hall of India, 7th Edition, 1995.
- 2. M.Gopal, "Control System Principles and Design", Tata McGraw Hill, 2nd Edition, 2002.
- 3. Schaum's Outline Series, "Feed back and Control Systems" Tata Mc Graw-Hill, 2007.
- 4. John J.D'Azzo & Constantine H.Houpis, "Linear Control System Analysis and Design", Tata Mc Graw-Hill, Inc., 1995.
- 5. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Addison Wesley, 1999.

9

9

CIRCUITS AND SIMULATION INTEGRATED LABORATORY

OBJECTIVES:

EC6411

- To gain hands on experience in designing electronic circuits.
- To learn simulation software used in circuit design.
- To learn the fundamental principles of amplifier circuits
- To understand Bias in Amplifier circuits
- To differentiate feedback amplifiers and oscillators.
- To study the characteristic of source follower
- To understand the concepts of multivibrators

DESIGN AND ANALYSIS OF THE FOLLOWING CIRCUITS

- 1. Series and Shunt feedback amplifiers-Frequency response, Input and output impedance calculation
- 2. RC Phase shift oscillator and Wien Bridge Oscillator
- 3. Hartley Oscillator and Colpitts Oscillator
- 4. Single Tuned Amplifier
- 5. RC Integrator and Differentiator circuits
- 6. Astable and Monostable multivibrators
- 7. Clippers and Clampers
- 8. Free running Blocking Oscillators

SIMULATION USING SPICE (Using Transistor):

- 1. Tuned Collector Oscillator
- 2. Twin -T Oscillator / Wein Bridge Oscillator
- 3. Double and Stagger tuned Amplifiers
- 4. Bistable Multivibrator
- 5. Schmitt Trigger circuit with Predictable hysteresis
- 6. Monostable multivibrator with emitter timing and base timing
- 7. Voltage and Current Time base circuits

OUTCOMES:

On completion of this lab course, the students will be able to

- Analyze various types of feedback amplifiers
- Design oscillators, tuned amplifiers, wave-shaping circuits and multivibrators
- Design and simulate feedback amplifiers, oscillators, tuned amplifiers, wave-shaping circuits and multivibrators using SPICE Tool.

LAB REQUIREMENT FOR A BATCH OF 30 STUDENTS / 2 STUDENTS PER EXPERIMENT:

CRO (Min 30MHz)	– 15 Nos.
Signal Generator /Function Generators (2 MHz)	– 15 Nos
Dual Regulated Power Supplies (0 – 30V)	– 15 Nos.
Digital Multimeter	– 15 Nos
Digital LCR Meter	– 2 Nos
Standalone desktops PC	– 15 Nos.
Transistor/FET (BJT-NPN-PNP and NMOS/PMOS)	– 50 Nos
Components and Accessories:	

Transistors, Resistors, Capacitors, Inductors, diodes, Zener Diodes, Bread Boards, Transformers. SPICE Circuit Simulation Software: (any public domain or commercial software)

TOTAL: 45 PERIODS

LTPC 0 0 3 2 EC6412

LINEAR INTEGRATED CIRCUITS LABORATORY

LT PC 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

- To expose the students to linear and integrated circuits
- To understand the basics of linear integrated circuits and available ICs
- To understand characteristics of operational amplifier.
- To apply operational amplifiers in linear and nonlinear applications.
- To acquire the basic knowledge of special function IC.
- To use PICE software for circuit design

LIST OF EXPERIMENTS: DESIGN AND TESTING OF

- 1. Inverting, Non inverting and Differential amplifiers.
- 2. Integrator and Differentiator.
- 3. Instrumentation amplifier
- 4. Active low-pass, High-pass and band-pass filters.
- 5. Astable & Monostable multivibrators and Schmitt Trigger using op-amp.
- 6. Phase shift and Wien bridge oscillators using op-amp.
- 7. Astable and monostable multivibrators using NE555 Timer.
- 8. PLL characteristics and its use as Frequency Multiplier.
- 9. DC power supply using LM317 and LM723.

10. Study of SMPS.

SIMULATION USING SPICE

- 1. Simulation of Experiments 3, 4, 5, 6 and 7.
- 2. D/A and A/D converters (Successive approximation)
- 3. Analog multiplier
- 4. CMOS Inverter, NAND and NOR

OUTCOMES:

At the end of the course, the student should be able to:

- Design oscillators and amplifiers using operational amplifiers.
- Design filters using Opamp and perform experiment on frequency response.
- Analyse the working of PLL and use PLL as frequency multiplier.
- Design DC power supply using ICs.
- Analyse the performance of oscillators and multivibrators using SPICE

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS (2 students per Experiment)

CRO (Min 30MHz)	– 15 Nos.
Signal Generator /Function Generators (2 MHz)	– 15 Nos
Dual Regulated Power Supplies (0 – 30V)	– 15 Nos.
Digital Multimeter	– 15 Nos
IC tester	- 5 Nos
Standalone desktops PC	– 15 Nos.
SPICE Circuit Simulation Software: (any public domain software)	or commercial
Components and Accessories:	- 50 Nos
Transistore Resistore Canacitore diodos Zonor diodos	Broad Boards T

Transistors, Resistors, Capacitors, diodes, Zener diodes, Bread Boards, Transformers, wires, Power transistors, Potentiometer, A/D and D/A convertors, LEDs

Note: Op-Amps uA741, LM 301, LM311, LM 324, LM317, LM723, 7805, 7812, 2N3524, 2N3525, 2N3391, AD 633, LM 555, LM 565 may be used.

EE6461 ELECTRICAL ENGINEERING AND CONTROL SYSTEM LABORATORY L T P C

OBJECTIVES:

- To provide hands on experience with generators and motors.
- To Understand the working of DC/AC motors and generators
- To study the characteristics of transducers
- To learn the use of transformer
- To understand the behavior of linear system through simulation
- To gain knowledge of controllers

LIST OF EXPERIMENTS:

- 1. Study of DC & AC motor starters
- 2. Study of three phase circuits
- 3. Speed Control of DC shunt motor
- 4. Load Test on DC shunt motor
- 5. OCC & Load Characteristics of DC shunt generator
- 6. Transfer Function of separately excited D.C.Generator.
- 7. Regulation of three phase alternator
- 8. Open Circuit and Short Circuit test on single phase transformer to draw its equivalent circuit
- 9. Load test on single-phase transformer
- 10. Load test on single phase and three-phase Induction motor
- 11. Measurement of passive elements using Bridge Networks.
- 12. Study of transducers and characterization.
- 13. Digital simulation of linear systems.
- 14. Stability Analysis of Linear system using MATLAB or equivalent Software.
- 15. Study the effect of P, PI, PID controllers using MATLAB or equivalent Software.
- 16. Design of Lead and Lag compensator.

TOTAL: 45 PERIODS

0032

OUTCOMES:

At the end of the course, the student should be able to:

- Perform experiments to study the load characteristics of DC motors / generators.
- Design bridge network circuit to measure the values of passive component.
- Analyse the stability of linear system through simulation software.
- Obtain transfer function of DC generators.

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:

2 1. DC Shunt Motor with Loading Arrangement 2. 3HP,220V,14A,750RPM,0.6A(Shunt field) 3. DC Shunt Motor Coupled With Three phase Alternator 1 4. DC Shunt Motor - kW: 5.2 / volts: 220 / Amps: 27.5/ 5. Speed: 1500 RPM/ Field current: 0.9A 6. Three phase Alternator - kVA: 7.5/ volts: 415/ Amps: 10.4 Speed: 1500 RPM/ Field current: 2A. 7. Single Phase Transformer; 2 KVA,230/110-166 V 1 8. Three Phase Induction Motor with Loading Arrangement 1 9. (3.7KW,415v,7.5A,1430 RPM) 10. Single Phase Induction Motor with Loading Arrangement 1 11. (230V,5HP,17A) 12. DC Shunt Motor Coupled With DC Compound Generator 1

13. (DC Shunt Motor: kW: 7.4/ volts: 220/ Amps: 38.5/ Speed: Field current1.2A)	960 RPM
14. (DC Compound Generator: kW: 7.5/ volts: 220/ Amps: 38.5	5/
Speed: 960 RPM / Field current1.2A)	"
15. Tachometer –Digital/Analog	8
16. Single Phase Auto Transformer;(0-270)V	2
17. Three Phase Auto Transformer;(0-270)V	1
18. MC Voltmeter-(0-300/600)V	5
19. MC Ammeter (0-10/20)A	5
20. MC Ammeter (0-2/1)A	4
21. MI Voltmeter (0-300/600)V	5
22. MI Ammeter (0-10/20)A	6
23. MI Ammeter (0-1/2)A	4
24. UPF Wattmeter (300/600V,10/20A)	4
25. LPF Wattmeter (300/600V,10/20A)	4
26. Single Phase Resistive Loading Bank(10KW)	2
27. Three Phase Resistive Loading Bank(10KW)	2
28. SPST switch	2
29. Fuse various ranges	As per the requirement
30. Wires	As per the requirement
31. Rheostats(100Ω,1A;250Ω,1.5A;75Ω,16A,1000Ω,1A)	Each 2

32. Computers with MATLAB or equivalent Software.

EC6501	DIGITAL COMMUNICATION	LTPC
		3003
OBJECTIVES:		

- To know the principles of sampling & quantization
- To study the various waveform coding schemes
- To learn the various baseband transmission schemes
- To understand the various Band pass signaling schemes
- To know the fundamentals of channel coding

UNIT I SAMPLING & QUANTIZATION

Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non-uniform quantization - quantization noise - Logarithmic Companding of speech signal - PCM - TDM

UNIT II WAVEFORM CODING

Prediction filtering and DPCM - Delta Modulation - ADPCM & ADM principles-Linear Predictive Coding

UNIT III BASEBAND TRANSMISSION

Properties of Line codes- Power Spectral Density of Unipolar / Polar RZ & NRZ – Bipolar NRZ - Manchester- ISI – Nyquist criterion for distortionless transmission – Pulse shaping – Correlative coding - Mary schemes – Eye pattern - Equalization

9

9

Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation.

53

UNIT IV DIGITAL MODULATION SCHEME

Geometric Representation of signals - Generation, detection, PSD & BER of Coherent BPSK, BFSK & QPSK - QAM - Carrier Synchronization - structure of Non-coherent Receivers - Principle of DPSK.

UNIT V ERROR CONTROL CODING

Channel coding theorem - Linear Block codes - Hamming codes - Cyclic codes - Convolutional codes - Vitterbi Decoder

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

- Design PCM systems
- Design and implement base band transmission schemes
- Design and implement band pass signaling schemes
- Analyze the spectral characteristics of band pass signaling schemes and their noise performance
- Design error control coding schemes

TEXT BOOK:

1. S. Haykin, "Digital Communications", John Wiley, 2005

REFERENCES:

- 1. B. Sklar, "Digital Communication Fundamentals and Applications", 2nd Edition, Pearson Education, 2009
- 2. B.P.Lathi, "Modern Digital and Analog Communication Systems" 3rd Edition, Oxford University Press 2007.
- 3. H P Hsu, Schaum Outline Series "Analog and Digital Communications", TMH 2006
- 4. J.G Proakis, "Digital Communication", 4th Edition, Tata Mc Graw Hill Company, 2001.

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING L T P C

3104

OBJECTIVES:

- To learn discrete Fourier transform and its properties
- To know the characteristics of IIR and FIR filters learn the design of infinite and finite impulse response filters for filtering undesired signals
- To understand Finite word length effects
- To study the concept of Multirate and adaptive filters

UNIT I DISCRETE FOURIER TRANSFORM

Discrete Signals and Systems- A Review – Introduction to DFT – Properties of DFT – Circular Convolution - Filtering methods based on DFT – FFT Algorithms –Decimation in time Algorithms, Decimation in frequency Algorithms – Use of FFT in Linear Filtering.

UNIT II IIR FILTER DESIGN

9 Iai

9

9

UNIT III FIR FILTER DESIGN

Structures of FIR – Linear phase FIR filter – Fourier Series - Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques – Finite word length effects in digital Filters: Errors, Limit Cycle, Noise Power Spectrum.

UNIT IV FINITE WORDLENGTH EFFECTS

Fixed point and floating point number representations – ADC –Quantization- Truncation and Rounding errors - Quantization noise – coefficient quantization error – Product quantization error - Overflow error – Roundoff noise power - limit cycle oscillations due to product round off and overflow errors – Principle of scaling

UNIT V DSP APPLICATIONS

Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor – Adaptive Filters: Introduction, Applications of adaptive filtering to equalization.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

- apply DFT for the analysis of digital signals & systems
- design IIR and FIR filters
- characterize finite Word length effect on filters
- design the Multirate Filters
- apply Adaptive Filters to equalization

TEXT BOOK:

1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007.

REFERENCES:

- 1. Emmanuel C..Ifeachor, & Barrie.W.Jervis, "Digital Signal Processing", Second Edition, Pearson Education / Prentice Hall, 2002.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Tata Mc Graw Hill, 2007.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8th Indian Reprint, Pearson, 2004.
- 4. Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.

EC6503

TRANSMISSION LINES AND WAVE GUIDES LTPC

OBJECTIVES:

- To introduce the various types of transmission lines and to discuss the losses associated.
- To give thorough understanding about impedance transformation and matching.
- To use the Smith chart in problem solving.
- To impart knowledge on filter theories and waveguide theories

9

9

9

3 1 0 4

UNIT I TRANSMISSION LINE THEORY

General theory of Transmission lines - the transmission line - general solution - The infinite line - Wavelength, velocity of propagation - Waveform distortion - the distortion-less line - Loading and different methods of loading - Line not terminated in Z_0 - Reflection coefficient - calculation of current, voltage, power delivered and efficiency of transmission - Input and transfer impedance - Open and short circuited lines - reflection factor and reflection loss.

UNIT II HIGH FREQUENCY TRANSMISSION LINES

Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short circuited lines - Power and impedance measurement on lines - Reflection losses - Measurement of VSWR and wavelength.

UNIT III IMPEDANCE MATCHING IN HIGH FREQUENCY LINES

Impedance matching: Quarter wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single and double stub matching using Smith chart.

UNIT IV PASSIVE FILTERS

Characteristic impedance of symmetrical networks - filter fundamentals, Design of filters: Constant K - Low Pass, High Pass, Band Pass, Band Elimination, m- derived sections - low pass, high pass composite filters.

UNIT V WAVE GUIDES AND CAVITY RESONATORS

General Wave behaviours along uniform Guiding structures, Transverse Electromagnetic waves, Transverse Magnetic waves, Transverse Electric waves, TM and TE waves between parallel plates, TM and TE waves in Rectangular wave guides, Bessel's differential equation and Bessel function, TM and TE waves in Circular wave guides, Rectangular and circular cavity Resonators.

OUTCOMES:

Upon completion of the course, students will be able to:

- Discuss the propagation of signals through transmission lines.
- Analyze signal propagation at Radio frequencies.
- Explain radio propagation in guided systems.
- Utilize cavity resonators.

TEXT BOOKS

1. John D Ryder, "Networks, lines and fields", 2nd Edition, Prentice Hall India, 2010.

REFERENCES

- 1. E.C.Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems", Prentice Hall of India, 2006.
- 2. G.S.N Raju "Electromagnetic Field Theory and Transmission Lines", Pearson Education, First edition 2005.

9 04

9

9

GE6351

OBJECTIVES:

To the study of nature and the facts about environment.

- To find and implement scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment. •
- To appreciate the importance of environment by assessing its impact on the human world; • envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth's interior and • surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and • waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment - concept of an ecosystem - structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem - ecological succession processes - Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) - Introduction to biodiversity definition: genetic, species and ecosystem diversity - biogeographical classification of India - value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values -Biodiversity at global, national and local levels - India as a mega-diversity nation - hot-spots of biodiversity - threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts endangered and endemic species of India - conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds

Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION

Definition - causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry-Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere formation of smog. PAN, acid rain, oxygen and ozone chemistry:- Mitigation procedures- Control of particulate and gaseous emission, Control of SO₂, NO_X, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters - physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes - (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards-role of an individual in prevention of pollution - pollution case studies - Field study of local polluted site - Urban / Rural / Industrial / Agricultural.

NATURAL RESOURCES UNIT III

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people - Water resources: Use and overutilization of surface and ground water, dams-benefits and problems - Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and

12

10

57

desertification - role of an individual in conservation of natural resources - Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins -Biochemical degradation of pollutants. Bioconversion of pollutants.

Field study of local area to document environmental assets - river/forest/grassland/hill/mountain.

SOCIAL ISSUES AND THE ENVIRONMENT UNIT IV

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management - resettlement and rehabilitation of people; its problems and concerns, case studies - role of non-governmental organizationenvironmental ethics: Issues and possible solutions - 12 Principles of green chemistry-nuclear accidents and holocaust, case studies. - wasteland reclamation - consumerism and waste products environment production act - Air act - Water act - Wildlife protection act - Forest conservation act -The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labeling of environmentally friendly products (Ecomark). enforcement machinery involved in environmental legislation- central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides. Public awareness.

HUMAN POPULATION AND THE ENVIRONMENT UNIT V

Population growth, variation among nations - population explosion - family welfare programme environment and human health - human rights - value education - HIV / AIDS - women and child welfare -Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology in environment and human health - Case studies.

TOTAL: 45 PERIODS

OUTCOMES:

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environment at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions.
- Development and improvement in standard of living has lead to serious environmental disasters.

TEXT BOOKS:

- 1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 2nd Edition, Pearson Education, 2004.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata Mc Graw-Hill, New Delhi, 2006.

REFERENCES:

- 1. R.K. Trivedi, "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standard", Vol. I and II. Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, "Environmental law", Prentice Hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press 2005

7

EC6504

MICROPROCESSOR AND MICROCONTROLLER

LT PC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Study the Architecture of 8086 microprocessor.
- Learn the design aspects of I/O and Memory Interfacing circuits.
- Study about communication and bus interfacing.
- Study the Architecture of 8051 microcontroller.

UNIT I THE 8086 MICROPROCESSOR

Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

UNIT II 8086 SYSTEM BUS STRUCTURE

8086 signals – Basic configurations – System bus timing –System design using 8086 – IO programming – Introduction to Multiprogramming – System Bus Structure - Multiprocessor configurations – Coprocessor, Closely coupled and loosely Coupled configurations – Introduction to advanced processors.

UNIT III I/O INTERFACING

Memory Interfacing and I/O interfacing - Parallel communication interface – Serial communication interface – D/A and A/D Interface - Timer – Keyboard /display controller – Interrupt controller – DMA controller – Programming and applications Case studies: Traffic Light control, LED display , LCD display, Keyboard display interface and Alarm Controller.

UNIT IV MICROCONTROLLER

Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V INTERFACING MICROCONTROLLER

Programming 8051 Timers - Serial Port Programming - Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation.

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement programs on 8086 microprocessor.
- Design I/O circuits.
- Design Memory Interfacing circuits.
- Design and implement 8051 microcontroller based systems.

TEXT BOOKS:

- 1. Yu-Cheng Liu, Glenn A.Gibson, "Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design", Second Edition, Prentice Hall of India, 2007.
- 2. Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Second Edition, Pearson education, 2011.

9

TOTAL: 45 PERIODS

9

9

9

REFERENCE:

1. Doughlas V.Hall, "Microprocessors and Interfacing, Programming and Hardware", TMH, 2012

EC6511 DIGITAL SIGNAL PROCESSING LABORATORY L T P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- To implement Linear and Circular Convolution
- To implement FIR and IIR filters
- To study the architecture of DSP processor
- To demonstrate Finite word length effect

LIST OF EXPERIMENTS:

MATLAB / EQUIVALENT SOFTWARE PACKAGE

- 1. Generation of sequences (functional & random) & correlation
- 2. Linear and Circular Convolutions
- 3. Spectrum Analysis using DFT
- 4. FIR filter design
- 5. IIR filter design
- 6. Multirate Filters
- 7. Equalization

DSP PROCESSOR BASED IMPLEMENTATION

- 8. Study of architecture of Digital Signal Processor
- 9. MAC operation using various addressing modes
- 10. Linear Convolution
- 11. Circular Convolution
- 12. FFT Implementation
- 13. Waveform generation
- 14. IIR and FIR Implementation
- 15. Finite Word Length Effect

OUTCOMES:

Students will be able to

- Carry out simulation of DSP systems
- Demonstrate their abilities towards DSP processor based implementation of DSP systems

TOTAL: 45 PERIODS

- Analyze Finite word length effect on DSP systems
- Demonstrate the applications of FFT to DSP
- Implement adaptive filters for various applications of DSP

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS (2 STUDENTS PER SYSTEM)

PCs with Fixed / Floating point DSP Processors (Kit / Add-on Cards) 15 Units

LIST OF SOFTWARE REQUIRED:

MATLAB with Simulink and Signal Processing Tool Box or Equivalent Software in desktop systems -15 Nos

Signal Generators (1MHz) – 15 Nos

CRO (20MHz) -15 Nos

EC6512

COMMUNICATION SYSTEMS LABORATORY

LTPC 0 03 2

OBJECTIVES:

The student should be made to:

- To visualize the effects of sampling and TDM
- To Implement AM & FM modulation and demodulation
- To implement PCM & DM
- To implement FSK, PSK and DPSK schemes
- To implement Equalization algorithms
- To implement Error control coding schemes

LIST OF EXPERIMENTS:

- 1. Signal Sampling and reconstruction
- 2. Time Division Multiplexing
- 3. AM Modulator and Demodulator
- 4. FM Modulator and Demodulator
- 5. Pulse Code Modulation and Demodulation
- 6. Delta Modulation and Demodulation
- 7. Observation (simulation) of signal constellations of BPSK, QPSK and QAM
- 8. Line coding schemes
- 9. FSK, PSK and DPSK schemes (Simulation)
- 10. Error control coding schemes Linear Block Codes (Simulation)
- 11. Communication link simulation
- 12. Equalization Zero Forcing & LMS algorithms(simulation)

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Simulate end-to-end Communication Link
- Demonstrate their knowledge in base band signaling schemes through implementation of FSK, PSK and DPSK
- Apply various channel coding schemes & demonstrate their capabilities towards the improvement of the noise performance of communication system
- Simulate & validate the various functional modules of a communication system

LAB REQUIREMENTS FOR A BATCH OF 30 STUDENTS (3 STUDENTS PER EXPERIMENT):

- i) Kits for Signal Sampling, TDM, AM, FM, PCM, DM and Line Coding Schemes
- ii) CROs 15 Nos
- iii) MATLAB / SCILAB or equivalent software package for simulation experiments
- iv) PCs 10 Nos

EC6513 MICROPROCESSOR AND MICROCONTROLLER LABORATORY

OBJECTIVES:

The student should be made to:

- Introduce ALP concepts and features
- Write ALP for arithmetic and logical operations in 8086 and 8051
- Differentiate Serial and Parallel Interface
- Interface different I/Os with Microprocessors
- Be familiar with MASM

LIST OF EXPERIMENTS:

8086 Programs using kits and MASM

- 1. Basic arithmetic and Logical operations
- 2. Move a data block without overlap
- 3. Code conversion, decimal arithmetic and Matrix operations.
- 4. Floating point operations, string manipulations, sorting and searching
- 5. Password checking, Print RAM size and system date
- 6. Counters and Time Delay

Peripherals and Interfacing Experiments

- 7. Traffic light control
- 8. Stepper motor control
- 9. Digital clock
- 10. Key board and Display
- 11. Printer status
- 12. Serial interface and Parallel interface
- 13. A/D and D/A interface and Waveform Generation

8051 Experiments using kits and MASM

- 14. Basic arithmetic and Logical operations
- 15. Square and Cube program, Find 2's complement of a number
- 16. Unpacked BCD to ASCII

OUTCOMES:

At the end of the course, the student should be able to:

- Write ALP Programmes for fixed and Floating Point and Arithmetic
- Interface different I/Os with processor
- Generate waveforms using Microprocessors
- Execute Programs in 8051
- Explain the difference between simulator and Emulator

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS: HARDWARE:

8086 development kits	- 30 nos
Interfacing Units	- Each 10 nos
Microcontroller	- 30 nos

SOFTWARE:

Intel Desktop Systems with MASM - 30 nos 8086 Assembler 8051 Cross Assembler

TOTAL: 45 PERIODS

L T P C 0 0 3 2

MG6851

PRINCIPLES OF MANAGEMENT

9

9

9

9

9

OBJECTIVES:

• To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.

UNIT II PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management , Career planning and management.

UNIT IV DIRECTING

Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – communication – process of communication – barrier in communication – effective communication – communication and IT.

UNIT V CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

OUTCOMES :

• Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

- 1. Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.

REFERENCES:

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999.

COMPUTER ARCHITECTURE

OBJECTIVES:

- To make students understand the basic structure and operation of digital computer.
- To understand the hardware-software interface.
- To familiarize the students with arithmetic and logic unit and implementation of fixed point and floating-point arithmetic operations.
- To expose the students to the concept of pipelining.
- To familiarize the students with hierarchical memory system including cache memories and virtual memory.
- To expose the students with different ways of communicating with I/O devices and standard I/O interfaces.

UNIT I OVERVIEW & INSTRUCTIONS

Eight ideas – Components of a computer system – Technology – Performance – Power wall – Uniprocessors to multiprocessors; Instructions – operations and operands – representing instructions – Logical operations – control operations – Addressing and addressing modes.

UNIT II ARITHMETIC OPERATIONS

ALU - Addition and subtraction – Multiplication – Division – Floating Point operations – Subword parallelism.

UNIT III PROCESSOR AND CONTROL UNIT

Basic MIPS implementation – Building datapath – Control Implementation scheme – Pipelining – Pipelined datapath and control – Handling Data hazards & Control hazards – Exceptions.

UNIT IV PARALLELISM

Instruction-level-parallelism – Parallel processing challenges – Flynn's classification – Hardware multithreading – Multicore processors

UNIT V MEMORY AND I/O SYSTEMS

Memory hierarchy - Memory technologies – Cache basics – Measuring and improving cache performance - Virtual memory, TLBs - Input/output system, programmed I/O, DMA and interrupts, I/O processors.

OUTCOMES:

At the end of the course, the student should be able to:

- Design arithmetic and logic unit.
- Design and anlayse pipelined control units
- Evaluate performance of memory systems.
- Understand parallel processing architectures.

TEXT BOOK:

1. David A. Patterson and John L. Hennessey, "Computer Organization and Design', Fifth edition, Morgan Kauffman / Elsevier, 2014.

REFERENCES:

- 1. V.Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organisation", VI edition, Mc Graw-Hill Inc, 2012.
- 2. William Stallings "Computer Organization and Architecture", Seventh Edition, Pearson Education, 2006.
- 3. Vincent P. Heuring, Harry F. Jordan, "Computer System Architecture", Second Edition, Pearson Education, 2005.

CS6303

9

11

9

7

9

TOTAL: 45 PERIODS

- 4. Govindarajalu, "Computer Architecture and Organization, Design Principles and Applications", first edition, Tata Mc Graw Hill, New Delhi, 2005.
- 5. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata Mc Graw Hill, 1998.
- 6. http://nptel.ac.in/.

COMPUTER NETWORKS

OBJECTIVES:

CS6551

The student should be made to:

- Understand the division of network functionalities into layers.
- Be familiar with the components required to build different types of networks
- Be exposed to the required functionality at each layer
- Learn the flow control and congestion control algorithms

UNIT I **FUNDAMENTALS & LINK LAYER**

Building a network - Requirements - Layering and protocols - Internet Architecture - Network software - Performance ; Link layer Services - Framing - Error Detection - Flow control

UNIT II **MEDIA ACCESS & INTERNETWORKING**

Media access control - Ethernet (802.3) - Wireless LANs - 802.11 - Bluetooth - Switching and bridging – Basic Internetworking (IP, CIDR, ARP, DHCP, ICMP)

UNIT III ROUTING

Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6), Multicast – addresses - multicast routing (DVMRP, PIM)

UNIT IV TRANSPORT LAYER

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission - TCP Congestion control - Congestion avoidance (DECbit, RED) - QoS -Application requirements

UNIT V APPLICATION LAYER

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) - HTTP - Web Services - DNS - SNMP

OUTCOMES:

At the end of the course, the student should be able to:

- Identify the components required to build different types of networks
- Choose the required functionality at each layer for given application
- Identify solution for each functionality at each layer
- Trace the flow of information from one node to another node in the network

TEXT BOOK:

1. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.

9

9

9

9

TOTAL: 45 PERIODS

9

LTPC 3 0 0 3

REFERENCES:

- 1. James F. Kurose, Keith W. Ross, "Computer Networking A Top-Down Approach Featuring the Internet", Fifth Edition, Pearson Education, 2009.
- 2. Nader. F. Mir, "Computer and Communication Networks", Pearson Prentice Hall Publishers, 2010.
- 3. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", Mc Graw Hill Publisher, 2011.
- 4. Behrouz A. Forouzan, "Data communication and Networking", Fourth Edition, Tata McGraw Hill, 2011.

EC6601

VLSI DESIGN

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVES:

- In this course, the MOS circuit realization of the various building blocks that is common to any microprocessor or digital VLSI circuit is studied.
- Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed.
- The main focus in this course is on the transistor circuit level design and realization for digital operation and the issues involved as well as the topics covered are quite distinct from those encountered in courses on CMOS Analog IC design.

UNIT I MOS TRANSISTOR PRINCIPLE

NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams

UNIT II COMBINATIONAL LOGIC CIRCUITS

Examples of Combinational Logic Design, Elmore's constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design, Power dissipation – Low power design principles

UNIT III SEQUENTIAL LOGIC CIRCUITS

Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design

UNIT IV DESIGNING ARITHMETIC BUILDING BLOCKS

Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders, accumulators, Multipliers, dividers, Barrel shifters, speed and area tradeoff

UNIT V IMPLEMENTATION STRATEGIES

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students should

- Explain the basic CMOS circuits and the CMOS process technology.
- Discuss the techniques of chip design using programmable devices.
- Model the digital system using Hardware Description Language.

TEXTBOOKS:

- 1. Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective", Second Edition, Prentice Hall of India, 2003.
- 2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997

REFERENCES:

- 1. N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 1993
- 2. R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India 2005
- 3. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of India, 2007.

EC6602

ANTENNA AND WAVE PROPAGATION

OBJECTIVES:

- To give insight of the radiation phenomena.
- To give a thorough understanding of the radiation characteristics of different types of antennas
- To create awareness about the different types of propagation of radio waves at different frequencies

UNIT I FUNDAMENTALS OF RADIATION

Definition of antenna parameters - Gain, Directivity, Effective aperture, Radiation Resistance, Band width, Beam width, Input Impedance. Matching - Baluns, Polarization mismatch, Antenna noise temperature, Radiation from oscillating dipole, Half wave dipole. Folded dipole, Yagi array.

UNIT II APERTURE AND SLOT ANTENNAS

Radiation from rectangular apertures, Uniform and Tapered aperture, Horn antenna . Reflector antenna, Aperture blockage, Feeding structures, Slot antennas, Microstrip antennas – Radiation mechanism – Application ,Numerical tool for antenna analysis

UNIT III **ANTENNA ARRAYS**

N element linear array, Pattern multiplication, Broadside and End fire array - Concept of Phased arrays, Adaptive array, Basic principle of antenna Synthesis-Binomial array

UNIT IV SPECIAL ANTENNAS

Principle of frequency independent antennas – Spiral antenna, Helical antenna, Log periodic. Modern antennas- Reconfigurable antenna, Active antenna, Dielectric antennas, Electronic band gap structure and applications, Antenna Measurements-Test Ranges, Measurement of Gain, Radiation pattern, Polarization, VSWR

9

9

9

9

LTPC 3003

1. Edward C.Jordan and Keith G.Balmain" Electromagnetic Waves and Radiating Systems" Prentice

Upon completion of the course, students will be able to:

• Write about the radiation from a current element.

• Explain the various types of antennas and wave propagation.

Hall of India, 2006

OUTCOMES:

TEXT BOOK:

REFERENCES:

- 2. R.E.Collin,"Antennas and Radiowave Propagation", Mc Graw Hill 1985.
- 3. Constantine A. Balanis "Antenna Theory Analysis and Design", Wiley Student Edition, 2006.
- 4. Rajeswari Chatterjee, "Antenna Theory and Practice" Revised Second Edition New Age International Publishers, 2006.
- 5. S. Drabowitch, "Modern Antennas" Second Edition, Springer Publications, 2007.

1. John D Kraus," Antennas for all Applications", 3rd Edition, Mc Graw Hill, 2005.

- 6. Robert S.Elliott "Antenna Theory and Design" Wiley Student Edition, 2006.
- 7. H.Sizun "Radio Wave Propagation for Telecommunication Applications", First Indian Reprint, Springer Publications, 2007.

EC6611COMPUTER NETWORKS LABORATORYL T P C0 0 3 2

OBJECTIVES:

The student should be made to:

- Learn to communicate between two desktop computers.
- Learn to implement the different protocols
- Be familiar with socket programming.
- Be familiar with the various routing algorithms
- Be familiar with simulation tools.

LIST OF EXPERIMENTS:

- 1. Implementation of Error Detection / Error Correction Techniques
- 2. Implementation of Stop and Wait Protocol and sliding window
- 3. Implementation and study of Goback-N and selective repeat protocols
- 4. Implementation of High Level Data Link Control
- 5. Study of Socket Programming and Client Server model
- 6. Write a socket Program for Echo/Ping/Talk commands.
- 7. To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.
- 8. Network Topology Star, Bus, Ring
- 9. Implementation of distance vector routing algorithm

UNIT V PROPAGATION OF RADIO WAVES

independent and broad band

Modes of propagation , Structure of atmosphere , Ground wave propagation , Tropospheric propagation , Duct propagation, Troposcatter propagation , Flat earth and Curved earth concept Sky wave propagation – Virtual height, critical frequency , Maximum usable frequency – Skip distance, Fading , Multi hop propagation

Analyze the antenna arrays, aperture antennas and special antennas such as frequency

TOTAL: 45 PERIODS

- 10. Implementation of Link state routing algorithm
- 11. Study of Network simulator (NS) and simulation of Congestion Control Algorithms using NS
- 12. Encryption and decryption.

OUTCOMES: At the end of the course, the student should be able to • Communicate between two desktop computers. • Implement the different protocols • Program using sockets. • Implement and compare the various routing algorithms • Use simulation tool.	TOTAL: 45 PERIODS
 LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS SOFTWARE C / C++ / Java / Equivalent Compiler Network simulator like NS2/ NS3 / Glomosim/OPNET/ Equivalent 	30
HARDWARE Standalone desktops	30 Nos

EC6612	VLSI DESIGN LABORATORY	LTPC
		0032

OBJECTIVES:

- To learn Hardware Descriptive Language(Verilog/VHDL)
- To learn the fundamental principles of VLSI circuit design in digital and analog domain
- To familiarise fusing of logical modules on FPGAs
- To provide hands on design experience with professional design (EDA) platforms.

LIST OF EXPERIMENTS FPGA BASED EXPERIMENTS.

- 1. HDL based design entry and simulation of simple counters, state machines, adders (min 8 bit) and multipliers (4 bit min).
- 2. Synthesis, P&R and post P&R simulation of the components simulated in (I) above. Critical paths and static timing analysis results to be identified. Identify and verify possible conditions under which the blocks will fail to work correctly.
- 3. Hardware fusing and testing of each of the blocks simulated in (I). Use of either chipscope feature (Xilinx) or the signal tap feature (Altera) is a must. Invoke the PLL and demonstrate the use of the PLL module for clock generation in FPGAs.

IC DESIGN EXPERIMENTS: (BASED ON CADENCE / MENTOR GRAPHICS / EQUIVALENT)

- 4. Design and simulation of a simple 5 transistor differential amplifier. Measure gain, ICMR, and CMRR
- 5. Layout generation, parasitic extraction and resimulation of the circuit designed in (I)
- 6. Synthesis and Standard cell based design of an circuits simulated in 1(I) above. Identification of critical paths, power consumption.

- 7. For expt (c) above, P&R, power and clock routing, and post P&R simulation.
- 8. Analysis of results of static timing analysis.

OUTCOMES:

TOTAL: 45 PERIODS

At the end of the course, the student should be able to

- Write HDL code for basic as well as advanced digital integrated circuits.
- Import the logic modules into FPGA Boards. •
- Synthesize, Place and Route the digital IPs. •
- Design, Simulate and Extract the layouts of Analog IC Blocks using EDA tools. •

LAB EQUIPMENT FOR A BATCH OF 30 STUDENSTS:

Xilinx or Altera FPGA	10 nos
Xilinx software	
Cadence/MAGMA/Tanner or equivalent software package	10 User License
PCs	10 No.s

GE6674 COMMUNICATION AND SOFT SKILLS- LABORATORY BASED LTPC 0 0 4 2

OBJECTIVES:

To enable learners to.

- Develop their communicative competence in English with specific reference to speaking and listening
- Enhance their ability to communicate effectively in interviews.
- Strengthen their prospects of success in competitive examinations.

UNIT I LISTENING AND SPEAKING SKILLS

Conversational skills (formal and informal)- group discussion- making effective presentations using computers, listening/watching interviews conversations, documentaries. Listening to lectures, discussions from TV/ Radio/ Podcast.

UNIT II **READING AND WRITING SKILLS**

Reading different genres of tests ranging from newspapers to creative writing. Writing job applications- cover letter- resume- emails- letters- memos- reports. Writing abstracts- summariesinterpreting visual texts.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS

International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) - Civil Service(Language related)- Verbal Ability.

12

12

UNIT IV INTERVIEW SKILLS

Different types of Interview format- answering questions- offering information- mock interviews-body language(paralinguistic features)- articulation of sounds- intonation.

UNIT V SOFT SKILLS

Motivation- emotional intelligence-Multiple intelligences- emotional intelligence- managing changes-time management-stress management-leadership straits-team work- career planning - intercultural communication- creative and critical thinking

TOTAL: 60 PERIODS

Teaching Methods:

- 1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
- 2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
- 3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
- 4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
- 5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.

S. No.	Description of Equipment (minimum configuration)	Qty Required	
1	Server	1 No.	
	PIV System		
	1 GB RAM / 40 GB HDD		
	OS: Win 2000 server		
	Audio card with headphones		
	• JRE 1.3		
2	Client Systems	60 Nos.	
	PIII or above		
	• 256 or 512 MB RAM / 40 GB HDD		
	• OS: Win 2000		
	Audio card with headphones		
	• JRE 1.3		
3	Handicam	1 No.	
4	Television 46"	1 No.	
5	Collar mike	1 No.	
6	Cordless mike	1 No.	
7	Audio Mixer	1 No.	
8	DVD recorder/player	1 No.	
9	LCD Projector with MP3/CD/DVD provision for Audio/video facility	1 No.	

Lab Infrastructure:

Evaluation:

Internal: 20 marks

Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

External: 80 marks

Online Test	- 35 marks
Interview	- 15 marks
Presentation	- 15 marks
Group Discussion	- 15 marks

Note on Internal and External Evaluation:

- 1. Interview mock interview can be conducted on one-on-one basis.
- 2. Speaking example for role play:
 - a. Marketing engineer convincing a customer to buy his product.
 - b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
- 3. Presentation should be extempore on simple topics.
- 4. Discussion topics of different kinds; general topics, and case studies.

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD-ROM), Times Multimedia, Mumbai.
- 6. Robert M Sherfield and et al. "Developing Soft Skills" 4th edition, New Delhi: Pearson Education, 2009.

Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion http://www.washington.edu/doit/TeamN/present_tips.html http://www.oxforddictionaries.com/words/writing-job-applications http://www.kent.ac.uk/careers/cv/coveringletters.htm http://www.mindtools.com/pages/article/newCDV_34.htm

EC6701

RF AND MICROWAVE ENGINEERING

OBJECTIVES:

- To inculcate understanding of the basics required for circuit representation of RF networks.
- To deal with the issues in the design of microwave amplifier.
- To instill knowledge on the properties of various microwave components.
- To deal with the microwave generation and microwave measurement techniques

UNIT I TWO PORT NETWORK THEORY

Review of Low frequency parameters: Impedance, Admittance, Hybrid and ABCD parameters, Different types of interconnection of Two port networks, High Frequency parameters, Formulation of S parameters, Properties of S parameters, Reciprocal and lossless Network, Transmission matrix, RF behavior of Resistors, Capacitors and Inductors.

UNIT II RF AMPLIFIERS AND MATCHING NETWORKS

Characteristics of Amplifiers, Amplifier power relations, Stability considerations, Stabilization Methods, Noise Figure, Constant VSWR, Broadband, High power and Multistage Amplifiers, Impedance matching using discrete components, Two component matching Networks, Frequency response and quality factor, T and Pi Matching Networks, Microstrip Line Matching Networks.

UNIT III PASSIVE AND ACTIVE MICROWAVE DEVICES

Terminations, Attenuators, Phase shifters, Directional couplers, Hybrid Junctions, Power dividers, Circulator, Isolator, Impedance matching devices: Tuning screw, Stub and quarter wave transformers. Crystal and Schottkey diode detector and mixers, PIN diode switch, Gunn diode oscillator, IMPATT diode oscillator and amplifier, Varactor diode, Introduction to MIC.

UNIT IV MICROWAVE GENERATION

Review of conventional vacuum Triodes, Tetrodes and Pentodes, High frequency effects in vacuum Tubes, Theory and application of Two cavity Klystron Amplifier, Reflex Klystron oscillator, Traveling wave tube amplifier, Magnetron oscillator using Cylindrical, Linear, Coaxial Voltage tunable Magnetrons, Backward wave Crossed field amplifier and oscillator.

UNIT V MICROWAVE MEASUREMENTS

Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Explain the active & passive microwave devices & components used in Microwave communication systems.
- Analyze the multi- port RF networks and RF transistor amplifiers.
- Generate Microwave signals and design microwave amplifiers.
- Measure and analyze Microwave signal and parameters.

TEXT BOOKS:

- 1. Reinhold Ludwig and Gene Bogdanov, "RF Circuit Design: Theory and Applications", Pearson Education Inc., 2011
- 2. Robert E Colin, "Foundations for Microwave Engineering", John Wiley & Sons Inc, 2005

9

9

9

9 Im

REFERENCES:

- 1. David M. Pozar, "Microwave Engineering", Wiley India (P) Ltd, New Delhi, 2008.
- 2. Thomas H Lee, "Planar Microwave Engineering: A Practical Guide to Theory, Measurements and Circuits", Cambridge University Press, 2004.
- 3. Mathew M Radmanesh, "RF and Microwave Electronics", Prentice Hall, 2000.
- 4. Annapurna Das and Sisir K Das, "Microwave Engineering", Tata Mc Graw Hill Publishing Company Ltd, New Delhi, 2005.

EC6702OPTICAL COMMUNICATION AND NETWORKSL T P C3 0 0 3

OBJECTIVES:

- To Facilitate the knowledge about optical fiber sources and transmission techniques
- To Enrich the idea of optical fiber networks algorithm such as SONET/SDH and optical CDMA.
- To Explore the trends of optical fiber measurement systems.

UNIT I INTRODUCTION TO OPTICAL FIBERS

Evolution of fiber optic system- Element of an Optical Fiber Transmission link-- Total internal reflection-Acceptance angle –Numerical aperture – Skew rays Ray Optics-Optical Fiber Modes and Configurations -Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts-Linearly Polarized Modes -Single Mode Fibers-Graded Index fiber structure.

UNIT II SIGNAL DEGRADATION OPTICAL FIBERS

Attenuation - Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides-Information Capacity determination -Group Delay-Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling -Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNIT III FIBER OPTICAL SOURCES AND COUPLING

Direct and indirect Band gap materials-LED structures -Light source materials -Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition -Rate equations -External Quantum efficiency -Resonant frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power Launching and coupling, Lencing schemes, Fiber -to- Fiber joints, Fiber splicing-Signal to Noise ratio, Detector response time.

UNIT IV FIBER OPTIC RECEIVER AND MEASUREMENTS

Fundamental receiver operation, Pre amplifiers, Error sources – Receiver Configuration– Probability of Error – Quantum limit.Fiber Attenuation measurements- Dispersion measurements – Fiber Refractive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements.

73

9

9

9

74

4

UNIT V OPTICAL NETWORKS AND SYSTEM TRANSMISSION

Basic Networks – SONET / SDH – Broadcast – and –select WDM Networks –Wavelength Routed Networks – Non linear effects on Network performance –-Link Power budget -Rise time budget-Noise Effects on System Performance-Operational Principles of WDM Performance of WDM + EDFA system – Solutions – Optical CDMA – Ultra High Capacity Networks.

OUTCOMES:

Upon completion of the course, students will be able to:

- Discuss the various optical fiber modes, configurations and various signal degradation factors associated with optical fiber.
- Explain the various optical sources and optical detectors and their use in the optical communication system.
- Analyze the digital transmission and its associated parameters on system performance.

TEXT BOOKS:

- 1. Gerd Keiser, "Optical Fiber Communication" Mc Graw -Hill International, 4th Edition., 2010.
- 2. John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007.

REFERENCES:

- 1. Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.
- 2. J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 3rd Edition, 2008.
- 3. J.Gower, "Optical Communication System", Prentice Hall of India, 2001.

EC6703

EMBEDDED AND REAL TIME SYSTEMS

L T P C 3 0 0 3

9

9

OBJECTIVES:

The student should be made to:

- Learn the architecture and programming of ARM processor.
- Be familiar with the embedded computing platform design and analysis.
- Be exposed to the basic concepts of real time Operating system.
- Learn the system design techniques and networks for embedded systems

UNIT I INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS

Complex systems and micro processors– Embedded system design process –Design example: Model train controller- Instruction sets preliminaries - ARM Processor – CPU: programming input and output-supervisor mode, exceptions and traps – Co-processors- Memory system mechanisms – CPU performance- CPU power consumption.

UNIT II EMBEDDED COMPUTING PLATFORM DESIGN

The CPU Bus-Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs-Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.

TOTAL: 45 PERIODS

75

UNIT III PROCESSES AND OPERATING SYSTEMS

Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive real-time operating systems- Priority based scheduling- Interprocess communication mechanisms – Evaluating operating system performance- power optimization strategies for processes – Example Real time operating systems-POSIX-Windows CE.

UNIT V SYSTEM DESIGN TECHNIQUES AND NETWORKS

Design methodologies- Design flows - Requirement Analysis – Specifications-System analysis and architecture design – Quality Assurance techniques- Distributed embedded systems – MPSoCs and shared memory multiprocessors.

UNIT V CASE STUDY

Data compressor - Alarm Clock - Audio player - Software modem-Digital still camera - Telephone answering machine-Engine control unit – Video accelerator.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Describe the architecture and programming of ARM processor.
- Outline the concepts of embedded systems
- Explain the basic concepts of real time Operating system design.
- Use the system design techniques to develop software for embedded systems
- Differentiate between the general purpose operating system and the real time operating system
- Model real-time applications using embedded-system concepts

TEXT BOOK:

1. Marilyn Wolf, "Computers as Components - Principles of Embedded Computing System Design", Third Edition "Morgan Kaufmann Publisher (An imprint from Elsevier), 2012.

REFERENCES:

- 1. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third Edition Cengage Learning, 2012.
- 2. David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, Addison-Wesley Professional, 2007.
- 3. Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems- From Design to Networking with C/C++", Prentice Hall, 1999.
- 4. C.M. Krishna, Kang G. Shin, "Real-Time Systems", International Editions, Mc Graw Hill 1997
- 5. K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", Dream Tech Press, 2005.
- 6. Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata Mc Graw Hill, 2004.

9

EC6711

EMBEDDED LABORATORY

LTPC 0 0 3 2

OBJECTIVES:

The student should be made to:

- Learn the working of ARM processor
- Understand the Building Blocks of Embedded Systems
- Learn the concept of memory map and memory interface
- Know the characteristics of Real Time Systems
- Write programs to interface memory, I/Os with processor
- Study the interrupt performance

LIST OF EXPERIMENTS

- 1. Study of ARM evaluation system
- 2. Interfacing ADC and DAC.
- 3. Interfacing LED and PWM.
- 4. Interfacing real time clock and serial port.
- 5. Interfacing keyboard and LCD.
- 6. Interfacing EPROM and interrupt.
- 7. Mailbox.
- 8. Interrupt performance characteristics of ARM and FPGA.
- 9. Flashing of LEDS.
- 10. Interfacing stepper motor and temperature sensor.
- 11. Implementing zigbee protocol with ARM.

OUTCOMES:

At the end of the course, the student should be able to:

- Write programs in ARM for a specific Application
- Interface memory and Write programs related to memory operations
- Interface A/D and D/A convertors with ARM system
- Analyse the performance of interrupt
- Write programmes for interfacing keyboard, display, motor and sensor.
- Formulate a mini project using embedded system

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS (3 students per batch) 10 No.s

- 1. Embedded trainer kits with ARM board
- 10 No.s 2. Embedded trainer kits suitable for wireless communication
- 3. Adequate quantities of Hardware, software and consumables

OPTICAL AND MICROWAVE LABORATORY

LTPC 0 0 3 2

OBJECTIVES:

EC6712

The student should be made to:

- 1. Understand the working principle of optical sources, detector, fibers and microwave components
- 2. Develop understanding of simple optical communication link.
- 3. Learn about the characteristics and measurements in optical fiber
- 4. Know about the behavior of microwave components.

5. Practice microwave measurement procedures

LIST OF EXPERIMENTS

OPTICAL EXPERIMENTS

- 1. DC Characteristics of LED and PIN Photo diode
- 2. Mode Characteristics of Fibers
- 3. Measurement of connector and bending losses
- 4. Fiber optic Analog and Digital Link- frequency response(analog) and eye diagram (digital)
- 5. Numerical Aperture determination for Fibers
- 6. Attenuation Measurement in Fibers

MICROWAVE EXPERIMENTS

- 1. Reflex klystron or Gunn diode characteristics and basic microwave parameter measurement such as VSWR, frequency, wavelength.
- 2. Directional Coupler Characteristics.
- 3. Radiation Pattern of Horn Antenna.
- 4. S-parameter Measurement of the following microwave components (Isolator, Circulator, E plane Tee, H Plane Tee, Magic Tee)
- 5. Attenuation and Power Measurement

TOTAL: 45 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS 3 STUDENTS PER EXPERIMENT:

- Trainer kit for carrying out LED and PIN diode characteristics, Digital multi meter, optical power meter. – 2 Nos
- 2. Trainer kit for determining the mode characteristics, losses in optical fiber.- 2 Nos
- 3. Trainer kit for analyzing Analog and Digital link performance, 2 Mbps PRBS Data source, 10 MHz signal generator, 20 MHz Digital storage Oscilloscope. 2 Nos
- 4. Kit for measuring Numerical aperture and Attenuation of fiber 2 Nos
- 5. MM/SM Glass and plastic fiber patch chords with ST/SC/E2000 connectors 2 set
- 6. LEDs with ST / SC / E2000 receptacles 650 / 850 nm 2 set
- 7. PiN PDs with ST / SC / E2000 receptacles 650 / 850 nm 2 set
- 8. Microwave test Bench at X band to determine Directional coupler characteristics. 2 Nos
- 9. Microwave test Bench at X band and Antenna turn table to measure Radiation pattern of Horn antenna, 2 Horn antennas. 2 Nos
- 10. Microwave test Bench at X band to determine VSWR for Isolator and Circulator, VSWR meter, Isolator, Circulator, E Plane Tee, H plane Tee. 2 Nos
- 11. Microwave test Bench at X band, Variable attenuator, Detector and 20 MHz Digital / Analog Oscilloscope. 2 Nos

Note: Microwave test bench comprises of Reflex klystron or Gunn diode with power supply, Gunn oscillator, PIN modulator, Isolator, Fixed and Variable Attenuator, frequency meter, Slotted section, Wave guides, detector with mount, Termination, Movable short, Slide screw tuner, Horn antenna, Directional coupler and 20 MHz Digital / Analog Oscilloscope.

OUTCOMES:

At the end of the course, the student should be able to:

- Analyze the performance of simple optical link.
- Test microwave and optical components.
- Analyse the mode characteristics of fiber
- Analyse the radiation of pattern of antenna.

WIRELESS COMMUNICATION

EC6801

OBJECTIVES:

The student should be made to:

- Know the characteristic of wireless channel
- Learn the various cellular architectures
- Understand the concepts behind various digital signaling schemes for fading channels
- Be familiar the various multipath mitigation techniques •
- Understand the various multiple antenna systems

WIRELESS CHANNELS UNIT I

Large scale path loss - Path loss models: Free Space and Two-Ray models -Link Budget design -Small scale fading- Parameters of mobile multipath channels - Time dispersion parameters-Coherence bandwidth - Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.

UNIT II CELLULAR ARCHITECTURE

Multiple Access techniques - FDMA, TDMA, CDMA - Capacity calculations-Cellular concept-Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service – Coverage and capacity improvement.

DIGITAL SIGNALING FOR FADING CHANNELS UNIT III

Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle -Cyclic prefix, Windowing, PAPR.

UNIT IV MULTIPATH MITIGATION TECHNIQUES

Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver,

UNIT V MULTIPLE ANTENNA TECHNIQUES

MIMO systems - spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Characterize wireless channels
- Design and implement various signaling schemes for fading channels
- Design a cellular system
- Compare multipath mitigation techniques and analyze their performance
- Design and implement systems with transmit/receive diversity and MIMO systems and analyze their performance

TEXTBOOKS:

- 1. Rappaport, T.S., "Wireless communications", Second Edition, Pearson Education, 2010.
- 2. Andreas.F. Molisch, "Wireless Communications", John Wiley India, 2006.

9

9

9

9

REFERENCES:

- 1. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press, 2005.
- 2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009.
- 3. Van Nee, R. and Ramji Prasad, "OFDM for wireless multimedia communications", Artech House, 2000.

EC6802

WIRELESS NETWORKS

LTPC 3 0 0 3

OBJECTIVES:

- To study about Wireless networks, protocol stack and standards.
- To study about fundamentals of 3G Services, its protocols and applications.
- To study about evolution of 4G Networks, its architecture and applications.

UNIT I WIRELESS LAN

Introduction-WLAN technologies: Infrared, UHF narrowband, spread spectrum -IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a - Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Radio Layer, Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX

UNIT II MOBILE NETWORK LAYER

Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6-Network layer in the internet- Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing

UNIT III **MOBILE TRANSPORT LAYER**

TCP enhancements for wireless protocols - Traditional TCP: Congestion control, fast retransmit/fast recovery, Implications of mobility - Classical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time out freezing, Selective retransmission, Transaction oriented TCP - TCP over 3G wireless networks.

UNIT IV WIRELESS WIDE AREA NETWORK

Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol.

UNIT V **4G NETWORKS**

Introduction – 4G vision – 4G features and challenges - Applications of 4G – 4G Technologies: Multicarrier Modulation, Smart antenna techniques, OFDM-MIMO systems, Adaptive Modulation and coding with time slot scheduler, Cognitive Radio.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to

- Conversant with the latest 3G/4G and WiMAX networks and its architecture.
- Design and implement wireless network environment for any application using latest wireless protocols and standards.

9

9

9

9

• Implement different type of applications for smart phones and mobile devices with latest network strategies.

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education 2012.(Unit I,II,III)
- 2. Vijay Garg, "Wireless Communications and networking", First Edition, Elsevier 2007. (Unit IV,V)

REFERENCES:

- 1. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", Second Edition, Academic Press, 2008.
- 2. Anurag Kumar, D.Manjunath, Joy kuri, "Wireless Networking", First Edition, Elsevier 2011.
- 3. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education 2013

EC6811

PROJECT WORK

LTPC 0 0 12 6

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 180 PERIODS

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

EC6001

MEDICAL ELECTRONICS

LTPC 3 003

OBJECTIVES:

- To gain knowledge about the various physiological parameters both electrical and non electrical and the methods of recording and also the method of transmitting these parameters.
- To study about the various assist devices used in the hospitals.
- To gain knowledge about equipment used for physical medicine and the various recently developed diagnostic and therapeutic techniques.

81

UNIT I ELECTRO-PHYSIOLOGY AND BIO-POTENTIAL RECORDING

The origin of Bio-potentials; biopotential electrodes, biological amplifiers, ECG, EEG, EMG, PCG, lead systems and recording methods, typical waveforms and signal characteristics.

UNIT II BIO-CHEMICAL AND NON ELECTRICAL PARAMETER MEASUREMENT

pH, PO₂, PCO₂, colorimeter, Auto analyzer, Blood flow meter, cardiac output, respiratory measurement, Blood pressure, temperature, pulse, Blood Cell Counters.

UNIT III ASSIST DEVICES

Cardiac pacemakers, DC Defibrillator, Dialyser, Heart lung machine

UNIT IV PHYSICAL MEDICINE AND BIOTELEMETRY

Diathermies- Shortwave, ultrasonic and microwave type and their applications, Surgical Diathermy Telemetry principles, frequency selection, biotelemetry, radiopill, electrical safety

UNIT V RECENT TRENDS IN MEDICAL INSTRUMENTATION

Thermograph, endoscopy unit, Laser in medicine, cryogenic application, Introduction to telemedicine

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Discuss the application of electronics in diagnostic and therapeutic area.
- Measure biochemical and various physiological information.
- Describe the working of units which will help to restore normal functioning.

TEXTBOOKS:

- 1. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Prentice Hall of India, New Delhi, 2007.
- 2. John G.Webster, "Medical Instrumentation Application and Design", 3rd Edition, Wiley India Edition, 2007

REFERENCES:

- 1. Khandpur, R.S., "Handbook of Biomedical Instrumentation", TATA Mc Graw-Hill, New Delhi, 2003.
- 2. Joseph J.Carr and John M.Brown, "Introduction to Biomedical Equipment Technology", John Wiley and Sons, New York, 2004.

EC6002ADVANCED DIGITAL SIGNAL PROCESSINGL T P C

OBJECTIVES:

- To bring out the concepts related to stationary and non-stationary random signals
- To emphasize the importance of true estimation of power spectral density
- To introduce the design of linear and adaptive systems for filtering and linear prediction
- To introduce the concept of wavelet transforms in the context of image processing

9

9

9

9

9

3 0 0 3

82

UNIT I DISCRETE-TIME RANDOM SIGNALS

Discrete random process - Ensemble averages, Stationary and ergodic processes, Autocorrelation and Autocovariance properties and matrices, White noise, Power Spectral Density, Spectral Factorization, Innovations Representation and Process, Filtering random processes, ARMA, AR and MA processes.

UNIT II SPECTRUM ESTIMATION

Bias and Consistency, Periodogram, Modified periodogram, Blackman-Tukey method, Welch method, Parametric methods of spectral estimation, Levinson-Durbin recursion

UNIT III LINEAR ESTIMATION AND PREDICTION

Forward and Backward linear prediction, Filtering - FIR Wiener filter- Filtering and linear prediction, non-causal and causal IIR Wiener filters, Discrete Kalman filter.

UNIT IV ADAPTIVE FILTERS

Principles of adaptive filter - FIR adaptive filter - Newton's Steepest descent algorithm - LMS algorithm – Adaptive noise cancellation, Adaptive equalizer, Adaptive echo cancellers.

UNIT V WAVELET TRANSFORM

Multiresolution analysis, Continuous and discrete wavelet transform, Short Time Fourier Transform, Application of wavelet transform, Cepstrum and Homomorphic filtering.

OUTCOMES:

Upon completion of the course, students will be able to:

- Explain the parametric methods for power spectrum estimation.
- Discuss adaptive filtering techniques using LMS algorithm and the applications of adaptive filtering.
- Analyze the wavelet transforms.

TEXTBOOKS:

- 1. Monson H, Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons Inc., New York, Indian Reprint, 2007.
- 2. John G.Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson, Fourth 2007.
- 3. Dwight F. Mix, "Random Signal Processing", Prentice Hall, 1995.

REFERENCE:

1. Sophocles J. Orfanidis, "Optimum Signal Processing, An Introduction", Mc Graw Hill, 1990.

CS6401

OPERATING SYSTEMS

OBJECTIVES:

The student should be made to:

- Study the basic concepts and functions of operating systems. •
- Understand the structure and functions of OS.
- Learn about Processes, Threads and Scheduling algorithms.
- Understand the principles of concurrency and Deadlocks. •
- Learn various memory management schemes. •
- Study I/O management and File systems. •
- Learn the basics of Linux system and perform administrative tasks on Linux Servers. •

9

9

9

TOTAL: 45 PERIODS

LTPC 3 0 0 3

UNIT I **OPERATING SYSTEMS OVERVIEW**

Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and Multicore Organization, Operating system overview-objectives and functions, Evolution of Operating System.- Computer System Organization-Operating System Structure and Operations- System Calls, System Programs, OS Generation and System Boot.

UNIT II PROCESS MANAGEMENT

Processes-Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication; Threads- Overview, Multicore Programming, Multithreading Models; Windows 7 -Thread and SMP Management. Process Synchronization - Critical Section Problem, Mutex Locks, Semophores, Monitors; CPU Scheduling and Deadlocks.

UNIT III STORAGE MANAGEMENT

Main Memory-Contiguous Memory Allocation, Segmentation, Paging, 32 and 64 bit architecture Examples; Virtual Memory- Demand Paging, Page Replacement, Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

UNIT IV **I/O SYSTEMS**

Mass Storage Structure- Overview, Disk Scheduling and Management; File System Storage-File Concepts, Directory and Disk Structure, Sharing and Protection; File System Implementation- File System Structure, Directory Structure, Allocation Methods, Free Space Management, I/O Systems.

UNIT V **CASE STUDY**

Linux System- Basic Concepts; System Administration-Requirements for Linux System Administrator, Setting up a LINUX Multifunction Server, Domain Name System, Setting Up Local Network Services; Virtualization- Basic Concepts, Setting Up Xen, VMware on Linux Host and Adding Guest OS.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design various Scheduling algorithms. •
- Apply the principles of concurrency. •
- Design deadlock, prevention and avoidance algorithms. •
- Compare and contrast various memory management schemes.
- Design and Implement a prototype file systems. •
- Perform administrative tasks on Linux Servers. •

TEXT BOOK:

 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley and Sons Inc., 2012.

REFERENCES:

- 1. William Stallings, "Operating Systems Internals and Design Principles", 7th Edition, Prentice Hall, 2011.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- 3. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata Mc Graw Hill Education", 1996.
- 4. D M Dhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata Mc Graw-Hill Education. 2007.
- 5. http://nptel.ac.in/.

9

9

9

9

- 7. Fu K.S. Gonzaleaz R.C. and Lee C.S.G., "Robotics Control Sensing, Vision and Intelligence" McGraw Hill International Editions, 1987.

84

OBJECTIVES: To study the various parts of robots and fields of robotics.

- To study the various kinematics and inverse kinematics of robots.
- To study the Euler, Lagrangian formulation of Robot dynamics.
- To study the trajectory planning for robot. •
- To study the control of robots for some specific applications.

UNIT I **BASIC CONCEPTS**

Definition and origin of robotics – different types of robotics – various generations of robots – degrees of freedom – Asimov's laws of robotics – dynamic stabilization of robots.

ROBOTICS AND AUTOMATION

UNIT II **POWER SOURCES AND SENSORS**

Hydraulic, pneumatic and electric drives – determination of HP of motor and gearing ratio – variable speed arrangements – path determination – micro machines in robotics – machine vision – ranging – laser - acoustic - magnetic, fiber optic and tactile sensors.

MANIPULATORS, ACTUATORS AND GRIPPERS UNIT III

Construction of manipulators – manipulator dynamics and force control – electronic and pneumatic manipulator control circuits – end effectors – U various types of grippers – design considerations.

UNIT IV KINEMATICS AND PATH PLANNING

Solution of inverse kinematics problem - multiple solution jacobian work envelop - hill Climbing Techniques – robot programming languages

UNIT V CASE STUDIES

Mutiple robots – machine interface – robots in manufacturing and non- manufacturing applications – robot cell design – selection of robot.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Explain the basic concepts of working of robot
- Analyze the function of sensors in the robot
- Write program to use a robot for a typical application
- Use Robots in different applications

TEXT BOOKS:

1. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., "Industrial Robotics", Mc Graw-Hill Singapore, 1996.

2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

REFERENCES:

- 1. Deb. S.R., "Robotics Technology and flexible Automation", John Wiley, USA 1992.
- Klafter R.D., Chimielewski T.A., Negin M., "Robotic Engineering An integrated approach", Prentice Hall of India, New Delhi, 1994.
- 3. Mc Kerrow P.J. "Introduction to Robotics", Addison Wesley, USA, 1991.
- Issac Asimov "Robot", Ballantine Books, New York, 1986.
- 5. Barry Leatham Jones, "Elements of industrial Robotics" PITMAN Publishing, 1987.
- 6. Mikell P.Groover, Mitchell Weiss, Roger N.Nagel Nicholas G.Odrey, "Industrial Robotics Technology, Programming and Applications ", McGraw Hill Book Company 1986.

TOTAL: 45 PERIODS

9

9

9

9

9

EC6003

UNIT I SATELLITE ORBITS Kepler's Laws, Newton's law, orbital parameters, orbital perturbations, station keeping, geo stationary and non Geo-stationary orbits - Look Angle Determination- Limits of visibility -eclipse-Sub satellite point –Sun transit outage-Launching Procedures - launch vehicles and propulsion.

SPACE SEGMENT AND SATELLITE LINK DESIGN UNIT II

• To understand the satellite segment and earth segment. • To analyze the various methods of satellite access.

To understand the basics of satellite orbits.

To understand the applications of satellites.

Spacecraft Technology- Structure, Primary power, Attitude and Orbit control, Thermal control and Propulsion, communication Payload and supporting subsystems, Telemetry, Tracking and command. Satellite uplink and downlink Analysis and Design, link budget. E/N calculation- performance impairments-system noise, inter modulation and interference, Propagation Characteristics and Frequency considerations- System reliability and design lifetime.

UNIT III EARTH SEGMENT

Introduction - Receive - Only home TV systems - Outdoor unit - Indoor unit for analog (FM) TV -Master antenna TV system – Community antenna TV system – Transmit – Receive earth stations – Problems – Equivalent isotropic radiated power – Transmission losses – Free-space transmission – Feeder losses - Antenna misalignment losses - Fixed atmospheric and ionospheric losses - Link power budget equation - System noise - Antenna noise - Amplifier noise temperature - Amplifiers in cascade - Noise factor - Noise temperature of absorptive networks - Overall system noise temperature - Carrierto- Noise ratio - Uplink - Saturation flux density - Input back off - The earth station - HPA - Downlink - Output back off - Satellite TWTA output - Effects of rain - Uplink rain-Fade margin – Downlink rain – Fade margin – Combined uplink and downlink C/N ratio – Inter modulation noise.

SATELLITE ACCESS **UNIT IV**

Modulation and Multiplexing: Voice, Data, Video, Analog – digital transmission system, Digital video Brocast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum communication, compression - encryption.

UNIT V SATELLITE APPLICATIONS

INTELSAT Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, INMARSAT, LEO, MEO, Satellite Navigational System. Direct Broadcast satellites (DBS)- Direct to home Broadcast (DTH), Digital audio broadcast (DAB)- Worldspace services, Business TV(BTV), GRAMSAT, Specialized services – E –mail, Video conferencing, Internet.

OUTCOMES:

Upon Completion of the course, the students will be able to:

- Analyze the satellite orbits.
- Analyze the earth segment and space segment.
- Design various satellite applications

TEXT BOOK:

1. Dennis Roddy, "Satellite Communication", 4th Edition, Mc Graw Hill International, 2006.

SATELLITE COMMUNICATION

EC6004

OBJECTIVES:

LTPC 3003

9

TOTAL: 45 PERIODS

9

9

9

REFERENCES:

- 1. Wilbur L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, 2007.
- 2. N.Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.
- 3. Bruce R. Elbert, "The Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997.
- 4. Tri T. Ha, "Digital Satellite Communication", II nd edition, 1990.
- 5. Emanuel Fthenakis, "Manual of Satellite Communications", Mc Graw Hill Book Co., 1984.
- 6. Robert G. Winch, "Telecommunication Trans Mission Systems", Mc Graw-Hill Book Co., 1983.
- 7. Brian Ackroyd, "World Satellite Communication and earth station Design", BSP professional Books, 1990.
- 8. G.B.Bleazard, "Introducing Satellite communications", NCC Publication, 1985.
- 9. M.Richharia, "Satellite Communication Systems-Design Principles", Macmillan 2003.

EC6005

ELECTRONIC TESTING

OBJECTIVES:

- To understand the basics of testing and the testing equipments
- To understand the different testing methods

UNIT I INTRODUCTION

Test process and automatic test equipment, test economics and product quality, fault modeling

UNIT II DIGITAL TESTING

Logic and fault simulation, testability measures, combinational and sequential circuit test generation.

UNIT III ANALOG TESTING

Memory Test, DSP Based Analog and Mixed Signal Test, Model based analog and mixed signal test, delay test, IIDQ test.

UNIT IV DESIGN FOR TESTABILITY

Built-in self-test, Scan chain design, Random Logic BIST, Memory BIST, Boundary scan test standard, Analog test bus, Functional Microprocessor Test, Fault Dictionary, Diagnostic Tree, Testable System Design, Core Based Design and Test Wrapper Design, Test design for SOCs

UNIT V LOADED BOARD TESTING

Unpowered short circuit tests, unpowered analog tests, Powered in-circuit analog, digital and mixed signal tests, optical and X-ray inspection procedures, functional block level design of in-circuit test equipment

OUTCOMES:

Upon completion of the course, students

- Explain different testing equipments.
- Design the different testing schemes for a circuit.
- Discuss the need for test process

TEXT BOOK:

1. Michael L. Bushnell and Vishwani D. Agarwal, "Essentials of Electronic Testing for Digital, Memory & Mixed-Signal VLSI Circuits", Springer, 2006.

TOTAL: 45 PERIODS

9

9

9

L T P C 3 0 0 3

9

REFERENCE:

1. Dimitris Gizopouilos, "Advances in Electronic Testing", Springer 2006.

EC6006

AVIONICS

OBJECTIVES:

- To understand the needs for avionics for both Civil and military aircraft.
- To introduce various digital electronic principles and working operations of digital circuit.
- To integrate the digital electronics with cockpit equipments
- To understand the various principles in flight disk and cockpit panels.
- To study the communication and navigation equipment
- To study certificate aspects of the Avionics system •

UNIT I INTRODUCTION TO AVIONICS

Basics of Avionics-Basics of Cockpits-Need for Avionics in civil and military aircraft and space systems – Integrated Avionics Architecture – Military and Civil system – Typical avionics System and Sub systems – Design and Technologies.

DIGITAL AVIONICS BUS ARCHITECTURE UNIT II

Avionics Bus architecture-Data buses MIL-RS 232- RS422-RS 485-AFDX/ARINC-664-MIL STD 1553 B-ARINC 429-ARINC 629- Aircraft system Interface

UNIT III FLIGHT DECK AND COCKPITS

Control and display technologies CRT, LED, LCD, EL and plasma panel - Touch screen - Direct voice input (DVI) – ARINC 818-Civil cockpit and military cockpit: MFDS, PFDS-HUD, HMD, HMI

UNIT IV **AVIONICS SYSTEMS**

Communication Systems - Navigation systems - Flight control systems - Radar electronic Warfare -Utility systems Reliability and maintainability Fundamentals- Certification-Military and civil aircrafts.

UNIT V **ON BOARD NAVIGATION SYSTEMS**

Over view of navigational aids, Flight planning, Area navigation, required time of arrival, RNAV architecture, performance aspects, approach and landing challenges, regulatory and safety aspects, INS. GPS and GNSS characteristics.

OUTCOMES:

Upon completion of the course, students will:

- Describe the hardware required for aircraft.
- Explain the communication and navigation techniques used in aircrafts.
- Discuss about the autopilot and cockpit display related concepts.

TEXT BOOK:

1. R.P.G. Collinson, "Introduction to Avionics", Chapman & Hall Publications, 1996.

LTPC 3003

9

9

9

9

9

TOTAL: 45 PERIODS

REFERENCES:

- 1. Cary R .Spitzer, "The Avionics Handbook", CRC Press, 2000.
- 2. Middleton, D.H. "Avionics Systems", Longman Scientific and Technical, Longman Group UK Ltd., England, 1989.
- 3. Spitzer, C.R. "Digital Avionics Systems", Prentice Hall, Englewood Cliffs, N.J., U.S.A., 1987.
- 4. Brain Kendal, "Manual of Avionics", The English Book House, 3rd Edition, New Delhi, 1993
- 5. Jim Curren, "Trend in Advanced Avionics", IOWA State University, 1992.

CS6012

SOFT COMPUTING

LTPC 3003

OBJECTIVES:

The student should be made to:

- Learn the various soft computing frame works
- Be familiar with design of various neural networks
- Be exposed to fuzzy logic
- Learn genetic programming.
- Be exposed to hybrid systems.

UNIT I INTRODUCTION

Artificial neural network: Introduction, characteristics- learning methods - taxonomy - Evolution of neural networks- basic models - important technologies - applications.

Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts.

UNIT II **NEURAL NETWORKS**

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative autoassociative memory network & iterative associative memory network unsupervised learning networks: Kohonen self organizing feature maps, LVQ - CP networks, ART network.

UNIT III **FUZZY LOGIC**

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning: truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNIT IV GENETIC ALGORITHM

Genetic algorithm and search space - general genetic algorithm - operators - Generational cycle stopping condition - constraints - classification - genetic programming - multilevel optimization - real life problem- advances in GA

9

9

9

UNIT V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Apply various soft computing frame works.
- Design of various neural networks.
- Use fuzzy logic.
- Apply genetic programming.
- Discuss hybrid soft computing.

TEXT BOOKS:

- 1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 2. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

REFERENCES:

- 1. S.Rajasekaran and G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.
- George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications" Prentice Hall, 1997.
- 3. David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.
- 4. James A. Freeman, David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques, Pearson Education India, 1991.
- 5. Simon Haykin, "Neural Networks Comprehensive Foundation" Second Edition, Pearson Education, 2005.

IT6005

DIGITAL IMAGE PROCESSING

LTPC 3 00 3

8

OBJECTIVES:

The student should be made to:

- Learn digital image fundamentals.
- Be exposed to simple image processing techniques.
- Be familiar with image compression and segmentation techniques.
- Learn to represent image in form of features.

UNIT I DIGITAL IMAGE FUNDAMENTALS

Introduction – Origin – Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels - color models.

9

TOTAL: 45 PERIODS

UNIT II IMAGE ENHANCEMENT

Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering– Smoothing and Sharpening Spatial Filtering – **Frequency Domain:** Introduction to Fourier Transform – Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters.

UNIT III IMAGE RESTORATION AND SEGMENTATION

Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering **Segmentation**: Detection of Discontinuities–Edge Linking and Boundary detection – Region based segmentation-Morphological processing- erosion and dilation.

UNIT IV WAVELETS AND IMAGE COMPRESSION

Wavelets – Subband coding - Multiresolution expansions - **Compression:** Fundamentals – Image Compression models – Error Free Compression – Variable Length Coding – Bit-Plane Coding – Lossless Predictive Coding – Lossy Compression – Lossy Predictive Coding – Compression Standards.

UNIT V IMAGE REPRESENTATION AND RECOGNITION

Boundary representation – Chain Code – Polygonal approximation, signature, boundary segments – Boundary description – Shape number – Fourier Descriptor, moments- Regional Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching.

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of this course, students will be able to:

- Discuss digital image fundamentals.
- Apply image enhancement and restoration techniques.
- Use image compression and segmentation Techniques.
- Represent features of images.

TEXT BOOK:

1. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2010.

REFERENCES:

- 1. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata Mc Graw Hill Pvt. Ltd., 2011.
- 2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.
- 3. Willliam K Pratt, "Digital Image Processing", John Willey, 2002.
- 4. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First Edition, PHI Learning Pvt. Ltd., 2011.
- 5. <u>http://eeweb.poly.edu/~onur/lectures/lectures.html</u>.
- 6. <u>http://www.caen.uiowa.edu/~dip/LECTURE/lecture.html</u>

9

9

OBJECTIVE:

This program can be offered with all Undergraduate programs/courses for all engineering streams. The FSIPD program aims to improve student's awareness and understanding of the basic concepts involved in Integrated product Development (IPD) by providing exposure to the key product development concepts. Students, who complete this program, will stand a better chance to be considered for jobs in the Engineering industry.

COURSE OBJECTIVES:

After completing this program, the student will be able to obtain the technical skills needed to effectively play the entry level design engineer role in an engineering organization.

The student will be able to:

- Understand the global trends and development methodologies of various types of products and services
- Conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- Understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- Understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- Gain knowledge of the Innovation & Product Development process in the Business Context

UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT

Global Trends Analysis and Product decision - Social Trends - Technical Trends - Economical Trends - Environmental Trends - Political/Policy Trends - Introduction to Product Development Methodologies and Management - Overview of Products and Services - Types of Product Development - Overview of Product Development methodologies - Product Life Cycle - Product Development Planning and Management

UNIT II REQUIREMENTS AND SYSTEM DESIGN

Requirement Engineering - Types of Requirements - Requirement Engineering - Traceability Matrix and Analysis - Requirement Management - System Design & Modeling - Introduction to System Modeling - System Optimization - System Specification - Sub-System Design - Interface Design

UNIT III DESIGN AND TESTING

Conceptualization - Industrial Design and User Interface Design - Introduction to Concept generation Techniques – Challenges in Integration of Engineering Disciplines - Concept Screening & Evaluation - Detailed Design - Component Design and Verification – Mechanical, Electronics and Software Subsystems - High Level Design/Low Level Design of S/W Program - Types of Prototypes, S/W Testing- Hardware Schematic, Component design, Layout and Hardware Testing – Prototyping - Introduction to Rapid Prototyping and Rapid Manufacturing - System Integration, Testing, Certification and Documentation

9

9

- University from major disciplines will be included in the process] as PPT slides for all theUNITS. The PPTs can be printed and given to each student if necessary at a Nominal Fee. This is the best possible material for this special course.
- NASSCOM will train the teachers of Anna University to enable them to teach this course. Atraining programme for nearly 3500 teachers needs to be organized. The team is exploring use of technology including the EDUSAT facility at Anna University.
- The course is to be offered as an elective to all UG Students both in the Constituent Colleges and Affiliated colleges of Anna University.

TEXT BOOKS [INDIAN ECONOMY EDITIONS]:

- 1. Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", TataMcGraw Hill, Fifth Edition, New Delhi, 2011
- 2. John W Newstorm and Keith Davis, "Organizational Behavior", Tata McGraw Hill, Eleventh Edition, New Delhi, 2005.

REFERENCES:

- 1. Hiriyappa B, "Corporate Strategy Managing the Business", Authorhouse, USA, 2013
- 2. Peter F Drucker, "People and Performance", Butterworth Heinemann [Elsevier],Oxford, UK, 2004.
- 3. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning -Conceptsand Practice", Prentice Hall India, New Delhi, 2003
- 4. Mark S Sanders and Ernest J McCormick, "Human Factors in Engineering and Design", McGraw Hill Education, Seventh Edition, New Delhi, 2013.

COURSE OUTCOMES:

UNIT IV

UNIT V

The students will be able to

Define, formulate and analyze a problem

- Security and configuration management.

- Solve specific problems independently or as part of a team
- Develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer
- Work independently as well as in teams
- Manage a project from start to finish

COURSE MATERIAL AND PEDAGOGY: NASSCOM has agreed to prepare / revise the course materials [selected teachers Anna

processes and stages - Product Testing standards and Certification - Product Documentation -

Sustenance - Maintenance and Repair - Enhancements - Product EoL - Obsolescence Management - Configuration Management - EoL Disposal

SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL)SUPPORT

BUSINESS DYNAMICS ENGINEERING SERVICES INDUSTRY

The Industry - Engineering Services Industry - Product development in Industry versus Academia -The IPD Essentials - Introduction to vertical specific product development processes -Manufacturing/Purchase and Assembly of Systems - Integration of Mechanical, Embedded and S/W systems – Product development Trade-offs - Intellectual Property Rights and Confidentiality

Introduction to Product verification processes and stages - Introduction to Product validation

9

TOTAL: 45 PERIODS

UNIT I BASIC CONCEPTS 10 Speech Fundamentals: Articulatory Phonetics – Production and Classification of Speech Sounds; Acoustic Phonetics – Acoustics of speech production; Review of Digital Signal Processing concepts; Short-Time Fourier Transform, Filter-Bank and LPC Methods.

UNIT II SPEECH ANALYSIS

Features, Feature Extraction and Pattern Comparison Techniques: Speech distortion measuresmathematical and perceptual – Log–Spectral Distance, Cepstral Distances, Weighted Cepstral Distances and Filtering, Likelihood Distortions, Spectral Distortion using a Warped Frequency Scale, LPC, PLP and MFCC Coefficients, Time Alignment and Normalization – Dynamic Time Warping, Multiple Time – Alignment Paths.

UNIT III SPEECH MODELING

Hidden Markov Models: Markov Processes, HMMs – Evaluation, Optimal State Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Implementation issues.

UNIT IV SPEECH RECOGNITION

Large Vocabulary Continuous Speech Recognition: Architecture of a large vocabulary continuous speech recognition system – acoustics and language models – n-grams, context dependent sub-word units; Applications and present status.

UNIT V SPEECH SYNTHESIS

Text-to-Speech Synthesis: Concatenative and waveform synthesis methods, sub-word units for TTS, intelligibility and naturalness – role of prosody, Applications and present status.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Model speech production system and describe the fundamentals of speech.
- Extract and compare different speech parameters.
- Choose an appropriate statistical speech model for a given application.
- Design a speech recognition system.
- Use different speech synthesis techniques.

TEXTBOOKS:

- 1. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2003.
- Daniel Jurafsky and James H Martin, "Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education, 2002.
- 3. Frederick Jelinek, "Statistical Methods of Speech Recognition", MIT Press, 1997.

OBJECTIVES:

- To introduce speech production and related parameters of speech.
- To show the computation and use of techniques such as short time Fourier transform, linear predictive coefficients and other coefficients in the analysis of speech.

SPEECH PROCESSING

• To understand different speech modeling procedures such as Markov and their implementation issues.

8 2010

8

10

REFERENCES:

- 1. Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publishing, 1997.
- 2. Thomas F Quatieri, "Discrete-Time Speech Signal Processing Principles and Practice", Pearson Education, 2004.
- 3. Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999.
- 4. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing, Processing and Perception of Speech and Music", Wiley- India Edition, 2006.

EC6008

WEB TECHNOLOGY

OBJECTIVES:

- To design and create user interfaces using Java frames and applets.
- To have a basic idea about network programming using Java.
- To create simple Web pages and provide client side validation.
- To create dynamic web pages using server side scripting

UNIT I JAVA FUNDAMENTALS

Java Data types – Class – Object – I / O Streams – File Handling concepts – Threads – Applets – Swing Framework – Reflection

UNIT II JAVA NETWORKING FUNDAMENTALS

Overview of Java Networking - TCP - UDP - InetAddress and Ports - Socket Programming - Working with URLs - Internet Protocols simulation - HTTP - SMTP - POP - FTP - Remote Method Invocation -Multithreading Concepts

UNIT III **CLIENT SIDE TECHNOLOGIES**

XML - Document Type Definition - XML Schema - Document Object Model - Presenting XML - Using XML Parsers: DOM and SAX – JavaScript Fundamentals - Evolution of AJAX - AJAX Framework -Web applications with AJAX - AJAX with PHP - AJAX with Databases

UNIT IV SERVER SIDE TECHNOLOGIES

Servlet Overview - Life cycle of a Servlet - Handling HTTP request and response - Using Cookies -Session tracking - Java Server Pages - Anatomy of JSP - Implicit JSP Objects – JDBC - Java Beans -Advantages - Enterprise Java Beans - EJB Architecture - Types of Beans - EJB Transactions

UNIT V APPLICATION DEVELOPMENT ENVIRONMENT

Overview of MVC architecture - Java Server Faces: Features - Components - Tags - Struts: Working principle of Struts - Building model components - View components - Controller components - Forms with Struts - Presentation tags - Developing Web applications - Hibernate: Configuration Settings -Mapping persistent classes - Working with persistent objects - Concurrency - Transactions - Caching -Queries for retrieval of objects - Spring: Framework - Controllers - Developing simple applications.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Have knowledge about the fundamental Java networking technologies.
- Design their own web services using the client server concepts
- Describe the techniques involved to support real-time Software development.

9

9

9

9

9

LTPC 3 0 0 3

TEXT BOOK:

1. Deitel, Deitel, Goldberg, "Internet & World Wide Web How to Program", Third Edition, Pearson Education. 2006.

REFERENCES:

- 1. Marty Hall and Larry Brown, "Core Servlets and Javaserver Pages", Second Edition
- 2. Bryan Basham, Kathy Siegra, Bert Bates, "Head First Servlets and JSP", Second Edition
- 3. Uttam K Roy, "Web Technologies", Oxford University Press, 2011.

EC6009 ADVANCED COMPUTER ARCHITECTURE LTPC

OBJECTIVES:

The student should be made to:

- Understand the micro-architectural design of processors
- Learn about the various techniques used to obtain performance improvement and power savings in current processors

UNIT I FUNDAMENTALS OF COMPUTER DESIGN

Review of Fundamentals of CPU, Memory and IO – Trends in technology, power, energy and cost, **Dependability - Performance Evaluation**

UNIT II INSTRUCTION LEVEL PARALLELISM

ILP concepts – Pipelining overview - Compiler Techniques for Exposing ILP – Dynamic Branch Prediction – Dynamic Scheduling – Multiple instruction Issue – Hardware Based Speculation – Static scheduling - Multi-threading - Limitations of ILP - Case Studies.

UNIT III DATA-LEVEL PARALLELISM

Vector architecture – SIMD extensions – Graphics Processing units – Loop level parallelism.

UNIT IV THREAD LEVEL PARALLELISM

Symmetric and Distributed Shared Memory Architectures – Performance Issues –Synchronization – Models of Memory Consistency - Case studies: Intel i7 Processor, SMT & CMP Processors

UNIT V **MEMORY AND I/O**

Cache Performance – Reducing Cache Miss Penalty and Miss Rate – Reducing Hit Time – Main Memory and Performance - Memory Technology. Types of Storage Devices - Buses - RAID -Reliability, Availability and Dependability – I/O Performance Measures.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Evaluate performance of different architectures with respect to various parameters
- Analyze performance of different ILP techniques
- Identify cache and memory related issues in multi-processors

TEXT BOOK:

1. John L Hennessey and David A Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann/ Elsevier, Fifth Edition, 2012.

9

9

3003

Q

9

REFERENCES:

- 1. Kai Hwang and Faye Briggs, "Computer Architecture and Parallel Processing", Mc Graw-Hill International Edition, 2000.
- 2. Sima D, Fountain T and Kacsuk P, "Advanced Computer Architectures: A Design Space Approach", Addison Wesley, 2000.

EC6010

ELECTRONICS PACKAGING

OBJECTIVES:

- To give a comprehensive introduction to the various packaging types used along with the associated same the thermal, speed, signal and integrity power issues.
- To introduce about CAD used in designing wiring boards

UNIT I OVERVIEW OF ELECTRONIC SYSTEMS PACKAGING

Definition of a system and history of semiconductors, Products and levels of packaging, Packaging aspects of handheld products, Definition of PWB, Basics of Semiconductor and Process flowchart, Wafer fabrication, inspection and testing, Wafer packaging; Packaging evolution; Chip connection choices, Wire bonding, TAB and flip chip.

UNIT II SEMICONDUCTOR PACKAGES

Single chip packages or modules (SCM), Commonly used packages and advanced packages; Materials in packages; Thermal mismatch in packages; Multichip modules (MCM)-types; System-inpackage (SIP); Packaging roadmaps; Hybrid circuits; Electrical Design considerations in systems packaging, Resistive, Capacitive and Inductive Parasitics, Layout guidelines and the Reflection problem, Interconnection.

UNIT III CAD FOR PRINTED WIRING BOARDS

Benefits from CAD; Introduction to DFM, DFR & DFT, Components of a CAD package and its highlights, Beginning a circuit design with schematic work and component, layout, DFM check, list and design rules; Design for Reliability,Printed Wiring Board Technologies: Board-level packaging aspects, Review of CAD output files for PCB fabrication; Photo plotting and mask generation, Process flow-chart; Vias; PWB substrates; Surface preparation, Photoresist and application methods; UV exposure and developing; Printing technologies for PWBs, PWB etching; PWB etching; Resist stripping; Screen-printing technology, hrough-hole manufacture process steps; Panel and pattern plating methods, Solder mask for PWBs; Multilayer PWBs; Introduction to, microvias, Microvia technology and Sequential build-up technology process flow for high-density, interconnects

UNIT IV SURFACE MOUNT TECHNOLOGY AND THERMAL CONSIDERATIONS

SMD benefits; Design issues; Introduction to soldering, Reflow and Wave Soldering methods to attach SMDs, Solders; Wetting of solders; Flux and its properties; Defects in wave soldering, Vapour phase soldering, BGA soldering and Desoldering/Repair; SMT failures, SMT failure library and Tin Whisker, Tin-lead and lead-free solders; Phase diagrams; Thermal profiles for reflow soldering; Lead freevAlloys, Lead-free solder considerations; Green electronics; RoHS compliance and e-waste recycling, Issues, Thermal Design considerations in systems packaging (L. Umanand, Thermal Design considerations in systems packaging

9

9

L T P C 3 0 0 3

9

1. Rao R. Tummala, "Fundamentals of Microsystems Packaging", McGraw Hill, NY, 2001

REFERENCE:

TEXT BOOK:

OUTCOMES:

1. William D. Brown, "Advanced Electronic Packaging", IEEE Press, 1999.

EC6011 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY LTPC

OBJECTIVES: To tutor the basics of EMI.EMC

procedure and solution for the same.

- To instill knowledge on the EMI coupling mechanism and its mitigation techniques
- To impart comprehensive insight about the current EMC standards and about various measurement techniques

UNIT I **BASIC THEORY**

Introduction to EMI and EMC, Intra and inter system EMI, Elements of Interference, Sources and Victims of EMI, Conducted and Radiated EMI emission and susceptibility, Case Histories, Radiation hazards to humans, Various issues of EMC, EMC Testing categories, EMC Engineering Application.

UNIT II COUPLING MECHANISM

Electromagnetic field sources and Coupling paths, Coupling via the supply network, Common mode coupling, Differential mode coupling, Impedance coupling, Inductive and Capacitive coupling. Radiative coupling, Ground loop coupling, Cable related emissions and coupling, Transient sources, Automotive transients.

UNIT III EMI MITIGATION TECHNIQUES

Working principle of Shielding and Murphy's Law, LF Magnetic shielding, Apertures and shielding effectiveness, Choice of Materials for H, E, and free space fields, Gasketting and sealing, PCB Level Principle of Grounding, Isolated grounds, Grounding strategies for Large systems, shieldina. Grounding for mixed signal systems, Filter types and operation, Surge protection devices, Transient protection.

UNIT IV STANDARDS AND REGULATION

Need for Standards, Generic/General Standards for Residential and Industrial environment, Basic Standards, Product Standards, National and International EMI Standardizing Organizations; IEC. ANSI, FCC, AS/NZS, CISPR, BSI, CENELEC, ACEC. Electro Magnetic Emission and susceptibility standards and specifications, MIL461E Standards.

EMBEDDED PASSIVES TECHNOLOGY UNIT V

Introduction to embedded passives; Need for embedded passives; Design Library; Embedded resistor processes, Embedded capacitors; Processes for embedding capacitors; Case study examples.

Given an electronic system PCB or integrated circuit design specifications, the student should be in a position to recommend the appropriate packaging style to be used, and propose a design a design

TOTAL: 45 PERIODS

9

8

3003

9

10

UNIT V EMI TEST METHODS AND INSTRUMENTATION

Fundamental considerations, EMI Shielding effectiveness tests, Open field test, TEM cell for immunity test, Shielded chamber, Shielded anechoic chamber, EMI test receivers, Spectrum analyzer, EMI test wave simulators, EMI coupling networks, Line impedance stabilization networks, Feed through capacitors, Antennas, Current probes, MIL -STD test methods, Civilian STD test methods.

OUTCOMES:

Upon completion of the course, students will be able to:

- Find solution to EMI Sources, EMI problems in PCB level / Subsystem and system level design.
- To measure emission immunity level from different systems to couple with the prescribed EMC standards

TEXT BOOK:

1. Clayton Paul, "Introduction to Electromagnetic Compatibility", Wiley Interscience, 2006

REFERENCES:

- 1. V Prasad Kodali, "Engineering Electromagnetic Compatibility", IEEE Press, Newyork, 2001.
- 2. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons Inc, Newyork, 2009
- 3. Daryl Gerke and William Kimmel, "EDN's Designer's Guide to Electromagnetic Compatibility", Elsevier Science & Technology Books, 2002
- 4. W Scott Bennett, "Control and Measurement of Unintentional Electromagnetic Radiation", John Wiley & Sons Inc., (Wiley Interscience Series) 1997.
- 5. Dr Kenneth L Kaiser, "The Electromagnetic Compatibility Handbook", CRC Press 2005,

EC6012	CMOS ANALOG IC DESIGN	LTPC
		3003

OBJECTIVES:

- To study designs with better precision in data conversion
- To study various ADC and DAC circuit architectures

UNIT I SAMPLE AND HOLD

Properties of MOS Switches, multiplexed input architectures, recycling architecture, open and closed loop sampling architectures, switched capacitor and current mode architectures.

UNIT II BUILDING BLOCK OF DATA CONVERSION CIRCUITS:

Amplifiers, open loop and closed loop amplifiers, gain boosting, common mode feedback, bipolar, CMOS and BiCMOS comparators.

UNIT III PRECISION TECHNIQUES

Comparator cancellation, input and output offset storage principles, comparators using offset cancelled latches, opamp offset cancellation, ADC and DAC calibration techniques.

UNIT IV ADC/DAC ARCHITECTURES

DAC Performance metrics, reference multiplication and division, switching and logical functions of DACs, Current steering architectures, DAC Performance metrics, Flash ADC architecture, Gray encoding, thermometer encoding and metastability.

TOTAL: 45 PERIODS

9

9

9

UNIT V OVER SAMPLING CONVERTERS

Delta sigma modulators, alternative modulator architectures, quantization and noise shaping, decimation filtering, implementation of Delta sigma modulators, delta sigma DACs,

TOTAL: 45 PERIODS

9

OUTCOMES:

Upon completion of the course, the student should be able to:

- Build Data Conversion circuits.
- Discuss calibration techniques
- Analyze ADC/DAC Architecture and Performance

TEXT BOOK:

1. B.Razavi "Data Conversion System Design" IEEE Press and John Wiley, 1995.

REFERENCE:

1. Phillip Allen and Douglas Holmberg "CMOS Analog Circuit Design" Second Edition, Oxford University Press, 2004.

EC6013 ADVANCED MICROPROCESSORS AND MICROCONTROLLERS L T P C

3003

9

9

OBJECTIVES:

- To expose the students to the fundamentals of microprocessor architecture.
- To introduce the advanced features in microprocessors and microcontrollers.
- To enable the students to understand various microcontroller architectures.

UNIT I HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM

CPU Architecture- Bus Operations – Pipelining – Brach predication – floating point unit- Operating Modes –Paging – Multitasking – Exception and Interrupts – Instruction set – addressing modes – Programming the Pentium processor.

UNIT II HIGH PERFORMANCE RISC ARCHITECTURE – ARM

Arcon RISC Machine – Architectural Inheritance – Core & Architectures - Registers – Pipeline -Interrupts – ARM organization - ARM processor family – Co-processors - ARM instruction set- Thumb Instruction set - Instruction cycle timings - The ARM Programmer's model – ARM Development tools – ARM Assembly Language Programming - C programming – Optimizing ARM Assembly Code – Optimized Primitives.

UNIT III ARM APPLICATION DEVELOPMENT

Introduction to DSP on ARM –FIR filter – IIR filter – Discrete fourier transform – Exception handling – Interrupts – Interrupt handling schemes- Firmware and bootloader – Embedded Operating systems – Integrated Development Environment- STDIO Libraries – Peripheral Interface – Application of ARM Processor - Caches – Memory protection Units – Memory Management units – Future ARM Technologies.

UNIT IV MOTOROLA 68HC11 MICROCONTROLLERS

Instruction set addressing modes – operating modes- Interrupt system- RTC-Serial Communication Interface – A/D Converter PWM and UART.

9

UNIT V PIC MICROCONTROLLER

CPU Architecture – Instruction set – interrupts- Timers- I²C Interfacing –UART- A/D Converter –PWM and introduction to C-Compilers.

TOTAL: 45 PERIODS

OUTCOMES:

• The student will be able to work with suitable microprocessor / microcontroller for a specific real world application.

TEXT BOOK:

1. Andrew N.Sloss, Dominic Symes and Chris Wright "ARM System Developer's Guide : Designing and Optimizing System Software", First edition, Morgan Kaufmann Publishers, 2004.

REFERENCES:

- 1. Steve Furber, "ARM System On Chip architecture", Addision Wesley, 2000.
- 2. Daniel Tabak , "Advanced Microprocessors", Mc Graw Hill. Inc., 1995
- 3. James L. Antonakos , "The Pentium Microprocessor", Pearson Education, 1997.
- 4. Gene .H.Miller, "Micro Computer Engineering", Pearson Education , 2003.
- 5. John .B.Peatman , "Design with PIC Microcontroller", Prentice Hall, 1997.
- 6. James L.Antonakos, "An Introduction to the Intel family of Microprocessors", Pearson Education, 1999.
- 7. Barry.B.Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI,2002.
- 8. Valvano, "Embedded Microcomputer Systems", Thomson Asia PVT LTD first reprint 2001. Readings: Web links <u>www.ocw.nit.edu</u> <u>www.arm.com</u>

EC6014

COGNITIVE RADIO

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Know the basics of the software defined radios.
- Learn the design of the wireless networks based on the cognitive radios
- Understand the concepts of wireless networks and next generation networks

UNIT I INTRODUCTION TO SOFTWARE DEFINED RADIO

Definitions and potential benefits, software radio architecture evolution, technology tradeoffs and architecture implications.

UNIT II SDR ARCHITECTURE

Essential functions of the software radio, basic SDR, hardware architecture, Computational processing resources, software architecture, top level component interfaces, interface topologies among plug and play modules,.

UNIT III INTRODUCTION TO COGNITIVE RADIOS

Marking radio self-aware, cognitive techniques – position awareness, environment awareness in cognitive radios, optimization of radio resources, Artificial Intelligence Techniques.

9

9

9

COGNITIVE RADIO ARCHITECTURE UNIT IV Cognitive Radio - functions, components and design rules, Cognition cycle - orient, plan, decide and

Software defined Radio Architechture.

UNIT V NEXT GENERATION WIRELESS NETWORKS

The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross – layer design.

OUTCOMES:

Upon completion of the course, students will be able to

- Describe the basics of the software defined radios.
- Design the wireless networks based on the cognitive radios
- Explain the concepts behind the wireless networks and next generation networks

TEXT BOOKS:

- 1. Joseph Mitola III,"Software Radio Architecture: Object-Oriented Approaches to Wireless System Engineering", John Wiley & Sons Ltd. 2000.
- 2. Thomas W.Rondeau, Charles W. Bostain, "Artificial Intelligence in Wireless communication", ARTECH HOUSE .2009.
- 3. Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.
- 4. Ian F. Akyildiz, Won Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next generation / dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Computer Networks, May 2006.

REFERENCES:

- 1. Simon Haykin, "Cognitive Radio: Brain Empowered Wireless Communications", IEEE Journal on selected areas in communications, Feb 2005.
- 2. Hasari Celebi, Huseyin Arslan, "Enabling Location and Environment Awareness in Cognitive Radios", Elsevier Computer Communications, Jan 2008.
- 3. Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio", John Wiley, 2003.
- 4. Huseyin Arslan, "Cognitive Radio, SDR and Adaptive System", Springer, 2007.
- 5. Alexander M. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio Communication and Networks", Elsevier, 2010.

EC6015

OBJECTIVES:

To apply Doppler principle to radars and hence detect moving targets, cluster, also to understand tracking radars

RADAR AND NAVIGATIONAL AIDS

- To refresh principles of antennas and propagation as related to radars, also study of transmitters and receivers.
- To understand principles of navigation, in addition to approach and landing aids as related to navigation

9

9

TOTAL: 45 PERIODS

LT PC 3 0 0 3

UNIT I INTRODUCTION TO RADAR EQUATION

Introduction- Basic Radar –The simple form of the Radar Equation- Radar Block Diagram- Radar Frequencies –Applications of Radar – The Origins of Radar - Detection of Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Functions- Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequency- Antenna Parameters- System losses – Other Radar Equation Considerations

UNIT II MTI AND PULSE DOPPLER RADAR

Introduction to Doppler and MTI Radar- Delay –Line Cancellers- Staggered Pulse Repetition Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI from a Moving Platform (AMIT) – Pulse Doppler Radar – Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking –Conical Scan and Sequential Lobing - Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking in Range - Other Tracking Radar Topics -Comparison of Trackers - Automatic Tracking with Surveillance Radars (ADT).

UNIT III DETECTION OF SIGNALS IN NOISE

Matched –Filter Receiver –Detection Criteria – Detectors –-Automatic Detector - Integrators -Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves - Atmospheric Refraction -Standard propagation - Nonstandard Propagation - The Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas – Phase Shifters - Frequency-Scan Arrays

Radar Transmitters and Receivers - Introduction –Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron - Crossed Field Amplifiers - Other RF Power Sources – Other aspects of Radar Transmitter.- The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

UNIT IV RADIO DIRECTION AND RANGES

Introduction - Four methods of Navigation .- The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direction Finders – The Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - VOR Receiving Equipment - Range and Accuracy of VOR – Recent Developments.

Hyperbolic Systems of Navigation (Loran and Decca) - Loran-A - Loran-A Equipment - Range and precision of Standard Loran - Loran-C - The Decca Navigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

UNIT V SATELLITE NAVIGATION SYSTEM

Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment - Instrument Landing System - Ground Controlled Approach System - Microwave Landing System(MLS) The Doppler Effect - Beam Configurations -Doppler Frequency Equations - Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Principles of Operation - Navigation Over the Earth - Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped-Down Systems - Accuracy of Inertial Navigation Systems-The Transit System - Navstar Global Positioning System (GPS)

TOTAL:45 PERIODS

9

9

9

9

OUTCOMES:

Upon completion of the course, students will be able to:

- Explain principles of navigation, in addition to approach and landing aids as related to navigation
- Derive and discuss the Range equation and the nature of detection.
- Describe about the navigation systems using the satellite.

TEXTBOOKS:

1. Merrill I. Skolnik," Introduction to Radar Systems", 3rd Edition Tata Mc Graw-Hill 2003.

2. N.S.Nagaraja, "Elements of Electronic Navigation Systems", 2nd Edition, TMH, 2000.

REFERENCES:

1. Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004

2. J.C Toomay, " Principles of Radar", 2nd Edition –PHI, 2004

EC6016

OPTO ELECTRONIC DEVICES

LTPC 3003

OBJECTIVES:

- To understand the basics of solid state physics.
- To understand the basics of display devices.
- To understand the optical detection devices.
- To understand the design of optoelectronic integrated circuits.

UNIT I ELEMENTS OF LIGHT AND SOLID STATE PHYSICS

Wave nature of light, Polarization, Interference, Diffraction, Light Source, review of Quantum Mechanical concept, Review of Solid State Physics, Review of Semiconductor Physics and Semiconductor Junction Device.

UNIT II DISPLAY DEVICES AND LASERS

Introduction, Photo Luminescence, Cathode Luminescence, Electro Luminescence, Injection Luminescence, LED, Plasma Display, Liquid Crystal Displays, Numeric Displays, Laser Emission, Absorption, Radiation, Population Inversion, Optical Feedback, Threshold condition, Laser Modes, Classes of Lasers, Mode Locking, laser applications.

UNIT III OPTICAL DETECTION DEVICES

Photo detector, Thermal detector, Photo Devices, Photo Conductors, Photo diodes ,Detector Performance.

UNIT IV OPTOELECTRONIC MODULATOR

Introduction, Analog and Digital Modulation, Electro-optic modulators, Magneto Optic Devices, Acoustoptic devices, Optical, Switching and Logic Devices.

UNIT V OPTOELECTRONIC INTEGRATED CIRCUITS

Introduction, hybrid and Monolithic Integration, Application of Opto Electronic Integrated Circuits, Integrated transmitters and Receivers, Guided wave devices.

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

Upon Completion of the course, the students will be able to

- To design display devices.
- To design optoelectronic detection devices and modulators.
- To design optoelectronic integrated circuits.

TEXTBOOKS:

- 1. Pallab Bhattacharya "Semiconductor Opto Electronic Devices", Prentice Hall of India Pvt., Ltd., New Delhi, 2006.
- 2. Jasprit Singh, "Opto Electronics As Introduction to Materials and Devices", Mc Graw-Hill International Edition, 1998

REFERENCES:

- 1. S C Gupta, Opto Electronic Devices and Systems, Prentice Hal of India, 2005.
- 2. J. Wilson and J.Haukes, "Opto Electronics An Introduction", Prentice Hall, 1995

EC6017

RF SYSTEM DESIGN

LTPC 3 00 3

OBJECTIVES:

The student should be made to:

- Be familiar with RF transceiver system design for wireless communications.
- Be exposed to design methods of receivers and transmitters used in communication systems

UNIT I CMOS PHYSICS, TRANSCEIVER SPECIFICATIONS AND ARCHITECTURES 9

Introduction to MOSFET Physics, Noise: Thermal, shot, flicker, popcorn noise, Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise - Specification distribution over a communication link, Homodyne Receiver, Heterodyne Receiver, Image reject, Low IF Receiver Architectures Direct up conversion Transmitter, Two step up conversion Transmitter

UNIT II IMPEDANCE MATCHING AND AMPLIFIERS

S-parameters with Smith chart, Passive IC components, Impedance matching networks, Common Gate, Common Source Amplifiers, OC Time constants in bandwidth estimation and enhancement, High frequency amplifier design, Power match and Noise match, Single ended and Differential LNAs, Terminated with Resistors and Source Degeneration LNAs.

UNIT III FEEDBACK SYSTEMS AND POWER AMPLIFIERS

Stability of feedback systems: Gain and phase margin, Root-locus techniques, Time and Frequency domain considerations, Compensation, General model – Class A, AB, B, C, D, E and F amplifiers, Power amplifier Linearization Techniques, Efficiency boosting techniques, ACPR metric, Design considerations

UNIT IV PLL AND FREQUENCY SYNTHESIZERS

Linearised Model, Noise properties, Phase detectors, Loop filters and Charge pumps, Integer-N frequency synthesizers, Direct Digital Frequency synthesizers

9

9

Upon Completion of the course, \Box the students will be able to

Use the systematic design methods of receivers and transmitters

TEXT BOOKS:

OUTCOMES:

1. Thomas Lee," The Design of Radio Frequency CMOS Integrated Circuits", Cambridge University Press, 2nd Edition, Cambridge, 2004.

REFERENCES:

- 1. Matthew M.Radmanesh," Radio frequency and Microwave Electronics illustrated", Pearson Education Inc, Delhi, 2006.
- 2. B.Razavi, "RF Microelectronics", Pearson Education, 1997.
- 3. Devendra.K. Misra," Radio Frequency and Microwave communication Circuits Analysis and Design", John Wiley and Sons, Newyork, 2004.
- 4. B. Razavi, "Design of Analog COMS Integrated Circuits", Mc Graw Hill, 2001.

CS6003

AD HOC AND SENSOR NETWORKS

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand the design issues in ad hoc and sensor networks.
- Learn the different types of MAC protocols.
- Be familiar with different types of adhoc routing protocols.
- Be expose to the TCP issues in adhoc networks.
- Learn the architecture and protocols of wireless sensor networks.

UNIT I INTRODUCTION

Fundamentals of Wireless Communication Technology – The Electromagnetic Spectrum – Radio propagation Mechanisms – Characteristics of the Wireless Channel -mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) :concepts and architectures. Applications of Ad Hoc and Sensor Networks. Design Challenges in Ad hoc and Sensor Networks.

UNIT II MAC PROTOCOLS FOR AD HOC WIRELESS NETWORKS

Issues in designing a MAC Protocol- Classification of MAC Protocols- Contention based protocols-Contention based protocols with Reservation Mechanisms- Contention based protocols with Scheduling Mechanisms – Multi channel MAC-IEEE 802.11

UNIT V MIXERS AND OSCILLATORS

Design RF transceiver systems

Mixer characteristics, Non-linear based mixers, Quadratic mixers, Multiplier based mixers, Single balanced and double balanced mixers, sub sampling mixers, Oscillators describing Functions, Colpitts oscillators, Resonators, Tuned Oscillators, Negative resistance oscillators, Phase noise.

TOTAL: 45 PERIODS

9

9

INDIAN CONSTITUTION AND SOCIETY

UNIT III ROUTING PROTOCOLS AND TRANSPORT LAYER IN AD HOC WIRELESS NETWORKS

Issues in designing a routing and Transport Layer protocol for Ad hoc networks- proactive routing, reactive routing (on-demand), hybrid routing- Classification of Transport Layer solutions-TCP over Ad hoc wireless Networks.

UNIT IV WIRELESS SENSOR NETWORKS (WSNS) AND MAC PROTOCOLS

Single node architecture: hardware and software components of a sensor node - WSN Network architecture: typical network architectures-data relaying and aggregation strategies -MAC layer protocols: self-organizing, Hybrid TDMA/FDMA and CSMA based MAC- IEEE 802.15.4.

UNIT V WSN ROUTING, LOCALIZATION & QOS

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and relative localization, triangulation-QOS in WSN-Energy Efficient Design-Synchronization-Transport Layer issues.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Explain the concepts, network architectures and applications of ad hoc and wireless sensor networks
- Analyze the protocol design issues of ad hoc and sensor networks
- Design routing protocols for ad hoc and wireless sensor networks with respect to some protocol design issues
- Evaluate the QoS related performance measurements of ad hoc and sensor networks

TEXT BOOK:

1. C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols ", Prentice Hall Professional Technical Reference, 2008.

REFERENCES:

- 1. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.
- 2. Feng Zhao and Leonides Guibas, "Wireless Sensor Networks", Elsevier Publication 2002.
- 3. Holger Karl and Andreas Willig "Protocols and Architectures for Wireless Sensor Networks", Wiley, 2005
- 4. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, and Applications", John Wiley, 2007.
- 5. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.

GE6082

OBJECTIVES:

- To know about Indian constitution.
- To know about central and state government functionalities in India.
- To know about Indian society.

TOTAL: 45 PERIODS

9

9

9

LTPC

UNIT I INTRODUCTION

Historical Background – Constituent Assembly of India – Philosophical foundations of the Indian Constitution – Preamble – Fundamental Rights – Directive Principles of State Policy – Fundamental Duties – Citizenship – Constitutional Remedies for citizens.

UNIT II STRUCTURE AND FUNCTION OF CENTRAL GOVERNMENT

Union Government – Structures of the Union Government and Functions – President – Vice President – Prime Minister – Cabinet – Parliament – Supreme Court of India – Judicial Review.

UNIT III STRUCTURE AND FUNCTION OF STATE GOVERNMENT

State Government – Structure and Functions – Governor – Chief Minister – Cabinet – State Legislature – Judicial System in States – High Courts and other Subordinate Courts.

UNIT IV CONSTITUTION FUNCTIONS

Indian Federal System – Center – State Relations – President's Rule – Constitutional Amendments – Constitutional Functionaries - Assessment of working of the Parliamentary System in India.

UNIT V INDIAN SOCIETY

Society : Nature, Meaning and definition; Indian Social Structure; Caste, Religion, Language in India; Constitutional Remedies for citizens – Political Parties and Pressure Groups; Right of Women, Children and Scheduled Castes and Scheduled Tribes and other Weaker Sections.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Understand the functions of the Indian government
- Understand and abide the rules of the Indian constitution.
- Understand and appreciate different culture among the people.

TEXTBOOKS:

- 1. Durga Das Basu, "Introduction to the Constitution of India ", Prentice Hall of India, New Delhi.
- 2. R.C.Agarwal, (1997) "Indian Political System", S.Chand and Company, New Delhi.
- 3. Maciver and Page, "Society: An Introduction Analysis ", Mac Milan India Ltd., New Delhi.
- 4. K.L.Sharma, (1997) "Social Stratification in India: Issues and Themes", Jawaharlal Nehru University, New Delhi.

REFERENCES:

- 1. Sharma, Brij Kishore, "Introduction to the Constitution of India:, Prentice Hall of India, New Delhi.
- 2. U.R.Gahai, "Indian Political System ", New Academic Publishing House, Jalaendhar.
- 3. R.N. Sharma, "Indian Social Problems ", Media Promoters and Publishers Pvt. Ltd.

EC6018 MULTIMEDIA COMPRESSION AND COMMUNICATION L T P C

3 0 0 3

OBJECTIVES:

- To have a complete understanding of error–control coding.
- To understand encoding and decoding of digital data streams.
- To introduce methods for the generation of these codes and their decoding techniques.
- To have a detailed knowledge of compression and decompression techniques.
- To introduce the concepts of multimedia communication.

9

9

9

9

UNIT I MULTIMEDIA COMPONENTS

Introduction - Multimedia skills - Multimedia components and their characteristics - Text, sound, images, graphics, animation, video, hardware.

UNIT II AUDIO AND VIDEO COMPRESSION

Audio compression–DPCM-Adaptive PCM –adaptive predictive coding-linear Predictive coding-code excited LPC-perpetual coding Video compression –principles-H.261-H.263-MPEG 1, 2, and 4.

UNIT III TEXT AND IMAGE COMPRESSION

Compression principles-source encoders and destination encoders-lossless and lossy compressionentropy encoding –source encoding -text compression –static Huffman coding dynamic coding – arithmetic coding –Lempel ziv-welsh Compression-image compression

UNIT IV VOIP TECHNOLOGY

Basics of IP transport, VoIP challenges, H.323/ SIP –Network Architecture, Protocols,Call establishment and release, VoIP and SS7, Quality of Service- CODEC Methods- VOIP applicability

UNIT V MULTIMEDIA NETWORKING

Multimedia networking -Applications-streamed stored and audio-making the best Effort serviceprotocols for real time interactive Applications-distributing multimedia-beyond best effort servicesecluding and policing Mechanisms-integrated services-differentiated Services-RSVP.

TOTAL : 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able to

- Describe various multimedia components
- Describe compression and decompression techniques.
- Apply the compression concepts in multimedia communication.

TEXT BOOK:

1. Fred Halshall "Multimedia communication - Applications, Networks, Protocols and Standards", Pearson Education, 2007.

REFERENCES:

- 1. Tay Vaughan, "Multimedia: Making it work", 7th Edition, TMH 2008 98
- 2. Kurose and W.Ross "Computer Networking "a Top Down Approach", Pearson Education 2005
- 3. Marcus Goncalves "Voice over IP Networks", Mc Graw hill 1999.
- 4. KR. Rao,Z S Bojkovic, D A Milovanovic, "Multimedia Communication Systems: Techniques, Standards, and Networks", Pearson Education 2007.
- 5. R. Steimnetz, K. Nahrstedt, "Multimedia Computing, Communications and Applications", Pearson Education Ranjan Parekh, "Principles of Multimedia", TMH 2007.

9

9

9

9

GE6075

PROFESSIONAL ETHICS IN ENGINEERING

OBJECTIVES:

• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I **HUMAN VALUES**

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others - Living peacefully - Caring - Sharing - Honesty - Courage - Valuing time - Cooperation -Commitment - Empathy - Self confidence - Character - Spirituality - Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of **Ethical Theories**

UNIT III **ENGINEERING AS SOCIAL EXPERIMENTATION**

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk -Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

UNIT V **GLOBAL ISSUES**

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers - Consulting Engineers - Engineers as Expert Witnesses and Advisors -Moral Leadership –Code of Conduct – Corporate Social Responsibility

OUTCOMES:

• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society

TEXTBOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata Mc Graw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCES:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi 2013.
- 6. World Community Service Centre, "Value Education", Vethathiri publications, Erode, 2011

LTPC 3 0 0 3

10

9

8

TOTAL: 45 PERIODS

9

Web sources:

- 1. www.onlineethics.org
- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.org

GE6083

DISASTER MANAGEMENT

L T P C 3 0 0 3

9

9

9

9

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level-State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

9

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management

TEXTBOOK:

OUTCOMES:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES

- 1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

EC6019

DATA CONVERTERS

L T P C 3 0 0 3

OBJECTIVES:

- To explain the basic operational and design principles of CMOS Analog to Digital and Digital to Analog converter architectures.
- To introduce the design calculations for developing the various blocks associated with a typical CMOS AD or DA converter.
- To make students decide the dimensions and bias conditions of all the MOS transistors involved in the design.

UNIT I SAMPLE AND HOLD CIRCUITS

Sampling switches, Conventional open loop and closed loop sample and hold architecture, Open loop architecture with miller compensation, multiplexed input architectures, recycling architecture switched capacitor architecture.

OUTCOMES: Upon completion of the course, the student should be able to:

- Explain sample and hold circuits
- Design ADC/DAC circuits
- Analyze ADC/DAC Architecture and Performance
- Discuss calibration techniques

TEXT BOOK:

1. Behzad Razavi, "Principles of data conversion System Design", IEEE press, 1995.

REFERENCES:

- 1. Franco Maloberti, "Data Converters", Springer, 2007.
- 2. Rudy Van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters", Kluwer Acedamic Publishers, Boston, 2003.

CS6701 CRYPTOGRAPHY AND NETWORK SECURITY L T P C

OBJECTIVES:

The student should be made to:

- Understand OSI security architecture and classical encryption techniques.
- Acquire fundamental knowledge on the concepts of finite fields and number theory.
- Understand various block cipher and stream cipher models.
- Describe the principles of public key cryptosystems, hash functions and digital signature.

UNIT I INTRODUCTION & NUMBER THEORY

Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques, steganography).FINITE FIELDS AND NUMBER THEORY: Groups, Rings, Fields-Modular arithmetic-Euclid's algorithm-Finite fields- Polynomial Arithmetic –Prime numbers-Fermat's and Euler's theorem-Testing for primality -The Chinese remainder theorem- Discrete logarithms.

UNIT II SWITCH CAPACITOR CIRCUITS AND COMPARATORS

Switched-capacitor amplifiers, switched capacitor integrator, switched capacitor common mode feedback. Single stage amplifier as comparator, cascaded amplifier stages as comparator, latched comparators.

UNIT III DIGITAL TO ANALOG CONVERSION

Performance metrics, reference multiplication and division, switching and logic functions in AC, Resistor ladder DAC architecture, current steering DAC architecture.

UNIT IV ANALOG TO DIGITAL CONVERSION

Performance metric, Flash architecture, Pipelined Architecture, Successive approximation architecture, Time interleaved architecture.

UNIT V PRECISION TECHNIQUES

Comparator offset cancellation, Op Amp offset cancellation, Calibration techniques, range overlap and digital correction.

TOTAL:45 PERIODS

3 0 0 3

9

9

9

9

SECURITY PRACTICE & SYSTEM SECURITY

Authentication applications – Kerberos – X.509 Authentication services - Internet Firewalls for Trusted System: Roles of Firewalls – Firewall related terminology- Types of Firewalls - Firewall designs - SET for E-Commerce Transactions. Intruder – Intrusion detection system – Virus and related threats – Countermeasures - Firewalls design principles - Trusted systems - Practical implementation of cryptography and security.

UNIT V **E-MAIL, IP & WEB SECURITY**

DSS – El Gamal – Schnorr.

UNIT IV

E-mail Security: Security Services for E-mail-attacks possible through E-mail - establishing keys privacy-authentication of the source-Message Integrity-Non-repudiation-Pretty Good Privacy-S/MIME. IPSecurity: Overview of IPSec - IP and IPv6-Authentication Header-Encapsulation Security Payload (ESP)-Internet Key Exchange (Phases of IKE, ISAKMP/IKE Encoding). Web Security: SSL/TLS Basic Protocol-computing the keys- client authentication-PKI as deployed by SSLAttacks fixed in v3-Exportability-Encoding-Secure Electronic Transaction (SET).

OUTCOMES:

Upon Completion of the course, the students should be able to:

- Compare various Cryptographic Techniques
- **Design Secure applications** •
- Inject secure coding in the developed applications •

TEXT BOOKS:

- 1. William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013. (UNIT I.II.III.IV).
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002. (UNIT V).

REFERENCES:

- 1. Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill, 2007.
- 2. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2003.
- 3. Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.
- 4. Ulysess Black, "Internet Security Protocols", Pearson Education Asia, 2000.
- 5. Charlie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Second Edition, Private Communication in Public World", PHI 2002.
- 6. Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dreamtech India Pvt Ltd. 2003.
- 7. Douglas R Simson "Cryptography Theory and practice", First Edition, CRC Press, 1995.
- 8. http://nptel.ac.in/.

UNIT II **BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY**

Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES-Blowfish-RC5 algorithm. Public key cryptography: Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange-Elliptic curve arithmetic-Elliptic curve cryptography.

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC -MD5 - SHA - HMAC - CMAC - Digital signature and authentication protocols -

UNIT III HASH FUNCTIONS AND DIGITAL SIGNATURES

8

8

10

TOTAL: 45 PERIODS

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) -Taguchi guality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V **QUALITY SYSTEMS**

Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation, Quality Auditing -QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors...

OUTCOMES:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXTBOOK:

1. Dale H. Besterfiled, et at., "Total quality Management", Pearson Education Asia, Third Edition, Indian Reprint 2006.

REFERENCES:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

UNIT I INTRODUCTION

GE6757

OBJECTIVE :

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Costs of quality.

UNIT II TQM PRINCIPLES

TOTAL QUALITY MANAGEMENT

9

9

9

9

9

TOTAL: 45 PERIODS

MG6071

ENTERPRENEURSHIP DEVELOPMENT

OBJECTIVE:

To develop and strengthen entrepreneurial quality and motivation in students and to impart basic entrepreneurial skills and understanding to run a business efficiently and effectively.

UNIT I ENTREPRENEURSHIP

Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Intrapreneur Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth.

UNIT II MOTIVATION

Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test - Stress Management, Entrepreneurship Development Programs – Need, Objectives.

UNIT III **BUSINESS**

Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment - Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies.

FINANCING AND ACCOUNTING UNIT IV

Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, Management of working Capital, Costing, Break Even Analysis, Taxation – Income Tax, Excise Duty – Sales Tax.

UNIT V SUPPORT TO ENTREPRENEURS

Sickness in small Business – Concept, Magnitude, Causes and Consequences, Corrective Measures - Business Incubators – Government Policy for Small Scale Enterprises – Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting.

TOTAL : 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to gain knowledge and skills needed to run a business successfully.

TEXTBOOKS:

- 1. S.S.Khanka, "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013.
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th edition, Cengage Learning 2014.

REFERENCES:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Entrepreneurship Theory at Cross Roads: paradigms and Praxis", 2nd Edition Dream Tech. 2005.
- 3. Rajeev Roy, "Entrepreneurship" 2nd edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

9

9

9

9

To outline the need for Software Project Management

• To highlight different techniques for software cost estimation and activity planning.

SOFTWARE PROJECT MANAGEMENT

UNIT I PROJECT EVALUATION AND PROJECT PLANNING

Importance of Software Project Management – Activities Methodologies – Categorization of Software Projects – Setting objectives – Management Principles – Management Control – Project portfolio Management – Cost-benefit evaluation technology – Risk evaluation – Strategic program Management – Stepwise Project Planning.

UNIT II PROJECT LIFE CYCLE AND EFFORT ESTIMATION

Software process and Process Models – Choice of Process models - mental delivery – Rapid Application development – Agile methods – Extreme Programming – SCRUM – Managing interactive processes – Basics of Software estimation – Effort and Cost estimation techniques – COSMIC Full function points - COCOMO II A Parametric Productivity Model - Staffing Pattern.

UNIT III ACTIVITY PLANNING AND RISK MANAGEMENT

Objectives of Activity planning – Project schedules – Activities – Sequencing and scheduling – Network Planning models – Forward Pass & Backward Pass techniques – Critical path (CRM) method – Risk identification – Assessment – Monitoring – PERT technique – Monte Carlo simulation – Resource Allocation – Creation of critical patterns – Cost schedules.

UNIT IV PROJECT MANAGEMENT AND CONTROL

Framework for Management and control – Collection of data Project termination – Visualizing progress – Cost monitoring – Earned Value Analysis- Project tracking – Change control- Software Configuration Management – Managing contracts – Contract Management.

UNIT V STAFFING IN SOFTWARE PROJECTS

Managing people – Organizational behavior – Best methods of staff selection – Motivation – The Oldham-Hackman job characteristic model – Ethical and Programmed concerns – Working in teams – Decision making – Team structures – Virtual teams – Communications genres – Communication plans.

OUTCOMES:

• At the end of the course the students will be able to practice Project Management principles while developing a software.

TEXTBOOK:

1. Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, Tata Mc Graw Hill, New Delhi, 2012.

REFERENCES:

- 1. Robert K. Wysocki "Effective Software Project Management", Wiley Publication, 2011.
- 2. Walker Royce: "Software Project Management", Addison Wesley, 1998.
- 3. Gopalaswamy Ramesh, "Managing Global Software Projects" Mc Graw Hill Education (India), Fourteenth Reprint 2013.

OBJECTIVES:

9

9

- 9 na
- 9

GE6084	HUMAN RIGHTS	LTPC 3 003
OBJECTIVES :To sensitize the Engineering s	students to various aspects of Human Rights.	
5 5, 5	n and Development. Notion and classification of s. Civil and Political Rights, Economic, Social and hts.	•
· · · · · · · · · · · · · · · · · · ·	man Rights Magana carta – Geneva convention Rights, 1948. Theories of Human Rights.	9 of 1864.
UNIT III Theories and perspectives of UN	Laws – UN Agencies to monitor and compliance.	9

UNIT IV

Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

Human Rights of Disadvantaged People – Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights – National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL : 45 PERIODS

9

9

OUTCOMES:

• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

R - 2013

B.E. MECHANICAL ENGINEERING

I – VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I

SL.	COURSE	COURSE TITLE	L	Т	Р	С
No.	CODE					
THEO	RY					
1.	HS6151	<u>Technical English – I</u>	3	1	0	4
2.	MA6151	Mathematics – I	3	1	0	4
3.	PH6151	Engineering Physics – I	3	0	0	3
4.	CY6151	Engineering Chemistry – I	3	0	0	3
5.	GE6151	Computer Programming	3	0	0	3
6.	GE6152	Engineering Graphics	2	0	3	4
PRAC	TICALS					
7.	GE6161	Computer Practices Laboratory	0	0	3	2
8.	GE6162	Engineering Practices Laboratory	0	0	3	2
9.	GE6163	Physics and Chemistry Laboratory - I	0	0	2	1
		TOTAL	17	2	11	26

SEMESTER II

SL. No.	COURSE CODE	COURSE TITLE	L	т	Р	С
THEO						
1.	HS6251	<u>Technical English – II</u>	3	1	0	4
2.	MA6251	Mathematics – II	3	1	0	4
3.	PH6251	Engineering Physics – II	3	0	0	3
4.	CY6251	Engineering Chemistry – II	3	0	0	3
5.	GE6252	Basic Electrical and Electronics Engineering	4	0	0	4
6.	GE6253	Engineering Mechanics	3	1	0	4
PRAC	TICALS			r.		
7.	GE6261	Computer Aided Drafting and Modeling	0	1	2	2
		Laboratory				
8.	GE6262	Physics and Chemistry Laboratory - II	0	0	2	1
	<u>.</u>	TOTAL	19	4	4	25

SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEOR	Y	· · · · · · · · · · · · · · · · · · ·				
1.	MA6351	Transforms and Partial Differential Equations	3	1	0	4
2.	CE6306	Strength of Materials	3	1	0	4
3.	ME6301	Engineering Thermodynamics	3	0	0	3
4.	CE6451	Fluid Mechanics and Machinery	3	0	0	3
5.	ME6302	Manufacturing Technology - I	3	0	0	3
6.	EE6351	Electrical Drives and Controls	3	0	0	3
PRACT	ICAL					
7.	ME6311	Manufacturing Technology Laboratory - I	0	0	3	2
8.	CE6461	Fluid Mechanics and Machinery Laboratory	0	0	3	2
9.	EE6365	Electrical Engineering Laboratory	0	0	3	2
		TOTAL	18	2	9	26

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	L	т	Ρ	С
THEOR	Y					1
1.	MA6452	Statistics and Numerical Methods	3	1	0	4
2.	ME6401	Kinematics of Machinery	3	0	0	3
3.	ME6402	Manufacturing Technology– II	3	0	0	3
4.	ME6403	Engineering Materials and Metallurgy	3	0	0	3
5.	GE6351	Environmental Science and Engineering	3	0	0	3
6.	ME6404	Thermal Engineering	3	0	0	3
PRACT	ICAL					
7.	ME6411	Manufacturing Technology Laboratory–II	0	0	3	2
8.	ME6412	Thermal Engineering Laboratory - I	0	0	3	2
9.	CE6315	Strength of Materials Laboratory	0	0	3	2
		TOTAL	18	1	9	25

SEMESTER V

SL. NO.	COURSE CODE	COURSE TITLE	L	т	Р	С
THEORY	(
1.	ME6501	Computer Aided Design	3	0	0	3
2.	ME6502	Heat and Mass Transfer	3	0	0	3
3.	ME6503	Design of Machine Elements	3	0	0	3
4.	ME6504	Metrology and Measurements	3	0	0	3
5.	ME6505	Dynamics of Machines	3	0	0	3
6.	GE6075	Professional Ethics in Engineering	3	0	0	3
PRACTI	CAL					
7.	ME6511	Dynamics Laboratory	0	0	3	2
8.	ME6512	Thermal Engineering Laboratory-II	0	0	3	2
9.	ME6513	Metrology and Measurements Laboratory	0	0	3	2
		TOTAL	18	0	9	24

SEMESTER VI

SL.	COURSE	COURSE TITLE	1	т	Р	С
NO.	CODE		L		F	C
THEORY	Y					
1.	ME6601	Design of Transmission Systems	3	0	0	3
2.	MG6851	Principles of Management	3	0	0	3
3.	ME6602	Automobile Engineering	3	0	0	3
4.	ME6603	Finite Element Analysis	3	0	0	3
5.	ME6604	Gas Dynamics and Jet Propulsion	3	0	0	3
6.		Elective - I	3	0	0	3
PRACTI	CAL					
7.	ME6611	C.A.D. / C.A.M. Laboratory	0	0	3	2
8.	ME6612	Design and Fabrication Project	0	0	4	2
9.	GE6674	Communication and Soft Skills-	0	0	4	~
		Laboratory Based	0	0	4	2
	<u>.</u>	TOTAL	18	0	11	24

SEMESTER VII

SL. NO.	COURSE CODE	COURSE TITLE	L	т	Р	С					
THEOR	THEORY										
1.	ME6701	Power Plant Engineering	3	0	0	3					
2.	ME6702	Mechatronics	З	0	0	3					
3.	ME6703	Computer Integrated Manufacturing Systems	3	0	0	3					
4.	GE6757	Total Quality Management	3	0	0	З					
5.		Elective – II	З	0	0	3					
6.		Elective – III	3	0	0	З					
PRACT	ICAL										
7.	ME6711	Simulation and Analysis Laboratory	0	0	3	2					
8.	ME6712	Mechatronics Laboratory	0	0	3	2					
9.	ME6713	Comprehension	0	0	2	1					
		TOTAL	18	0	8	23					

SEMESTER VIII

SL. NO.	COURSE CODE	COURSE TITLE	L	т	Р	С
THEOR	Y					
1.	MG6863	Engineering Economics	3	0	0	3
2.		Elective – IV	3	0	0	3
3.		Elective – V	3	0	0	3
PRACT	ICAL					
4.	ME6811	Project Work	0	0	12	6
		TOTAL	9	0	12	15

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 188

ELECTIVES FOR B.E. MECHANICAL ENGINEERING

SEMESTER VI

Elective I

SL. NO.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С
1.	MG6072	Marketing Management	3	0	0	3
2.	ME6001	Quality Control and Reliability Engineering	3	0	0	3
3.	ME6002	Refrigeration and Air conditioning	3	0	0	3
4.	ME6003	Renewable Sources of Energy	3	0	0	3
5.	ME6004	Unconventional Machining Processes	3	0	0	3

SEMESTER VII

Elective II

SL. NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1.	ME6005	Process Planning and Cost Estimation	3	0	0	3
2.	ME6006	Design of Jigs, Fixtures and Press Tools	3	0	0	3
3.	ME6007	Composite Materials and Mechanics	3	0	0	3
4.	ME6008	Welding Technology	3	0	0	3
5.	ME6009	Energy Conservation and Management	3	0	0	3
6.	GE6083	Disaster Management	3	0	0	3

Elective III

SL. NO.	COURSE CODE	COURSE TITLE	L	т	Ρ	С
1.	ME6010	Robotics	3	0	0	3
2.	GE6081	Fundamentals of Nanoscience	3	0	0	3
3.	ME6011	Thermal Turbo Machines	3	0	0	3
4.	ME6012	Maintenance Engineering	3	0	0	3
5.	EE6007	Micro Electro Mechanical Systems	3	0	0	3
6.	ME6021	Hydraulics and Pneumatics	3	0	0	3

SEMESTER-VIII Elective IV

SL. NO.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С
1.	IE6605	Production Planning and Control	3	0	0	3
2.	MG6071	Entrepreneurship Development	3	0	0	3
3.	ME6013	Design of Pressure Vessels and Piping	3	0	0	3
4.	ME6014	Computational Fluid Dynamics	3	0	0	3
5.	ME6015	Operations Research	3	0	0	3
6.	GE6084	Human Rights	3	0	0	3

Elective V

SL. NO.	COURSE CODE	COURSE TITLE	L	Т	Ρ	С
1.	ME6016	Advanced I.C. Engines	3	0	0	3
2.	ME6017	Design of Heat Exchangers	3	0	0	3
3.	ME6018	Additive Manufacturing	3	0	0	3
4.	ME6019	Non Destructive Testing and Materials	3	0	0	3
5.	ME6020	Vibration and Noise Control	3	0	0	3

6

TECHNICAL ENGLISH – I

LT P C 3 1 0 4

OBJECTIVES:

HS6151

- To enable learners of Engineering and Technology develop their basic communication skills in English.
- To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.
- To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.
- To inculcate the habit of reading and writing leading to effective and efficient communication.

UNIT I

Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds); Speaking - Speaking about one's place, important festivals etc. – Introducing oneself, one's family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one's leisure time activities, hometown, etc.); Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II

Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette; Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions; Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions - Recommendations – Instructions; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures – Picture-based activities.

UNIT III

Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation - Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing - Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) - Paraphrasing; Grammar - Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary - Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables for interpretations.

UNIT IV

Listening - Watching videos / documentaries and responding to questions based on them; Speaking - Responding to questions - Different forms of interviews - Speaking at different types of interviews; Reading - Making inference from the reading passage - Predicting the content of a reading passage; Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of essays; Grammar - Adverbs – Tenses – future time reference; Vocabulary - Single word substitutes - Use of abbreviations and acronyms; E-materials - Interactive exercises for Grammar and Vocabulary - Sample interviews - film scenes - dialogue writing.

9+3

9+3

9+3

9+3

UNIT V

Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials - Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents - Interpreting posters.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Learners should be able to

- Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- Read different genres of texts adopting various reading strategies.
- Listen/view and comprehend different spoken discourses/excerpts in different accents

TEXTBOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011.
- 2. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006.
- 3. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 4. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001.
- 5. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008.

EXTENSIVE Reading (Not for Examination)

1. Kalam, Abdul. Wings of Fire. Universities Press, Hyderabad. 1999.

WEBSITES:

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like self introduction, peer introduction, group poster making, grammar and vocabulary games, etc.
- Discussions
- Role play activities
- Short presentations
- Listening and viewing activities with follow up activities like discussion, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc.

9+3

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Reviews
- Creative writing
- Poster making, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual speaking activities, Pair work activities like role play, Interview, Group discussions
- Reading assessment: Reading passages with comprehension questions graded from simple to complex, from direct to inferential
- ✓ Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content.

End Semester Examination: 80%

MA6151

MATHEMATICS – I

L T P C 3 1 0 4

OBJECTIVES:

- To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
- To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of eigenvalues and eigenvectors – Statement and applications of Cayley-Hamilton Theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

UNIT II SEQUENCES AND SERIES

Sequences: Definition and examples – Series: Types and Convergence – Series of positive terms – Tests of convergence: Comparison test, Integral test and D'Alembert's ratio test – Alternating series – Leibnitz's test – Series of positive and negative terms – Absolute and conditional convergence.

8

9+3

9+3

UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes - Evolute as envelope of normals.

UNIT IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES

Limits and Continuity – Partial derivatives – Total derivative – Differentiation of implicit functions – Jacobian and properties – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

UNIT V MULTIPLE INTEGRALS

Double integrals in cartesian and polar coordinates – Change of order of integration – Area enclosed by plane curves – Change of variables in double integrals – Area of a curved surface - Triple integrals – Volume of Solids.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• This course equips students to have basic knowledge and understanding in one fields of materials, integral and differential calculus.

TEXT BOOKS:

- Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, PEARSON Publishing, 2011.

PH6151

ENGINEERING PHYSICS – I

L T P C 3 0 0 3

9

OBJECTIVES:

• To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) - Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

9+3

9+3

9+3

10

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity- Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders

Modes of heat transfer- thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel)

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment -Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies.

Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications - Sonogram

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion -Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO₂, Semiconductor lasers (homojunction & heterojunction)-Industrial and Medical Applications.

Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TOTAL: 45 PERIODS

OUTCOMES:

• The students will have knowledge on the basics of physics related to properties of matter, optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications.

TEXT BOOKS:

- 1. Arumugam M. Engineering Physics. Anuradha publishers, 2010
- 2. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009
- 3. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Mani P. Engineering Physics I. Dhanam Publications, 2011
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
- 4. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011
- 5. Rajagopal K. Engineering Physics. PHI, New Delhi, 2011
- 6. Senthilkumar G. Engineering Physics I. VRB Publishers, 2011.

9

9

9

CY6151

ENGINEERING CHEMISTRY - I

OBJECTIVES:

- To make the students conversant with basics of polymer chemistry. •
- To make the student acquire sound knowledge of second law of thermodynamics and • second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I POLYMER CHEMISTRY

Introduction: Classification of polymers – Natural and synthetic: Thermoplastic and Thermosetting. Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tq, Tacticity, Molecular weight - weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension. Preparation, properties and uses of Nylon 6,6, and Epoxy resin.

UNIT II CHEMICAL THERMODYNAMICS

Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations - Van't Hoff isotherm and isochore(problems).

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY

Photochemistry: Laws of photochemistry - Grotthuss-Draper law, Stark-Einstein law and Lambert-Beer Law. Quantum efficiency - determination- Photo processes - Internal Conversion, Intersystem crossing, Fluorescence, Phosphorescence, Chemiluminescence and Photo-sensitization. Spectroscopy: Electromagnetic spectrum - Absorption of radiation - Electronic, Vibrational and rotational transitions, UV-visible and IR spectroscopy – principles, instrumentation (Block diagram only).

UNIT IV PHASE RULE AND ALLOYS

Phase rule: Introduction, definition of terms with examples, One Component System- water system - Reduced phase rule - Two Component Systems- classification - lead-silver system, zincmagnesium system. Alloys: Introduction- Definition- Properties of alloys- Significance of alloying, Functions and effect of alloying elements- Ferrous alloys- Nichrome and Stainless steel - heat treatment of steel; Non-ferrous alloys – brass and bronze.

NANOCHEMISTRY UNIT V

Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties. Nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrode position, chemical vapour deposition, laser ablation; Properties and applications

OUTCOMES:

The knowledge gained on polymer chemistry, thermodynamics. spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TOTAL :45 PERIODS

9

9

9

9

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010
- 2. Kannan P., Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009

REFERENCES:

- 1. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008.
- 3. Gowariker V.R., Viswanathan N.V. and JayadevSreedhar, "Polymer Science", New Age International P (Ltd.,), Chennai, 2006.
- 4. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.

GE6151	COMPUTER PROGRAMMING	LTPC
		3003

OBJECTIVES:

The students should be made to:

- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C.

UNIT I INTRODUCTION

Generation and Classification of Computers- Basic Organization of a Computer –Number System – Binary – Decimal – Conversion – Problems. Need for logical analysis and thinking – Algorithm – Pseudo code – Flow Chart.

UNIT II C PROGRAMMING BASICS

Problem formulation – Problem Solving - Introduction to 'C' programming –fundamentals – structure of a 'C' program – compilation and linking processes – Constants, Variables – Data Types – Expressions using operators in 'C' – Managing Input and Output operations – Decision Making and Branching – Looping statements – solving simple scientific and statistical problems.

UNIT III ARRAYS AND STRINGS

Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String- String operations – String Arrays. Simple programs- sorting- searching – matrix operations.

UNIT IV FUNCTIONS AND POINTERS

Function – definition of function – Declaration of function – Pass by value – Pass by reference – Recursion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays- Example Problems.

10

8

9

UNIT V STRUCTURES AND UNIONS

Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

TOTAL: 45 PERIODS

9

OUTCOMES:

At the end of the course, the student should be able to:

- Design C Programs for problems.
- Write and execute C programs for simple applications.

TEXTBOOKS:

- 1. Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Dorling Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
- 2. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009
- 3. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.

REFERENCES:

- 1. Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2006.
- 2. Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint, 2007.
- 3. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006.

GE6152

ENGINEERING GRAPHICS

L T P C 2 0 3 4

OBJECTIVES:

- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves, Scales: Construction of Diagonal and Vernier scales.

Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

5+9

5+9

- demonstrate computer aided drafting.

Edition, 2010.

REFERENCES:

- Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 1. 2007.
- Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an 2. introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009. 3.
- Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) 4. Limited, 2008.
- 5. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 6. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

Publication of Bureau of Indian Standards:

- IS 10711 2001: Technical products Documentation Size and lay out of drawing 1. sheets.
- 2. IS 9609 (Parts 0 & 1) – 2001: Technical products Documentation – Lettering.
- 3. IS 10714 (Part 20) – 2001 & SP 46 – 2003: Lines for technical drawings.

UNIT III **PROJECTION OF SOLIDS**

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids - Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT V **ISOMETRIC AND PERSPECTIVE PROJECTIONS**

Principles of isometric projection - isometric scale -Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method .

COMPUTER AIDED DRAFTING (Demonstration Only)

Introduction to drafting packages and demonstration of their use.

OUTCOMES:

On Completion of the course the student will be able to

- perform free hand sketching of basic geometrical constructions and multiple views of objects.
- do orthographic projection of lines and plane surfaces.
- draw projections and solids and development of surfaces. •
- prepare isometric and perspective sections of simple solids. •

TEXT BOOK:

1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th

5+9

3

TOTAL: 75 PERIODS

6+9

5+9

- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

GE6161 COMPUTER PRACTICES LABORATORY

L T P C 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Be familiar with the use of Office software.
- Be exposed to presentation and visualization tools.
- Be exposed to problem solving techniques and flow charts.
- Be familiar with programming in C.
- Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:

- 1. Search, generate, manipulate data using MS office/ Open Office
- 2. Presentation and Visualization graphs, charts, 2D, 3D
- 3. Problem formulation, Problem Solving and Flowcharts
- 4. C Programming using Simple statements and expressions
- 5. Scientific problem solving using decision making and looping.
- 6. Simple programming for one dimensional and two dimensional arrays.
- 7. Solving problems using String functions
- 8. Programs with user defined functions Includes Parameter Passing
- 9. Program using Recursive Function and conversion from given program to flow chart.
- 10. Program using structures and unions.

OUTCOMES:

At the end of the course, the student should be able to:

- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos.

(or)

Server with C compiler supporting 30 terminals or more.

ENGINEERING PRACTICES LABORATORY

9

13

OBJECTIVES:

GE6162

• To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:

Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- (a) Study of the joints in roofs, doors, windows and furniture.
- (b) Hands-on-exercise:

Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:

- (a) Preparation of arc welding of butt joints, lap joints and tee joints.
- (b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays, funnels, etc.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.

- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and vee fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
- 2. Study of logic gates AND, OR, EOR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

OUTCOMES:

- ability to fabricate carpentry components and pipe connections including plumbing works.
- ability to use welding equipments to join the structures.
- ability to fabricate electrical and electronics circuits.

REFERENCES:

- 1. Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
- 2. Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Puplishing House Pvt.Ltd, 2006.
- 3. Bawa H.S., "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
- 4. Rajendra Prasad A. & Sarma P.M.M.S., "Workshop Practice", Sree Sai Publication, 2002.
- 5. Kannaiah P. & Narayana K.L., "Manual on Workshop Practice", Scitech Publications, 1999.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL

1.	Assorted components for plumbing consisting of metallic pipes,	
	plastic pipes, flexible pipes, couplings, unions, elbows, plugs an	d
	other fittings.	15 Sets
2.	Carpentry vice (fitted to work bench)	15 Nos.
3.	Standard woodworking tools	15 Sets
4.	Models of industrial trusses, door joints, furniture joints	5 each
5.	Power Tools: (a) Rotary Hammer	2 Nos
	(b) Demolition Hammer	2 Nos
	(c) Circular Saw	2 Nos
	(d) Planer	2 Nos
	(e) Hand Drilling Machine	2 Nos
	(f) Jigsaw	2 Nos

TOTAL: 45 PERIODS

13

MECHANICAL

 Arc welding transformer with cables and holders Welding booth with exhaust facility Welding appropriate like welding shield, chipping harmon 	5 Nos. 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 Sets.
Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2 Nos.
5. Centre lathe	2 Nos.
6. Hearth furnace, anvil and smithy tools	2 Sets.
7. Moulding table, foundry tools	2 Sets.
8. Power Tool: Angle Grinder	2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner	One each.
ELECTRICAL	
1. Assorted electrical components for house wiring	15 Sets
2. Electrical measuring instruments	10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency	/ lamp 1 each
4. Megger (250V/500V)	1 No.
5. Power Tools: (a) Range Finder	2 Nos
(b) Digital Live-wire detector	2 Nos

ELECTRONICS

1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power	

5. Study purpose items: Telephone, FM radio, low-voltage power supply

GE6163 PHYSICS AND CHEMISTRY LABORATORY – I L T P C

0021

PHYSICS LABORATORY – I

OBJECTIVES:

• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1. (a) Determination of Wavelength, and particle size using Laser
 - (b) Determination of acceptance angle in an optical fiber.
- 2. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 3. Determination of wavelength of mercury spectrum spectrometer grating
- 4. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- 5. Determination of Young's modulus by Non uniform bending method
- 6. Determination of specific resistance of a given coil of wire Carey Foster's Bridge

OUTCOMES:

The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Diode laser, lycopodium powder, glass plate, optical fiber.
- 2. Ultrasonic interferometer
- 3. Spectrometer, mercury lamp, grating
- 4. Lee's Disc experimental set up
- 5. Traveling microscope, meter scale, knife edge, weights
- 6. Carey foster's bridge set up (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY-I

OBJECTIVES:

- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by vacometry.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- Determination of DO content of water sample by Winkler's method. 1
- 2 Determination of chloride content of water sample by argentometric method.
- 3 Determination of strength of given hydrochloric acid using pH meter.
- Determination of strength of acids in a mixture using conductivity meter. 4
- Estimation of iron content of the water sample using spectrophotometer. 5 (1,10- phenanthroline / thiocyanate method).
- Determination of molecular weight of polyvinylalcohol using Ostwald viscometer. 6
- 7 Conductometric titration of strong acid vs strong base.

TOTAL: 30 PERIODS

The students will be outfitted with hands-on knowledge in the guantitative chemical analysis of water quality related parameters.

REFERENCES:

OUTCOMES:

- Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York 2001. 1.
- Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical 2. organic chemistry", LBS Singapore 1994.
- Jeffery G.H., Bassett J., Mendham J.and Denny vogel's R.C, "Text book of quantitative 3. analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M., Sandell E.B. et al. "Quantitative chemical analysis", Mcmillan, Madras 1980.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. lodine flask -30 Nos
- 2. pH meter 5 Nos
- 3. Conductivity meter -5 Nos 5 Nos
- Spectrophotometer Ostwald Viscometer -
- 10 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (each 30 Nos.)

Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using 'emoticons' as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. 'can') - Homophones (e.g. 'some', 'sum'): E-materials - Interactive exercise on Grammar and vocabulary - blogging; Language Lab -Listening to different types of conversation and answering questions.

UNIT II

Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one's friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary -Phrasal verbs and their meanings. Using phrasal verbs in sentences: E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students' dialogues.

UNIT III

Listening - Listening to the conversation - Understanding the structure of conversations; Speaking -Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information - expressing feelings (affection, anger, regret, etc.); Reading - Speed reading - reading passages with time limit - Skimming; Writing - Minutes of meeting - format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles - elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. 'rock', 'train', 'ring'); E-materials - Interactive exercise on Grammar and vocabulary -Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials Attending a meeting and writing minutes.

UNIT IV

Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned scanning; Writing - Applying for a job - cover letter - résumé preparation - vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary -Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on

TECHNICAL ENGLISH II

OBJECTIVES:

- To make learners acquire listening and speaking skills in both formal and informal contexts. •
- To help them develop their reading skills by familiarizing them with different types of reading • strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components. 9+3

UNIT I

HS6251

9+3

9+3

9+3

Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V

9+3

Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener; Speaking - Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading; Writing – Checklist - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Learners should be able to

- Speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
- Write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- Read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- Listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

TEXTBOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008
- 2. Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011
- 3. Riordan, Daniel. G. Technical Communication. Cengage Learning, New Delhi. 2005
- 4. Sharma, Sangeetha & Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2009
- 5. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007

EXTENSIVE Reading (Not for Examination)

1. Khera, Shiv. You can Win. Macmillan, Delhi. 1998.

Websites

- 1. http://www.englishclub.com
- 2. http://owl.english.purdue.edu

TEACHING METHODS:

- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:

Internal assessment: 20%

3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
 - Assignment
 - Report
 - Creative writing, etc.

All the four skills are to be tested with equal weightage given to each.

- ✓ Speaking assessment: Individual presentations, Group discussions
- Reading assessment: Reading passages with comprehension questions graded following Bloom's taxonomy
- ✓ Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.
- ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom's taxonomy.

End Semester Examination: 80%

MA6251

MATHEMATICS – II

L T P C 3 1 0 4

OBJECTIVES:

- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To acquaint the student with the concepts of vector calculus needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS

Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM

Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

UNIT IV ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z^2 , e^z and bilinear transformation.

UNIT V COMPLEX INTEGRATION

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor's and Laurent's series expansions – Singular points – Residues – Cauchy's residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

• The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXT BOOKS:

- 1. Bali N. P and Manish Goyal, "A Text book of Engineering Mathematics", Eighth Edition, Laxmi Publications Pvt Ltd., 2011.
- 2. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, 2011.

REFERENCES:

- 1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.
- 3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.
- 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 5. Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics" Volume II, Second Edition, PEARSON Publishing, 2011.

9+3

9+3

9+3

9+3

9+3

CONDUCTING MATERIALS

UNIT I CONDUCTING MATERIALS 9 Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications

Superconductivity: properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High T_c superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications TOTAL: 45 PERIODS

OUTCOMES:

• The students will have the knowledge on physics of materials and that knowledge will be used by them in different engineering and technology applications.

TEXT BOOKS:

- 1. Arumugam M., Materials Science. Anuradha publishers, 2010
- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009

REFERENCES:

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011
- 3. Mani P. Engineering Physics II. Dhanam Publications, 2011
- 4. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009

OBJECTIVES:

and technology.

To enrich the understanding of various types of materials and their applications in engineering

9

9

9

ENGINEERING CHEMISTRY - II

OBJECTIVES:

CY6251

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- Principles of electrochemical reactions, redox reactions in corrosion of materials and methods for corrosion prevention and protection of materials.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.

UNIT I WATER TECHNOLOGY

Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement -boiler corrosion-priming and foaming- desalination of brackish water -reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

Electrochemical cell - redox reaction, electrode potential- origin of electrode potential- oxidation potential- reduction potential, measurement and applications - electrochemical series and its significance - Nernst equation (derivation and problems). Corrosion- causes- factors- types-chemical, electrochemical corrosion (galvanic, differential aeration), corrosion control - material selection and design aspects - electrochemical protection – sacrificial anode method and impressed current cathodic method. Paints- constituents and function. Electroplating of Copper and electroless plating of nickel.

UNIT III ENERGY SOURCES

Introduction- nuclear energy- nuclear fission- controlled nuclear fission- nuclear fusion- differences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generatorclassification of nuclear reactor- light water reactor- breeder reactor- solar energy conversionsolar cells- wind energy. Batteries and fuel cells:Types of batteries- alkaline battery- lead storage battery- nickel-cadmium battery- lithium battery- fuel cell H_2 - O_2 fuel cell- applications.

UNIT IV ENGINEERING MATERIALS

Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties – refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement- waterproof and white cement-properties and uses. Glass - manufacture, types, properties and uses.

UNIT V FUELS AND COMBUSTION

Fuel: Introduction- classification of fuels- calorific value- higher and lower calorific values- coalanalysis of coal (proximate and ultimate)- carbonization- manufacture of metallurgical coke (Otto Hoffmann method) - petroleum- manufacture of synthetic petrol (Bergius process)- knockingoctane number - diesel oil- cetane number - natural gas- compressed natural gas(CNG)- liquefied petroleum gases(LPG)- producer gas- water gas. Power alcohol and bio diesel. Combustion of fuels: introduction- theoretical calculation of calorific value- calculation of stoichiometry of fuel and air ratio- ignition temperature- explosive range - flue gas analysis (ORSAT Method).

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

• The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- 1. Vairam S, Kalyani P and SubaRamesh., "Engineering Chemistry"., Wiley India PvtLtd., New Delhi., 2011
- 2. DaraS.S,UmareS.S."Engineering Chemistry", S. Chand & Company Ltd., New Delhi , 2010

REFERENCES:

- 1 Kannan P. and Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009
- 2. AshimaSrivastava and Janhavi N N., "Concepts of Engineering Chemistry", ACME Learning Private Limited., New Delhi., 2010.
- 3. RenuBapna and Renu Gupta., "Engineering Chemistry", Macmillan India Publisher Ltd., 2010.
- 4 Pahari A and Chauhan B., "Engineering Chemistry"., Firewall Media., New Delhi., 2010

GE6252 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING L T P C

OBJECTIVES:

- To explain the basic theorems used in Electrical circuits and the different components and function of electrical machines.
- To explain the fundamentals of semiconductor and applications.
- To explain the principles of digital electronics
- To impart knowledge of communication.

UNIT I ELECTRICAL CIRCUITS & MEASURMENTS

Ohm's Law – Kirchoff's Laws – Steady State Solution of DC Circuits – Introduction to AC Circuits – Waveforms and RMS Value – Power and Power factor – Single Phase and Three Phase Balanced Circuits.

Operating Principles of Moving Coil and Moving Iron Instruments (Ammeters and Voltmeters), Dynamometer type Watt meters and Energy meters.

UNIT II ELECTRICAL MECHANICS

Construction, Principle of Operation, Basic Equations and Applications of DC Generators, DC Motors, Single Phase Transformer, single phase induction Motor.

UNIT III SEMICONDUCTOR DEVICES AND APPLICATIONS

Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – Half wave and Full wave Rectifiers – Voltage Regulation.

Bipolar Junction Transistor – CB, CE, CC Configurations and Characteristics – Elementary Treatment of Small Signal Amplifier.

12

4 0 0 4

12

UNIT IV DIGITAL ELECTRONICS

Binary Number System – Logic Gates – Boolean Algebra – Half and Full Adders – Flip-Flops – Registers and Counters – A/D and D/A Conversion (single concepts)

UNIT V FUNDAMENTALS OF COMMUNICATION ENGINEERING

Types of Signals: Analog and Digital Signals – Modulation and Demodulation: Principles of Amplitude and Frequency Modulations.

Communication Systems: Radio, TV, Fax, Microwave, Satellite and Optical Fibre (Block Diagram Approach only).

OUTCOMES:

- ability to identify the electrical components explain the characteristics of electrical machines.
- ability to identify electronics components and use of them to design circuits.

TEXT BOOKS:

- 1. Mittle N., "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 1990.
- 2. Sedha R.S., "Applied Electronics", S. Chand & Co., 2006.

REFERENCES:

- 1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill, Second Edition, 2006.
- 2. Nagsarkar T K and Sukhija M S, "Basics of Electrical Engineering", Oxford press 2005.
- 3. Mehta V K, "Principles of Electronics", S.Chand & Company Ltd, 1994.
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002.
- 5. Premkumar N, "Basic Electrical Engineering", Anuradha Publishers, 2003.

GE6253

ENGINEERING MECHANICS

L T P C 3 1 0 4

OBJECTIVES:

• To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I BASICS AND STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces — Vectorial representation of forces – Vector operations of forces - additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.

UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports –Action and reaction forces –stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass- Centroids of lines and areas - Rectangular, circular, triangular areas by integration - T section, I section, - Angle section, Hollow section by using standard formula -

12

12

TOTAL: 60 PERIODS

12

12

Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem –Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.

UNIT IV DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion - Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

UNIT V FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

TOTAL: 60 PERIODS

12

12

OUTCOMES:

- ability to explain the differential principles applies to solve engineering problems dealing with force, displacement, velocity and acceleration.
- ability to analyse the forces in any structures.
- ability to solve rigid body subjected to dynamic forces.

TEXT BOOKS:

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press (2010)

REFERENCES:

- 1. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education 2010.
- 2. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4th Edition, Pearson Education 2006.
- 3. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons, 1993.
- 4. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., 2005.
- 5. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, 1998.
- 6. Kumar, K.L., "Engineering Mechanics", 3rd Revised Edition, Tata McGraw-Hill Publishing company, New Delhi 2008.

GE6261 COMPUTER AIDED DRAFTING AND MODELING LABORATORY L T P C

0122

OBJECTIVES:

• To develop skill to use software to create 2D and 3D models.

LIST OF EXERCISES USING SOFTWARE CAPABLE OF DRAFTING AND MODELING

- 1. Study of capabilities of software for Drafting and Modeling Coordinate systems (absolute, relative, polar, etc.) Creation of simple figures like polygon and general multi-line figures.
- 2. Drawing of a Title Block with necessary text and projection symbol.

- 3. Drawing of curves like parabola, spiral, involute using Bspline or cubic spline.
- 4. Drawing of front view and top view of simple solids like prism, pyramid, cylinder, cone, etc, and dimensioning.
- 5. Drawing front view, top view and side view of objects from the given pictorial views (eg. Vblock, Base of a mixie, Simple stool, Objects with hole and curves).
- 6. Drawing of a plan of residential building (Two bed rooms, kitchen, hall, etc.)
- 7. Drawing of a simple steel truss.
- 8. Drawing sectional views of prism, pyramid, cylinder, cone, etc,
- 9. Drawing isometric projection of simple objects.
- 10. Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-D model.

TOTAL: 45 PERIODS

0 0 2 1

Note: Plotting of drawings must be made for each exercise and attached to the records written by students.

OUTCOMES:

- ability to use the software packers for drafting and modeling
- ability to create 2D and 3D models of Engineering Components

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SI.No	Description of Equipment	Quantity
1.	Pentium IV computer or better hardware, with	30 No.
	suitable graphics facility	
2.	Licensed software for Drafting and Modeling.	30 Licenses
3.	Laser Printer or Plotter to print / plot drawings	2 No.

GE6262 PHYSICS AND CHEMISTRY LABORATORY – II L T P C

PHYSICS LABORATORY - II

OBJECTIVES:

• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1. Determination of Young's modulus by uniform bending method
- 2. Determination of band gap of a semiconductor
- 3. Determination of Coefficient of viscosity of a liquid –Poiseuille's method
- 4. Determination of Dispersive power of a prism Spectrometer
- 5. Determination of thickness of a thin wire Air wedge method
- 6. Determination of Rigidity modulus Torsion pendulum

OUTCOMES:

• The students will have the ability to test materials by using their knowledge of applied physics principles in optics and properties of matter.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1. Traveling microscope, meter scale, Knife edge, weights
- 2. Band gap experimental set up
- 3. Burette, Capillary tube, rubber tube, stop clock, beaker and weighing balance
- 4. spectrometer, prism, sodium vapour lamp.
- 5. Air-wedge experimental set up.
- 6. Torsion pendulum set up.

(vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY - II

OBJECTIVES:

• To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of hardness, alkalinity, metal ion content, corrosion in metals and cement analysis.

LIST OF EXPERIMENTS

(Any FIVE Experiments)

- 1 Determination of alkalinity in water sample
- 2 Determination of total, temporary & permanent hardness of water by EDTA method
- 3 Estimation of copper content of the given solution by EDTA method
- 4 Estimation of iron content of the given solution using potentiometer
- 5 Estimation of sodium present in water using flame photometer
- 6 Corrosion experiment weight loss method
- 7 Conductometric precipitation titration using BaCl₂ and Na₂SO₄
- 8 Determination of CaO in Cement.

OUTCOMES:

TOTAL: 30 PERIODS

• The students will be conversant with hands-on knowledge in the quantitative chemical analysis of water quality related parameters, corrosion measurement and cement analysis.

REFERENCES:

- 1. Daniel R. Palleros, "Experimental organic chemistry" John Wiley & Sons, Inc., New York, 2001.
- 2. Furniss B.S. Hannaford A.J, Smith P.W.G and Tatchel A.R., "Vogel's Textbook of practical organic chemistry, LBS Singapore ,1994.
- 3. Jeffery G.H, Bassett J., Mendham J. and Denny R.C., "Vogel's Text book of quantitative analysis chemical analysis", ELBS 5th Edn. Longman, Singapore publishers, Singapore, 1996.
- 4. Kolthoff I.M. and Sandell E.B. et al. Quantitative chemical analysis, McMillan, Madras 1980
- Laboratory classes on alternate weeks for Physics and Chemistry.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	Potentiometer	-	5 Nos
2.	Flame photo meter	-	5 Nos
3.	Weighing Balance	-	5 Nos
4.	Conductivity meter	-	5 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (30 Nos each)

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

OBJECTIVES

- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+3

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.

OUTCOMES

• The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS

- 1. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., Second reprint, New Delhi, 2012.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES

1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd, 2007.

9 + 3

L T P C 3 1 0 4

9 + 3

TOTAL (L:45+T:15): 60 PERIODS

9 + 3

9 + 3

- 2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-Graw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics", Sixth Edition, Tata McGraw Hill Education Pvt Ltd, New Delhi, 2012.
- 6. Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

CE6306

STRENGTH OF MATERIALS

OBJECTIVES:

To understand the stresses developed in bars, compounds bars, beams, shafts, cylinders and spheres.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants – Volumetric strains –Stresses on inclined planes – principal stresses and principal planes – Mohr's circle of stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

Beams – types transverse loading on beams – Shear force and bending moment in beams – Cantilevers – Simply supported beams and over – hanging beams. Theory of simple bending– bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress distribution.

UNIT III TORSION

Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts– Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs.

UNIT IV DEFLECTION OF BEAMS

Double Integration method – Macaulay's method – Area moment method for computation of slopes and deflections in beams - Conjugate beam and strain energy – Maxwell's reciprocal theorems.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin and thick cylinders – spherical shells subjected to internal pressure –Deformation in spherical shells – Lame's theorem.

OUTCOMES:

- Upon completion of this course, the students can able to apply mathematical knowledge to calculate the deformation behavior of simple structures.
- Critically analyse problem and solve the problems related to mechanical elements and analyse the deformation behavior for different types of loads.

TOTAL (L:45+T:15): 60 PERIODS

9

9

9

9

9

L T P C 3 1 0 4

TEXT BOOKS:

- 1. Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2007
- 2. Jindal U.C., "Strength of Materials", Asian Books Pvt. Ltd., New Delhi, 2007

REFERENCES:

- 1. Egor. P.Popov "Engineering Mechanics of Solids" Prentice Hall of India, New Delhi, 2001
- 2. Subramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education Series, 2007.
- 3. Hibbeler, R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2007
- 4. Ferdinand P. Been, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", Tata McGraw Hill Publishing 'co. Ltd., New Delhi, 2005.

ME6301 ENGINEERING THERMODYNAMICS L T P C 3 0 0 3

OBJECTIVES:

• To familiarize the students to understand the fundamentals of thermodynamics and to perform thermal analysis on their behavior and performance.

(Use of Standard and approved Steam Table, Mollier Chart, Compressibility Chart and Psychrometric Chart permitted)

9

9

9

9

UNIT I BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach. Path and point functions. Intensive and extensive, total and specific quantities. System and their types. Thermodynamic Equilibrium State, path and process. Quasi-static, reversible and irreversible processes. Heat and work transfer, definition and comparison, sign convention. Displacement work and other modes of work .P-V diagram. Zeroth law of thermodynamics – concept of temperature and thermal equilibrium– relationship between temperature scales –new temperature scales. First law of thermodynamics –application to closed and open systems – steady and unsteady flow processes.

UNIT II SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink. Heat Engine, Refrigerator, Heat pump. Statements of second law and its corollaries. Carnot cycle Reversed Carnot cycle, Performance. Clausius inequality. Concept of entropy, T-s diagram, Tds Equations, entropy change for - pure substance, ideal gases - different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body. Energy and irreversibility. Expressions for the energy of a closed system and open systems. Energy balance and entropy generation. Irreversibility. I and II law Efficiency.

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economiser, preheater, Binary and Combined cycles.

UNIT IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases-Reduced properties-.Compressibility factor-.Principle of Corresponding states. -Generalised Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations.

UNIT V GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

OUTCOMES:

- Upon completion of this course, the students can able to apply the Thermodynamic Principles to Mechanical Engineering Application.
- Apply mathematical fundamentals to study the properties of steam, gas and gas mixtures.

TEXT BOOKS :

- 1. Nag.P.K., "Engineering Thermodynamics", 4thEdition, Tata McGraw-Hill, New Delhi, 2008.
- 2. Natarajan E., "Engineering Thermodynamics: Fundamentals and Applications", Anuragam Publications, 2012.

REFERENCES:

- 1. Cengel. Y and M.Boles, "Thermodynamics An Engineering Approach", 7th Edition, Tata McGraw Hill, 2010.
- 2. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill, 1995.
- 3. Rathakrishnan. E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice-Hall of India Pvt. Ltd, 2006
- 4. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2010.
- 5. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 6. Van Wylen and Sonntag, "Classical Thermodynamics", Wiley Eastern, 1987
- 7. Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited, 2007.
- 8. Kau-Fui Vincent Wong, "Thermodynamics for Engineers", CRC Press, 2010 Indian Reprint.
- 9. Prasanna Kumar: Thermodynamics "Engineering Thermodynamics" Pearson Education, 2013

CE6451 FLUID MECHANICS AND MACHINERY L T P C 3 0 0 3

OBJECTIVES:

- The applications of the conservation laws to flow through pipes and hydraulic machines are studied
- To understand the importance of dimensional analysis.
- To understand the importance of various types of flow in pumps and turbines.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS

Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, surface tension and capillarity. Flow characteristics – concept of control volume - application of continuity equation, energy equation and momentum equation.

8

9

TOTAL : 45 PERIODS

UNIT II FLOW THROUGH CIRCULAR CONDUITS

Hydraulic and energy gradient - Laminar flow through circular conduits and circular annuli-Boundary layer concepts – types of boundary layer thickness – Darcy Weisbach equation –friction factor- Moody diagram- commercial pipes- minor losses – Flow through pipes in series and parallel.

UNIT III DIMENSIONAL ANALYSIS

Need for dimensional analysis – methods of dimensional analysis – Similitude –types of similitude - Dimensionless parameters- application of dimensionless parameters – Model analysis.

UNIT IV PUMPS

Impact of jets - Euler's equation - Theory of roto-dynamic machines – various efficiencies– velocity components at entry and exit of the rotor- velocity triangles - Centrifugal pumps– working principle - work done by the impeller - performance curves - Reciprocating pump- working principle – Rotary pumps –classification.

UNIT V TURBINES

Classification of turbines – heads and efficiencies – velocity triangles. Axial, radial and mixed flow turbines. Pelton wheel, Francis turbine and Kaplan turbines- working principles - work done by water on the runner – draft tube. Specific speed - unit quantities – performance curves for turbines – governing of turbines.

OUTCOMES:

- Upon completion of this course, the students can able to apply mathematical knowledge to predict the properties and characteristics of a fluid.
- Can critically analyse the performance of pumps and turbines.

TEXT BOOK:

1. Modi P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi 2004.

REFERENCES:

- 1. Streeter, V. L. and Wylie E. B., "Fluid Mechanics", McGraw Hill Publishing Co. 2010
- 2. Kumar K. L., "Engineering Fluid Mechanics", Eurasia Publishing House(p) Ltd., New Delhi 2004
- 3. Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery", 2011.
- 4. Graebel. W.P, "Engineering Fluid Mechanics", Taylor & Francis, Indian Reprint, 2011

ME6302	MANUFACTURING TECHNOLOGY – I	L T P C
		3 0 0 3

OBJECTIVES:

• To introduce the concepts of basic manufacturing processes and fabrication techniques, such as metal casting, metal joining, metal forming and manufacture of plastic components.

UNIT I METAL CASTING PROCESSES

Sand Casting : Sand Mould – Type of patterns - Pattern Materials – Pattern allowances –Moulding sand Properties and testing – Cores –Types and applications – Moulding machines– Types and applications; **Melting furnaces** : Blast and Cupola Furnaces; **Principle of special casting processes :** Shell - investment – Ceramic mould – Pressure die casting - Centrifugal Casting - CO₂ process – Stir casting; **Defects in Sand casting**

8

9

10

10

TOTAL: 45 PERIODS

UNIT II JOINING PROCESSES

Operating principle, basic equipment, merits and applications of : Fusion welding processes : Gas welding - Types – Flame characteristics; Manual metal arc welding – Gas Tungsten arc welding - Gas metal arc welding – Submerged arc welding – Electro slag welding; **Operating principle and applications of** : Resistance welding - Plasma arc welding – Thermit welding – Electron beam welding – Friction welding and Friction Stir Welding; Brazing and soldering; **Weld defects:** types, causes and cure.

UNIT III METAL FORMING PROCESSES

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging – forging operations. Rolling of metals– Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts. Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion.

UNIT IV SHEET METAL PROCESSES

Sheet metal characteristics – shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes-Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning– Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typical applications – injection moulding – Plunger and screw machines – Compression moulding, Transfer Moulding – Typical industrial applications – introduction to blow moulding –Rotational moulding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to apply the different manufacturing process and use this in industry for component production

TEXT BOOKS:

- 1. Hajra Chouldhary S.K and Hajra Choudhury. AK., "Elements of workshop Technology", volume I and II, Media promoters and Publishers Private Limited, Mumbai, 1997
- 2. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India Edition, 2006

REFERENCES:

- 1. Gowri P. Hariharan, A.Suresh Babu, "Manufacturing Technology I", Pearson Education, 2008
- 2. Roy. A. Lindberg, "Processes and Materials of Manufacture", PHI / Pearson education, 2006
- 3. Paul Degarma E, Black J.T and Ronald A. Kosher, "Materials and Processes, in Manufacturing" Eight Edition, Prentice Hall of India, 1997.
- 4. Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., 2004.
- 5. Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", 2ndEdition, TMH-2003; 2003

9

9

9

drive motors with regard to thermal overloading and Load variation factors

heating and cooling curves - Loading conditions and classes of duty - Selection of power rating for

DRIVE MOTOR CHARACTERISTICS UNIT II

INTRODUCTION

To study the conventional and solid-state drives

Mechanical characteristics – Speed-Torgue characteristics of various types of load and drive motors – Braking of Electrical motors - DC motors: Shunt, series and compound - single phase and three phase induction motors.

STARTING METHODS UNIT III

Types of D.C Motor starters – Typical control circuits for shunt and series motors – Three phase squirrel cage and slip ring induction motors.

CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES UNIT IV 10

Speed control of DC series and shunt motors - Armature and field control, Ward-Leonard control system - Using controlled rectifiers and DC choppers –applications.

UNIT V CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES 10

Speed control of three phase induction motor - Voltage control, voltage / frequency control, slip power recovery scheme – Using inverters and AC voltage regulators – applications.

OUTCOMES:

EE6351

•

UNIT I

performance.

Upon Completion of this subject, the students can able to explain different types of electrical machines and their performance

TEXT BOOKS:

- 1. Vedam Subrahmaniam, "Electric Drives (Concepts and Applications", Tata McGraw-Hill, 2001
- 2. Nagrath .I.J. & Kothari .D.P, "Electrical Machines", Tata McGraw-Hill, 1998

REFERENCES:

- Pillai.S.K "A First Course on Electric Drives", Wiley Eastern Limited, 1998 1.
- 2. Singh. M.D., K.B.Khanchandani, "Power Electronics", Tata McGraw-Hill, 1998
- 3. Partab. H., "Art and Science and Utilisation of Electrical Energy", Dhanpat Rai and Sons, 1994

ELECTRICAL DRIVES AND CONTROL

OBJECTIVES: To understand the basic concepts of different types of electrical machines and their

To study the different methods of starting D.C motors and induction motors.

TOTAL: 45 PERIODS

9

ME6311 MANUFACTURING TECHNOLOGY LABORATORY – I

OBJECTIVES:

• To Study and practice the various operations that can be performed in lathe, shaper, drilling, milling machines etc. and to equip with the practical knowledge required in the core industries.

LIST OF EXPERIMENTS

Machining and Machining time estimations for :

- 1. Taper Turning
- 2. External Thread cutting
- 3. Internal Thread Cutting
- 4. Eccentric Turning
- 5. Knurling
- 6. Square Head Shaping
- 7. Hexagonal Head Shaping

OUTCOMES:

TOTAL: 45 PERIODS

LT P C 0 0 3 2

• Upon completion of this course, the students can able to demonstrate and fabricate different types of components using the machine tools

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Centre Lathes	7 Nos.
2	Horizontal Milling Machine	1 No
3	Vertical Milling Machine	1 No
4	Shaper	1 Nos.

CE6461 FLUID MECHANICS AND MACHINERY LABORATORY L T P C 0 0 3 2

OBJECTIVES:

• Upon Completion of this subject, the students can able to have hands on experience in flow measurements using different devices and also perform calculation related to losses in pipes and also perform characteristic study of pumps, turbines etc.,

LIST OF EXPERIMENTS

- 1. Determination of the Coefficient of discharge of given Orifice meter.
- 2. Determination of the Coefficient of discharge of given Venturi meter.
- 3. Calculation of the rate of flow using Rota meter.
- 4. Determination of friction factor for a given set of pipes.
- 5. Conducting experiments and drawing the characteristic curves of centrifugal pump/ submergible pump
- 6. Conducting experiments and drawing the characteristic curves of reciprocating pump.
- 7. Conducting experiments and drawing the characteristic curves of Gear pump.
- 8. Conducting experiments and drawing the characteristic curves of Pelton wheel.
- 9. Conducting experiments and drawing the characteristics curves of Francis turbine.
- 10. Conducting experiments and drawing the characteristic curves of Kaplan turbine.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to use the measurement equipments for flow measurement
- Ability to do performance trust on different fluid machinery

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Orifice meter setup	1
2	Venturi meter setup	1
3	Rotameter setup	1
4	Pipe Flow analysis setup	1
5	Centrifugal pump/submergible pump setup	1
6	Reciprocating pump setup	1
7	Gear pump setup	1
8	Pelton wheel setup	1
9	Francis turbine setup	1
10	Kaplan turbine setup	1

EE6365 ELECTRICAL ENGINEERING LABORATORY L T

L T P C 0 0 3 2

OBJECTIVES:

• To validate the principles studied in theory by performing experiments in the laboratory

LIST OF EXPERIMENTS

- 1. Load test on DC Shunt & DC Series motor
- 2. O.C.C & Load characteristics of DC Shunt and DC Series generator
- 3. Speed control of DC shunt motor (Armature, Field control)
- 4. Load test on single phase transformer
- 5. O.C & S.C Test on a single phase transformer
- 6. Regulation of an alternator by EMF & MMF methods.
- 7. V curves and inverted V curves of synchronous Motor
- 8. Load test on three phase squirrel cage Induction motor
- 9. Speed control of three phase slip ring Induction Motor
- 10. Load test on single phase Induction Motor.
- 11. Study of DC & AC Starters

OUTCOMES

- **TOTAL: 45 PERIODS**
- Ability to perform speed characteristic of different electrical machine

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	DC Shunt motor	2
2	DC Series motor	1
3	DC shunt motor-DC Shunt Generator set	1
4	DC Shunt motor-DC Series Generator set	1

6Three phase alternator27Three phase synchronous motor18Three phase Squirrel cage Induction motor19Three phase Slip ring Induction motor110Single phase Induction motor1	5	Single phase transformer	2
8Three phase Squirrel cage Induction motor19Three phase Slip ring Induction motor1	6	Three phase alternator	2
9 Three phase Slip ring Induction motor 1	7	Three phase synchronous motor	1
	8	Three phase Squirrel cage Induction motor	1
10 Single phase Induction motor 1	9	Three phase Slip ring Induction motor	1
	10	Single phase Induction motor	1

MA6452 STATISTICS AND NUMERICAL METHODS

OBJECTIVES:

This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

TESTING OF HYPOTHESIS UNIT I

Large sample test based on Normal distribution for single mean and difference of means - Tests based on t. t² and F distributions for testing means and variances – Contingency table (Test for Independency) - Goodness of fit.

UNIT II DESIGN OF EXPERIMENTS

One way and two way classifications - Completely randomized design - Randomized block design -Latin square design - 2^2 factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Newton Raphson method – Gauss elimination method – pivoting – Gauss Jordan methods – Iterative methods of Gauss Jacobi and Gauss Seidel - Matrix inversion by Gauss Jordan method - Eigen values of a matrix by power method.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL **INTEGRATION**

Lagrange's and Newton's divided difference interpolations - Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9+3

Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order equations - Milne's predictor corrector methods for solving first order equations - Finite difference methods for solving second order equations.

OUTCOMES

It helps the students to have a clear perception of the power of statistical and numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.

TEXT BOOKS

- Johnson. R.A., and Gupta. C.B., "Miller and Freund's Probability and Statistics for Engineers", 1. 11th Edition, Pearson Education, Asia, 2011.
- Grewal. B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 9th Edition, 2. Khanna Publishers, New Delhi, 2007.

9+3

TOTAL (L:45+T:15): 60 PERIODS

9+3

9+3

9+3

LTPC 3104

REFERENCES

- 1. Walpole. R.E., Myers. R.H., Myers. S.L., and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007.
- 2. Spiegel. M.R., Schiller. J., and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 2004.
- 3. Chapra. S.C., and Canale. R.P, "Numerical Methods for Engineers", 5th Edition, Tata McGraw Hill, New Delhi, 2007.
- 4. Gerald. C.F., and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.

ME6401

KINEMATICS OF MACHINERY

LT P C 3 0 0 3

OBJECTIVES:

- To understand the basic components and layout of linkages in the assembly of a system / machine.
- To understand the principles in analyzing the assembly with respect to the displacement, velocity, and acceleration at any point in a link of a mechanism.
- To understand the motion resulting from a specified set of linkages, design few linkage mechanisms and cam mechanisms for specified output motions.
- To understand the basic concepts of toothed gearing and kinematics of gear trains and the effects of friction in motion transmission and in machine components.

UNIT I BASICS OF MECHANISMS

Classification of mechanisms – Basic kinematic concepts and definitions – Degree of freedom, Mobility – Kutzbach criterion, Gruebler's criterion – Grashof's Law – Kinematic inversions of four-bar chain and slider crank chains – Limit positions – Mechanical advantage – Transmission Angle – Description of some common mechanisms – Quick return mechanisms, Straight line generators, Universal Joint – rocker mechanisms.

UNIT II KINEMATICS OF LINKAGE MECHANISMS

Displacement, velocity and acceleration analysis of simple mechanisms – Graphical method– Velocity and acceleration polygons – Velocity analysis using instantaneous centres – kinematic analysis of simple mechanisms – Coincident points – Coriolis component of Acceleration – Introduction to linkage synthesis problem.

UNIT III KINEMATICS OF CAM MECHANISMS

Classification of cams and followers – Terminology and definitions – Displacement diagrams –Uniform velocity, parabolic, simple harmonic and cycloidal motions – Derivatives of follower motions – Layout of plate cam profiles – Specified contour cams – Circular arc and tangent cams – Pressure angle and undercutting – sizing of cams.

UNIT IV GEARS AND GEAR TRAINS

Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions –Gear tooth action – contact ratio – Interference and undercutting. Helical, Bevel, Worm, Rack and Pinion gears [Basics only]. Gear trains – Speed ratio, train value – Parallel axis gear trains – Epicyclic Gear Trains.

9

9

9

UNIT V FRICTION IN MACHINE ELEMENTS

Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads –Bearings and lubrication – Friction clutches – Belt and rope drives – Friction in brakes- Band and Block brakes. **TOTAL: 45 PERIODS**

OUTCOMES:

• Upon completion of this course, the students can able to apply fundamentals of mechanism for the design of new mechanisms and analyse them for optimum design.

TEXT BOOKS:

- 1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 3rd Edition, Oxford University Press, 2009.
- 2. Rattan, S.S, "Theory of Machines", 3rd Edition, Tata McGraw-Hill, 2009.

REFERENCES:

- 1. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.
- 2. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2005
- 3. Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2009.
- 4. Allen S. Hall Jr., "Kinematics and Linkage Design", Prentice Hall, 1961
- 5. Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", Affiliated East-West Pvt. Ltd., New Delhi, 1988.
- 6. Rao.J.S. and Dukkipati.R.V. "Mechanisms and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.
- 7. John Hannah and Stephens R.C., "Mechanics of Machines", Viva Low-Prices Student Edition, 1999.
- 8. Ramamurthi. V, "Mechanics of Machines", Narosa Publishing House, 2002.
- 9. Khurmi, R.S., "Theory of Machines", 14th Edition, S Chand Publications, 2005
- 10. Sadhu Sigh : Theory of Machines, "Kinematics of Machine", Third Edition, Pearson Education, 2012

ME6402 MANUFACTURING TECHNOLOGY – II L T P C

OBJECTIVES:

- To understand the concept and basic mechanics of metal cutting, working of standard machine tools such as lathe, shaping and allied machines, milling, drilling and allied machines, grinding and allied machines and broaching.
- To understand the basic concepts of Computer Numerical Control (CNC) of machine tools and CNC Programming

UNIT I THEORY OF METAL CUTTING

Mechanics of chip formation, single point cutting tool, forces in machining, Types of chip, cutting tools – nomenclature, orthogonal metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.

UNIT II TURNING MACHINES

Centre lathe, constructional features, specification, operations – taper turning methods, thread cutting methods, special attachments, machining time and power estimation. Capstan and turret lathes- tool layout – automatic lathes: semi automatic – single spindle : Swiss type, automatic screw type – multi spindle:

9 Ic

3 0 0 3

UNIT V **CNC MACHINING**

Numerical Control (NC) machine tools - CNC types, constructional details, special features, machining centre, part programming fundamentals CNC - manual part programming micromachining - wafer machining

OUTCOMES:

Upon completion of this course, the students can able to understand and compare the functions and applications of different metal cutting tools and also demonstrate the programming in CNC machining.

TEXT BOOKS:

- Hajra Choudhury, "Elements of Workshop Technology", Vol.II., Media Promoters 1.
- 2. Rao. P.N "Manufacturing Technology - Metal Cutting and Machine Tools", Tata McGraw-Hill, New Delhi, 2003.

REFERENCES:

- Richerd R Kibbe, John E. Neely, Roland O. Merges and Warren J.White "Machine Tool 1. Practices", Prentice Hall of India, 1998
- 2. HMT, "Production Technology", Tata McGraw Hill, 1998.
- 3. Geofrey Boothroyd, "Fundamentals of Metal Machining and Machine Tools", Mc Graw Hill, 1984
- 4. Roy. A.Lindberg, "Process and Materials of Manufacture," Fourth Edition, PHI/Pearson Education 2006.

ME6403 ENGINEERING MATERIALS AND METALLURGY

OBJECTIVES:

To impart knowledge on the structure, properties, treatment, testing and applications of metals and non-metallic materials so as to identify and select suitable materials for various engineering applications.

UNIT I ALLOYS AND PHASE DIAGRAMS

Constitution of alloys - Solid solutions, substitutional and interstitial - phase diagrams, Isomorphous, eutectic, eutectoid, peritectic, and peritectoid reactions, Iron - carbon equilibrium diagram. Classification of steel and cast Iron microstructure, properties and application.

UNIT II HEAT TREATMENT

Definition - Full annealing, stress relief, recrystallisation and spheroidising - normalising, hardening and Tempering of steel. Isothermal transformation diagrams - cooling curves superimposed on I.T.

UNIT III SHAPER, MILLING AND GEAR CUTTING MACHINES

Shaper - Types of operations. Drilling ,reaming, boring, Tapping. Milling operations-types of milling cutter. Gear cutting – forming and generation principle and construction of gear milling hobbing and gear shaping processes -finishing of gears.

UNIT IV ABRASIVE PROCESS AND BROACHING

Abrasive processes: grinding wheel - specifications and selection, types of grinding processcylindrical grinding, surface grinding, centreless grinding and internal grinding- Typical applications concepts of surface integrity, broaching machines: broach construction - push, pull, surface and continuous broaching machines

9

9

9

TOTAL: 45 PERIODS

9

10

LTPC 3 0 0 3 diagram CCR – Hardenability, Jominy end quench test - Austempering, martempering – case hardening, carburizing, Nitriding, cyaniding, carbonitriding – Flame and Induction hardening – Vacuum and Plasma hardening.

UNIT III FERROUS AND NON-FERROUS METALS

Effect of alloying additions on steel- and stabilisers– stainless and tool steels – HSLA, Maraging steels – Cast Iron - Grey, white, malleable, spheroidal – alloy cast irons, Copper and copper alloys – Brass, Bronze and Cupronickel – Aluminium and Al-Cu – precipitation strengthening treatment – Bearing alloys, Mg-alloys, Ni-based super alloys and Titanium alloys.

UNIT IV NON-METALLIC MATERIALS

Polymers – types of polymer, commodity and engineering polymers – Properties and applications of various thermosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET,PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE, Polymers – Urea and Phenol formaldehydes)- Engineering Ceramics – Properties and applications of Al₂O₃, SiC, Si₃N₄, PSZ and SIALON –Composites-Classifications- Metal Matrix and FRP - Applications of Composites.

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS

Mechanisms of plastic deformation, slip and twinning – Types of fracture – Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), hardness tests, Impact test Izod and charpy, fatigue and creep failure mechanisms.

OUTCOMES:

Upon completion of this course, the students can able to apply the different materials, their processing, heat treatments in suitable application in mechanical engineering fields.

TEXT BOOKS:

- 1. Avner, S.H., "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1994.
- 2. Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, Revised Indian Edition 2007

REFERENCES:

- 1. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt. Ltd., 1999.
- 2. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint 2002.
- 3. Upadhyay. G.S. and Anish Upadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd., New Delhi, 2006.
- 4. U.C.Jindal : Material Science and Metallurgy, "Engineering Materials and Metallurgy", First Edition, Dorling Kindersley, 2012

GE6351 ENVIRONMENTAL SCIENCE AND ENGINEERING

OBJECTIVES:

To the study of nature and the facts about environment.

- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.

9

9

8

TOTAL : 45 PERIODS

L T P C 3 0 0 3

- To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry-Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere formation of smog, PAN, acid rain, oxygen and ozone chemistry;- Mitigation procedures- Control of particulate and gaseous emission, Control of SO₂, NO_X, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins –Biochemical degradation of pollutants, Bioconversion of pollutants. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organization-environmental ethics: Issues and possible solutions – 12 Principles of green chemistry- nuclear

10

7

12

accidents and holocaust, case studies. – wasteland reclamation – consumerism and waste products – environment production act – Air act – Water act – Wildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labeling of environmentally friendly products (Ecomark). enforcement machinery involved in environmental legislation- central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides. Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare –Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology in environment and human health – Case studies.

OUTCOMES:

TOTAL: 45 PERIODS

L T P C 3 0 0 3

8

6

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS :

- 1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 2nd edition, Pearson Education, 2004.
- 2. Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, 2006.

REFERENCES:

- 1. Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. I and II, Enviro Media, 3rd edition, BPB publications, 2010.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press, 2005.

ME6404

THERMAL ENGINEERING

OBJECTIVES:

- To integrate the concepts, laws and methodologies from the first course in thermodynamics into analysis of cyclic processes
- To apply the thermodynamic concepts into various thermal application like IC engines, Steam Turbines, Compressors and Refrigeration and Air conditioning systems

(Use of standard refrigerant property data book, Steam Tables, Mollier diagram and Psychrometric chart permitted)

UNIT I GAS POWER CYCLES

Otto, Diesel, Dual, Brayton cycles, Calculation of mean effective pressure, and air standard efficiency - Comparison of cycles.

UNIT II INTERNAL COMBUSTION ENGINES

Classification - Components and their function. Valve timing diagram and port timing diagram - actual and theoretical p-V diagram of four stroke and two stroke engines. Simple and complete Carburettor. MPFI, Diesel pump and injector system. Battery and Magneto Ignition System - Principles of Combustion and knocking in SI and CI Engines. Lubrication and Cooling systems. Performance calculation.

UNIT III STEAM NOZZLES AND TURBINES

Flow of steam through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, supersaturated flow. Impulse and Reaction principles, compounding, velocity diagram for simple and multi-stage turbines, speed regulations –Governors.

UNIT IV AIR COMPRESSOR

Classification and working principle of various types of compressors, work of compression with and without clearance, Volumetric efficiency, Isothermal efficiency and Isentropic efficiency of reciprocating compressors, Multistage air compressor and inter cooling –work of multistage air compressor

UNIT V REFRIGERATION AND AIR CONDITIONING

Refrigerants - Vapour compression refrigeration cycle- super heat, sub cooling – Performance calculations - working principle of vapour absorption system, Ammonia –Water, Lithium bromide – water systems (Description only) . Air conditioning system - Processes, Types and Working Principles. - Concept of RSHF, GSHF, ESHF- Cooling Load calculations.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to apply the different gas power cycles and use of them in IC and R&AC applications.

TEXT BOOKS:

- 1. Rajput. R. K., "Thermal Engineering" S.Chand Publishers, 2000
- 2. Kothandaraman.C.P., Domkundwar. S,Domkundwar. A.V., "A course in thermal Engineering", Fifth Edition, "Dhanpat Rai & sons , 2002

REFERENCES:

- 1. Sarkar, B.K,"Thermal Engineering" Tata McGraw-Hill Publishers, 2007
- 2. Arora.C.P, "Refrigeration and Air Conditioning," Tata McGraw-Hill Publishers 1994
- 3. Ganesan V.." Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill 2007
- 4. Rudramoorthy, R, "Thermal Engineering ", Tata McGraw-Hill, New Delhi, 2003
- 5. Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.

ME6411 MANUFACTURING TECHNOLOGY LABORATORY – II

L T P C 0 0 3 2

OBJECTIVES:

• To Study and acquire knowledge on various basic machining operations in special purpose machines and its applications in real life manufacture of components in the industry

LIST OF EXPERIMENTS:

- 1. Contour milling using vertical milling machine
- 2. Spur gear cutting in milling machine
- 3. Helical Gear Cutting in milling machine

9

9

- 4. Gear generation in hobbing machine
- 5. Gear generation in gear shaping machine
- 6. Plain Surface grinding
- 7. Cylindrical grinding
- 8. Tool angle grinding with tool and Cutter Grinder
- 9. Measurement of cutting forces in Milling / Turning Process
- 10. CNC Part Programming.

OUTCOMES:

- Ability to use different machine tools to manufacturing gears.
- Ability to use different machine tools for finishing operations
- Ability to manufacture tools using cutter grinder
- Develop CNC part programming

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

TOTAL: 45 PERIODS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Turret and Capstan Lathes	1 No each
2	Horizontal Milling Machine	2 No
3	Vertical Milling Machine	1 No
4	Surface Grinding Machine	1 No.
5	Cylinderical Grinding Machine	1 No.
6	Radial Drilling Machine	1 No.
7	lathe Tool Dynamometer	1 No
8	Milling Tool Dynamometer	1 No
9	Gear Hobbing Machine	1 No
10	Tool Makers Microscope	1 No
11	CNC Lathe	1 No
12	CNC Milling machine	1 No
13	Gear Shaping machine	1 No
14	Centerless grinding machine	1 No
15	Tool and cutter grinder	1 No

ME6412	THERMAL ENGINEERING LABORATORY – I	L T P C 0 0 3 2
• To	VES: study the value timing-V diagram and performance of IC Engines Study the characteristics of fuels/Lubricates used in IC Engines study the Performance of steam generator/ turbine	
I.C. ENGI 1. Valve T 2. Actual p	EXPERIMENTS NE LAB Timing and Port Timing diagrams. p-v diagrams of IC engines. Thance Test on 4 – stroke Diesel Engine.	30

4. Heat Balance Test on 4 – stroke Diesel Engine.

- 5. Morse Test on Multi-cylinder Petrol Engine.
- 7. Retardation Test on a Diesel Engine.
- 8. Determination of Flash Point and Fire Point of various fuels / lubricants.

STEAM LAB

- 1. Study on Steam Generators and Turbines.
- 2. Performance and Energy Balance Test on a Steam Generator.
- 3. Performance and Energy Balance Test on Steam Turbine.

OUTCOMES:

Ability to conduct experiment on IC engine to study the characteristic and performance of IC design/ steam turbines.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	I.C Engine – 2 stroke and 4 stroke model	1 set
2	Apparatus for Flash and Fire Point	1 No.
3	4-stroke Diesel Engine with mechanical loading.	1 No
4	4-stroke Diesel Engine with hydraulic loading.	1 No.
5	4-stroke Diesel Engine with electrical loading.	1 No.
6	Multi-cylinder Petrol Engine	1 No.
7	Single cylinder Petrol Engine	1 No.
8	Data Acquisition system with any one of the above engines	1 No.
9	Steam Boiler with turbine setup	1 No.

CE6315 STRENGTH OF MATERIALS LABORATORY

OBJECTIVES

To supplement the theoretical knowledge gained in Mechanics of Solids with practical testing for determining the strength of materials under externally applied loads. This would enable the student to have a clear understanding of the design for strength and stiffness

LIST OF EXPERIMENTS

- 1. Tension test on a mild steel rod
- 2. Double shear test on Mild steel and Aluminium rods
- 3. Torsion test on mild steel rod
- 4. Impact test on metal specimen
- 5. Hardness test on metals Brinnell and Rockwell Hardness Number
- 6. Deflection test on beams
- 7. Compression test on helical springs
- 8. Strain Measurement using Rosette strain gauge
- 9. Effect of hardening- Improvement in hardness and impact resistance of steels.
- 10. Tempering- Improvement Mechanical properties Comparison
- (i) Unhardened specimen
- (ii) Quenched Specimen and
- (iii) Quenched and tempered specimen.
- 11. Microscopic Examination of
- (i) Hardened samples and
- (ii) Hardened and tempered samples.

TOTAL: 45 PERIODS

15

TOTAL: 45 PERIODS

LTPC

OUTCOMES:

- Ability to perform different destructive testing
- Ability to characteristic materials

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Universal Tensile Testing machine with double 1 shear attachment -	1
	40 Ton Capacity	
2	Torsion Testing Machine (60 NM Capacity)	1
3	Impact Testing Machine (300 J Capacity)	1
4	Brinell Hardness Testing Machine	1
5	Rockwell Hardness Testing Machine	1
6	Spring Testing Machine for tensile and compressive loads (2500 N)	1
7	Metallurgical Microscopes	3
8	Muffle Furnace (800 C)	1

ME6501	COMPUTER AIDED DESIGN	LTPC
		2002

OBJECTIVES:

• To provide an overview of how computers are being used in mechanical component design

UNIT I FUNDAMENTALS OF COMPUTER GRAPHICS

Product cycle- Design process- sequential and concurrent engineering- Computer aided design – CAD system architecture- Computer graphics – co-ordinate systems- 2D and 3D transformations-homogeneous coordinates - Line drawing -Clipping- viewing transformation

UNIT II GEOMETRIC MODELING

Representation of curves- Hermite curve- Bezier curve- B-spline curves-rational curves-Techniques for surface modeling – surface patch- Coons and bicubic patches- Bezier and B-spline surfaces. Solid modeling techniques- CSG and B-rep

UNIT III VISUAL REALISM

Hidden – Line-Surface-Solid removal algorithms – shading – colouring – computer animation.

UNIT IV ASSEMBLY OF PARTS

Assembly modelling – interferences of positions and orientation – tolerance analysis-massproperty calculations – mechanism simulation and interference checking.

UNIT V CAD STANDARDS

Standards for computer graphics- **Graphical Kernel System** (GKS) - standards for exchangeimages-**Open G**raphics Library **(OpenGL)** - Data exchange standards - IGES, STEP, CALSetc. - communication standards.

OUTCOMES:

 Upon completion of this course, the students can able to use computer and CAD software's for modeling of mechanical components

TOTAL: 45 PERIODS

9

9

9

a

TEXT BOOKS:

1. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill Publishing Co.2007

REFERENCES:

- Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing 1. management "Second Edition, Pearson Education, 1999.
- 2. William M Neumann and Robert F.Sproul "Principles of Computer Graphics", McGraw Hill Book Co. Singapore, 1989.
- 3. Donald Hearn and M. Pauline Baker "Computer Graphics". Prentice Hall, Inc, 1992.
- Foley, Wan Dam, Feiner and Hughes "Computer graphics principles & practice" Pearson 4. Education - 2003.

ME6502

HEAT AND MASS TRANSFER

LTPC 3 0 0 3

OBJECTIVES:

- To understand the mechanisms of heat transfer under steady and transient conditions.
- To understand the concepts of heat transfer through extended surfaces. •
- To learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass transfer.

(Use of standard HMT data book permitted)

UNIT I CONDUCTION

General Differential equation of Heat Conduction- Cartesian and Polar Coordinates - One Dimensional Steady State Heat Conduction — plane and Composite Systems – Conduction with Internal Heat Generation - Extended Surfaces - Unsteady Heat Conduction - Lumped Analysis -Semi Infinite and Infinite Solids –Use of Heisler's charts.

UNIT II CONVECTION

Free and Forced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes .

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient - Fouling Factors -Analysis - LMTD method - NTU method.

UNIT IV RADIATION

Black Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation through gases.

UNIT V MASS TRANSFER

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion - Convective Mass Transfer - Momentum, Heat and Mass Transfer Analogy - Convective Mass Transfer Correlations.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students can able to understand and apply different heat • and mass transfer principles of different applications.

TEXT BOOK:

1. Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 2010

9

9

9

9

REFERENCE BOOKS:

- Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John 1. Wiley & Sons. 1998.
- 2. Venkateshan. S.P., "Heat Transfer", Ane Books, New Delhi, 2004.
- 3. Ghoshdastidar, P.S, "Heat Transfer", Oxford, 2004,
- Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 2002 4.
- Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000 5.
- Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994. 6.
- Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, 7. New Delhi, 1998.
- 8. Yadav, R., "Heat and Mass Transfer", Central Publishing House, 1995.
- 9. M.Thirumaleshwar: Fundamentals of Heat and Mass Transfer, "Heat and Mass Transfer", First Edition. Dorling Kinderslev. 2009

3 0 0 3

OBJECTIVES

- To familiarize the various steps involved in the Design Process
- To understand the principles involved in evaluating the shape and dimensions of a component . to satisfy functional and strength requirements.
- To learn to use standard practices and standard data
- To learn to use catalogues and standard machine components

(Use of P S G Design Data Book is permitted)

STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS UNIT I 10

Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers, fits and tolerances - Direct, Bending and torsional stress equations - Impact and shock loading - calculation of principle stresses for various load combinations, eccentric loading - curved beams - crane hook and 'C' frame- Factor of safety theories of failure - Design based on strength and stiffness - stress concentration - Design for variable loading.

UNIT II SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength, rigidity and critical speed - Keys, keyways and splines - Rigid and flexible couplings.

UNIT III **TEMPORARY AND PERMANENT JOINTS**

Threaded fastners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints – Welded joints, riveted joints for structures - theory of bonded joints.

UNIT IV ENERGY STORING ELEMENTS AND ENGINE COMPONENTS

Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting Rods and crank shafts.

UNIT V BEARINGS

Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, -- Selection of Rolling Contact bearings.

TOTAL: 45 PERIODS

8

9

9

OUTCOMES:

• Upon completion of this course, the students can able to successfully design machine components

TEXT BOOK:

- 1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

REFERENCES:

- 1. Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.
- 2. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005
- 3. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum's Outline), 2010
- 4. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.
- 5. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.
- 6. Ansel Ugural, "Mechanical Design An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
- 7. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2003.

ME6504 METROLOGY AND MEASUREMENTS L T P C 3 0 0 3

OBJECTIVES:

- To provide knowledge on various Metrological equipments available to measure the dimension of the components.
- To provide knowledge on the correct procedure to be adopted to measure the dimension of the components.

UNIT I .BASICS OF METROLOGY

Introduction to Metrology – Need – Elements – Work piece, Instruments – Persons – Environment – their effect on Precision and Accuracy – Errors – Errors in Measurements – Types – Control – Types of standards.

UNIT II LINEAR AND ANGULAR MEASUREMENTS

Linear Measuring Instruments – Evolution – Types – Classification – Limit gauges – gauge design – terminology – procedure – concepts of interchange ability and selective assembly – Angular measuring instruments – Types – Bevel protractor clinometers angle gauges, spirit levels sine bar – Angle alignment telescope – Autocollimator – Applications.

UNIT III ADVANCES IN METROLOGY

Basic concept of lasers Advantages of lasers – laser Interferometers – types – DC and AC Lasers interferometer – Applications – Straightness – Alignment. Basic concept of CMM – Types of CMM – Constructional features – Probes – Accessories – Software – Applications – Basic concepts of Machine Vision System – Element – Applications.

5 † _

10

UNIT IV FORM MEASUREMENT

Principles and Methods of straightness – Flatness measurement – Thread measurement, gear measurement, surface finish measurement, Roundness measurement – Applications.

UNIT V MEASUREMENT OF POWER, FLOW AND TEMPERATURE

Force, torque, power - mechanical, Pneumatic, Hydraulic and Electrical type. Flow measurement: Venturimeter, Orifice meter, rotameter, pitot tube – Temperature: bimetallic strip, thermocouples, electrical resistance thermometer – Reliability and Calibration – Readability and Reliability. TOTAL : 45 PERIODS

OUTCOMES:

• Upon completion of this course, the Students can demonstrate different measurement technologies and use of them in Industrial Components

TEXT BOOKS:

- 1. Jain R.K. "Engineering Metrology", Khanna Publishers, 2005.
- 2. Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2005.

REFERENCES:

- 1. Charles Reginald Shotbolt, "Metrology for Engineers", 5th edition, Cengage Learning EMEA,1990.
- 2. Backwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education , 2006.

ME6505

DYNAMICS OF MACHINES

OBJECTIVES:

- To understand the force-motion relationship in components subjected to external forces and analysis of standard mechanisms.
- To understand the undesirable effects of unbalances resulting from prescribed motions in mechanism.
- To understand the effect of Dynamics of undesirable vibrations.
- To understand the principles in mechanisms used for speed control and stability control.

UNIT I FORCE ANALYSIS

Dynamic force analysis – Inertia force and Inertia torque– D Alembert's principle –Dynamic Analysis in reciprocating engines – Gas forces – Inertia effect of connecting rod– Bearing loads – Crank shaft torque – Turning moment diagrams –Fly Wheels – Flywheels of punching presses- Dynamics of Camfollower mechanism.

UNIT II BALANCING

Static and dynamic balancing – Balancing of rotating masses – Balancing a single cylinder engine – Balancing of Multi-cylinder inline, V-engines – Partial balancing in engines – Balancing of linkages – Balancing machines-Field balancing of discs and rotors.

UNIT III SINGLE DEGREE FREE VIBRATION

Basic features of vibratory systems – Degrees of freedom – single degree of freedom – Free vibration – Equations of motion – Natural frequency – Types of Damping – Damped vibration– Torsional vibration of shaft – Critical speeds of shafts – Torsional vibration – Two and three rotor torsional systems.

10

8

9

9

LT P C 3 0 0 3

UNIT IV FORCED VIBRATION

Response of one degree freedom systems to periodic forcing – Harmonic disturbances –Disturbance caused by unbalance – Support motion –transmissibility – Vibration isolation vibration measurement.

UNIT V MECHANISM FOR CONTROL

Governors – Types – Centrifugal governors – Gravity controlled and spring controlled centrifugal governors – Characteristics – Effect of friction – Controlling force curves. Gyroscopes –Gyroscopic forces and torques – Gyroscopic stabilization – Gyroscopic effects in Automobiles, ships and airplanes.

OUTCOMES:

• Upon completion of this course, the Students can able to predict the force analysis in mechanical system and related vibration issues and can able to solve the problem

TEXT BOOK:

- 1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms" ,3rd Edition, Oxford University Press, 2009.
- 2. Rattan, S.S, "Theory of Machines", 3rd Edition, Tata McGraw-Hill, 2009

REFERENCES:

- 1. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.
- 2. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2005
- 3. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, 2nd Edition, 2007
- 4. Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2009.
- 5. Allen S. Hall Jr., "Kinematics and Linkage Design", Prentice Hall, 1961
- 6. Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", Affiliated East-West Pvt. Ltd., New Delhi, 1988.
- 7. Rao.J.S. and Dukkipati.R.V. "Mechanisms and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.
- 8. John Hannah and Stephens R.C., "Mechanics of Machines", Viva Low-Prices Student Edition, 1999.
- 9. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996
- 10. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "Theory of Vibration with Application", 5th edition, Pearson Education, 2011
- 11. V.Ramamurthi, "Mechanics of Machines", Narosa Publishing House, 2002.
- 12. Khurmi, R.S.,"Theory of Machines", 14th Edition, S Chand Publications, 2005.

GE6075 PROFESSIONAL ETHICS IN ENGINEERING L T P C

OBJECTIVES:

• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

9

TOTAL: 45 PERIODS

9

3 0 0 3

UNIT V **GLOBAL ISSUES**

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers - Consulting Engineers - Engineers as Expert Witnesses and Advisors -Moral Leadership –Code of Conduct – Corporate Social Responsibility

OUTCOMES:

Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society

TEXTBOOKS:

- Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 1. 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCES:

- Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004. 1.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2009
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- Edmund G Seebauer and Robert L Barry, "Fundametals of Ethics for Scientists and 4. Engineers", Oxford University Press, Oxford, 2001
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi 2013.
- World Community Service Centre, " Value Education", Vethathiri publications, Erode, 2011 6.

Web sources:

- 1. www.onlineethics.org
- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.org

ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of **Ethical Theories**

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation - Engineers as responsible Experimenters - Codes of Ethics -A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk -Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

UNIT II

9

9

8

TOTAL: 45 PERIODS

ME6511

DYNAMICS LABORATORY

TOTAL: 45 PERIODS

OBJECTIVES:

- To supplement the principles learnt in kinematics and Dynamics of Machinery.
- To understand how certain measuring devices are used for dynamic testing.

LIST OF EXPERIMENTS

- 1. a) Study of gear parameters.
- b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains.
- 2. a) Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms.
 - b) Kinematics of single and double universal joints.
- 3. a) Determination of Mass moment of inertia of Fly wheel and Axle system.
 - b) Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus.
 - c) Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
- 4. Motorized gyroscope Study of gyroscopic effect and couple.
- 5. Governor Determination of range sensitivity, effort etc., for Watts, Porter, Proell, and Hartnell Governors.
- 6. Cams Cam profile drawing, Motion curves and study of jump phenomenon
- 7. a) Single degree of freedom Spring Mass System Determination of natural
 - Frequency and verification of Laws of springs Damping coefficient determination. b) Multi degree freedom suspension system – Determination of influence coefficient.
- 8. a) Determination of torsional natural frequency of single and Double Rotor systems.-Undamped and Damped Natural frequencies.
 - b) Vibration Absorber Tuned vibration absorber.
- 9. Vibration of Equivalent Spring mass system undamped and damped vibration.
- 10. Whirling of shafts Determination of critical speeds of shafts with concentrated loads.
- 11. a) Balancing of rotating masses. (b) Balancing of reciprocating masses.
- 12. a) Transverse vibration of Free-Free beam with and without concentrated masses.
 - b) Forced Vibration of Cantilever beam Mode shapes and natural frequencies.
 - c) Determination of transmissibility ratio using vibrating table.

OUTCOME

- Ability to demonstrate the principles of kinematics and dynamics of machinery
- Ability to use the measuring devices for dynamic testing.

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Cam follower setup.	1 No.
2	Motorised gyroscope.	1 No.
3	Governor apparatus - Watt, Porter, Proell and Hartnell governors.	1 No.
4	Whirling of shaft apparatus.	1 No.
5	Dynamic balancing machine.	1 No.
6	Two rotor vibration setup.	1 No.
7	Spring mass vibration system.	1 No.
8	Torsional Vibration of single rotor system setup.	1 No.
9	Gear Models	1 No.
10	Kinematic Models to study various mechanisms.	1 No.
11	Turn table apparatus.	1 No.
12	Transverse vibration setup of	1 No.
	a) cantilever	

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

b) Free-Free beam	
c) Simply supported beam.	

ME6512 THERMAL ENGINEERING LABORATORY – II L T P C 0 0 3 2

OBJECTIVES

- To study the heat transfer phenomena predict the relevant coefficient using implementation
- To study the performance of refrigeration cycle / components

LIST OF EXPERIMENTS:

HEAT TRANSFER LAB:

- 1. Thermal conductivity measurement using guarded plate apparatus.
- 2. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.
- 3. Determination of heat transfer coefficient under natural convection from a vertical cylinder.
- 4. Determination of heat transfer coefficient under forced convection from a tube.
- 5. Determination of Thermal conductivity of composite wall.
- 6. Determination of Thermal conductivity of insulating powder.
- 7. Heat transfer from pin-fin apparatus (natural & forced convection modes)
- 8. Determination of Stefan Boltzmann constant.
- 9. Determination of emissivity of a grey surface.
- 10. Effectiveness of Parallel / counter flow heat exchanger.

REFRIGERATION AND AIR CONDITIONING LAB

- 1. Determination of COP of a refrigeration system
- 2. Experiments on Psychrometric processes
- 3. Performance test on a reciprocating air compressor
- 4. Performance test in a HC Refrigeration System
- 5. Performance test in a fluidized Bed Cooling Tower

OUTCOMES

 Ability to demonstrate the fundamentals of heat and predict the coefficient used in that transfer application and also design refrigeration cycle.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Guarded plate apparatus	1 No.
2	Lagged pipe apparatus	1 No.
3	Natural convection-vertical cylinder apparatus	1 No.
4	Forced convection inside tube apparatus	1 No.
5	Composite wall apparatus	1 No.
6	Thermal conductivity of insulating powder apparatus	1 No.
7	Pin-fin apparatus	1 No.
8	Stefan-Boltzmann apparatus	1 No.
9	Emissivity measurement apparatus	1 No.
10	Parallel/counter flow heat exchanger apparatus	1 No.

TOTAL: 45 PERIODS

30

11	Single/two stage reciprocating air compressor	1 No.
12	Refrigeration test rig	1 No.
13	Air-conditioning test rig	1 No.
14	HC Refrigeration System	1 No.
15.	Fluidized Bed Cooling Tower	1 No.

ME6513 METROLOGY AND MEASUREMENTS LABORATORY L T P C

OBJECTIVES

To familiar with different measurement equipments and use of this industry for quality inspection

LIST OF EXPERIMENTS

- 1. Tool Maker's Microscope
- 2. Comparator
- 3. Sine Bar
- 4. Gear Tooth Vernier Caliper
- 5. Floating gauge Micrometer
- 6. Co ordinate Measuring Machine
- 7. Surface Finish Measuring Equipment
- 8. Vernier Height Gauge
- 9. Bore diameter measurement using telescope gauge
- 10. Bore diameter measurement using micrometer
- 11. Force Measurement
- 12. Torque Measurement
- 13. Temperature measurement
- 14. Autocollimator

OUTCOMES

TOTAL: 45 PERIODS

0 0 3 2

• Ability to handle different measurement tools and perform measurements in quality impulsion

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Micrometer	5
2	Vernier Caliper	5
3	Vernier Height Gauge	2
4	Vernier depth Gauge	2
5	Slip Gauge Set	1
6	Gear Tooth Vernier	1
7	Sine Bar	1
8	Floating Carriage Micrometer	1
9	Profile Projector / Tool Makers Microscope	1
10	Parallel / counter flow heat exchanger apparatus	1
11	Mechanical / Electrical / Pneumatic Comparator	1
12	Autocollimator	1
13	Temperature Measuring Setup	1
14	Force Measuring Setup	1

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

15	Torque Measuring Setup	1
16	Coordinate measuring machine	1
17	Surface finish measuring equipment	1
18	Bore gauge	1
19	Telescope gauge	1

ME6601 **DESIGN OF TRANSMISSION SYSTEMS**

OBJECTIVES:

- To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
- To understand the standard procedure available for Design of Transmission of Mechanical elements
- To learn to use standard data and catalogues

(Use of P S G Design Data Book permitted)

DESIGN OF FLEXIBLE ELEMENTS UNIT I

Design of Flat belts and pulleys - Selection of V belts and pulleys - Selection of hoisting wire ropes and pulleys - Design of Transmission chains and Sprockets.

UNIT II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects – Fatigue strength - Factor of safety - Gear materials - Design of straight tooth spur & helical gears based on strength and wear considerations - Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces for helical gears.

UNIT III **BEVEL. WORM AND CROSS HELICAL GEARS**

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demeritsterminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.

UNIT IV **GEAR BOXES**

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box -Speed reducer unit. - Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT V CAMS, CLUTCHES AND BRAKES

Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches -axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes - external shoe brakes - Internal expanding shoe brake.

OUTCOMES:

Upon completion of this course, the students can able to successfully design transmission components used in Engine and machines

TOTAL: 45 PERIODS

9

9

9

9

LTPC 3 0 0 3

TEXT BOOKS:

- 1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

REFERENCES:

- 1. Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.
- 2. Gitin Maitra, L. Prasad "Hand book of Mechanical Design", 2nd Edition, Tata McGraw-Hill, 2001.
- 3. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.
- 4. C.S.Sharma, Kamlesh Purohit, "Design of Machine Elements", Prentice Hall of India, Pvt. Ltd., 2003.
- 5. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.
- 6. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005
- 7. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum's Outline), 2010
- 8. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.
- 9. Ansel Ugural, "Mechanical Design An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
- 10. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2003.
- 11. U.C.Jindal : Machine Design, "Design of Transmission System", Dorling Kindersley, 2010

MG6851

PRINCIPLES OF MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

• To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.

UNIT II PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

Nature and purpose - Formal and informal organization - organization chart - organization structure

9

9

62

- types - Line and staff authority - departmentalization - delegation of authority - centralization and decentralization - Job Design - Human Resource Management - HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

UNIT IV DIRECTING

Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – communication – process of communication – barrier in communication – effective communication – communication and IT.

UNIT V CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

OUTCOMES:

 Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

- 1. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.

REFERENCES:

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999

ME6602

AUTOMOBILE ENGINEERING

OBJECTIVES:

- To understand the construction and working principle of various parts of an automobile.
- To have the practice for assembling and dismantling of engine parts and transmission system

UNIT I VEHICLE STRUCTURE AND ENGINES

Types of automobiles, vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC engines –components-functions and materials, variable valve timing (VVT).

UNIT II ENGINE AUXILIARY SYSTEMS

Electronically controlled gasoline injection system for SI engines, Electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).

9

TOTAL: 45 PERIODS

9

L T P C 3 0 0 3

> 9 ~

To appreciate the use of FEM to a range of Engineering Problems.

To introduce the concepts of Mathematical Modeling of Engineering Problems.

FINITE ELEMENT ANALYSIS

UNIT I INTRODUCTION Historical Background - Mathematical Modeling of field problems in Engineering - Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – RitzTechnique – Basic concepts of the Finite Element Method.

STEERING, BRAKES AND SUSPENSION SYSTEMS

Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control.

UNIT V **ALTERNATIVE ENERGY SOURCES**

Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Use of Hydrogen in Automobiles- Engine modifications required –Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students. **TOTAL: 45 PERIODS**

OUTCOMES:

UNIT IV

- Upon completion of this course, the students will be able to identify the different components in automobile engineering.
- Have clear understanding on different auxiliary and transmission systems usual.

TEXT BOOKS:

- Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New 1. Delhi, 1997.
- 2. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.

REFERENCES:

ME6603

OBJECTIVES:

- Newton ,Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989. 1.
- 2. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good 3. heart -Will Cox Company Inc, USA ,1978.
- Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998. 4.
- Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007. 5.

63

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms. Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

UNIT III TRANSMISSION SYSTEMS

9

9

9

LTPC 3 0 0 3

ISOPARAMETRIC FORMULATION UNIT V Natural co-ordinate systems – Isoparametric elements – Shape functions for iso parametric elements - One and two dimensions - Serendipity elements - Numerical integration and application to plane stress problems - Matrix solution techniques - Solutions Techniques to Dynamic problems -Introduction to Analysis Software.

OUTCOMES:

Upon completion of this course, the students can able to understand different mathematical Techniques used in FEM analysis and use of them in Structural and thermal problem

TEXT BOOK:

- Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 1. 2005
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

REFERENCES:

- Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 1. 2004
- 2. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002
- Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and 3. Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.
- 4. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990
- Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons, 5. 2005 (Indian Reprint 2013)*

ME6604	GAS DYNAMICS AND JET PROPULSION	LTPC
		3 0 0 3
OBJECTIVES:		

64

UNIT II **ONE-DIMENSIONAL PROBLEMS**

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements - Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation –Transverse deflections and Natural frequencies of beams.

TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS UNIT III

Second Order 2D Equations involving Scalar Variable Functions - Variational formulation - Finite Element formulation - Triangular elements - Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems - Torsion of Non circular shafts - Quadrilateral elements – Higher Order Elements.

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity - Plane stress, plane strain and axisymmetric problems - Body forces and temperature effects – Stress calculations - Plate and shell elements.

TOTAL: 45 PERIODS

9

9

9

- To understand the basic difference between incompressible and compressible flow.
- To understand the phenomenon of shock waves and its effect on flow. To gain some basic knowledge about jet propulsion and Rocket Propulsion. (Use of Standard Gas Tables permitted)

UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers

UNIT II FLOW THROUGH DUCTS

Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties.

UNIT III NORMAL AND OBLIQUE SHOCKS

Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer relations – Applications.

UNIT IV JET PROPULSION

Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.

UNIT V SPACE PROPULSION

Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.

TOTAL: 45 PERIODS

6

9

10

10

10

OUTCOMES:

• Upon completion of this course, the students can able to successfully apply gas dynamics principles in the Jet and Space Propulsion

TEXT BOOKS:

- 1. Anderson, J.D., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2003.
- 2. Yahya, S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited, New Delhi, 1996.

REFERENCES:

- 1. Hill. P. and C. Peterson, "Mechanics and Thermodynamics of Propulsion", Addison Wesley Publishing company, 1992.
- 2. Zucrow. N.J., "Aircraft and Missile Propulsion", Vol.1 & II, John Wiley, 1975.
- 3. Zucrow. N.J., "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, 1970.
- 4. Sutton. G.P., "Rocket Propulsion Elements", John wiley, New York, 1986,.
- 5. Shapiro. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", John wiley, New York, 1953.
- 6. Ganesan. V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 1999.
- 7. Somasundaram. PR.S.L., "Gas Dynamics and Jet Propulsions", New Age International Publishers, 1996.
- 8. Babu. V., "Fundamentals of Gas Dynamics", ANE Books India, 2008.
- 9. Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group Ltd., 1980.

List of Experiments

LIST OF EXPERIMENTS

1. 3D GEOMETRIC MODELLING

1. Introduction of 3D Modelling software

• To study the features of CNC Machine Tool.

Creation of 3D assembly model of following machine elements using 3D Modelling software

- 2. Flange Coupling
- 3. Plummer Block
- 4. Screw Jack

ME6611

OBJECTIVES:

- 5. Lathe Tailstock
- 6. Universal Joint
- 7. Machine Vice
- 8. Stuffing box
- 9. Crosshead
- 10. Safety Valves
- 11. Non-return valves
- 12. Connecting rod
- 13. Piston
- 14. Crankshaft
- * Students may also be trained in manual drawing of some of the above components

2. Manual Part Programming.

- (i) Part Programming CNC Machining Centre
- a) Linear Cutting.
- b) Circular cutting.
- c) Cutter Radius Compensation.
- d) Canned Cycle Operations.
- (ii) Part Programming CNC Turning Centre
- a) Straight, Taper and Radius Turning.
- b) Thread Cutting.
- c) Rough and Finish Turning Cycle.
- d) Drilling and Tapping Cycle.

3. Computer Aided Part Programming

- e) CL Data and Post process generation using CAM packages.
- f) Application of CAPP in Machining and Turning Centre.

CAD / CAM LABORATORY

• To gain practical experience in handling 2D drafting and 3D modelling software systems.

To know the application of various CNC machines like CNC lathe, CNC Vertical Machining

• To expose students to modern control systems (Fanuc, Siemens etc.,)

centre, CNC EDM and CNC wire-cut and studying of Rapid prototyping.

0032

21 PERIODS

24 PERIODS

L T P C 0 0 3 2

OUTCOMES

- Ability to develop 2D and 3D models using modeling softwares.
- Ability to understand the CNC control in modern manufacturing system.
- Ability to prepare CNC part programming and perform manufacturing.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	Description of Equipment	Qty
HARD	HARDWARE	
1.	Computer Server	1
2.	Computer nodes or systems (High end CPU with atleast 1 GB main memory) networked to the server	30
3.	A3 size plotter	1
4.	Laser Printer	1
5.	CNC Lathe	1
6.	CNC milling machine	1
SOFT	VARE	
7.	Any High end integrated modeling and manufacturing CAD / CAM software	15 licenses
8.	CAM Software for machining centre and turning centre (CNC Programming and tool path simulation for FANUC / Sinumeric and Heidenhain controller)	15 licenses
9.	Licensed operating system	Adequate
10.	Support for CAPP	Adequate

ME6612

DESIGN AND FABRICATION PROJECT

L T P C 0 0 4 2

OBJECTIVES:

• The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

GUIDELINE FOR REVIEW AND EVALUATION

The students may be grouped into 2 to 4 and work under a project supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL : 60 PERIODS

OUTCOMES:

- Use of design principles and develop conceptual and engineering design of any components.
- Ability to fabricate any components using different manufacturing tools.

GE6674 COMMUNICATION AND SOFT SKILLS- LABORATORY BASED

OBJECTIVES:

To enable learners to,

- Develop their communicative competence in English with specific reference to speaking and listening
- Enhance their ability to communicate effectively in interviews.
- Strengthen their prospects of success in competitive examinations.

UNIT I LISTENING AND SPEAKING SKILLS

Conversational skills (formal and informal)- group discussion- making effective presentations using computers, listening/watching interviews conversations, documentaries. Listening to lectures, discussions from TV/ Radio/ Podcast.

UNIT II **READING AND WRITING SKILLS**

Reading different genres of tests ranging from newspapers to creative writing. Writing job applications- cover letter- resume- emails- letters- memos- reports. Writing abstracts- summariesinterpreting visual texts.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS

International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) - Civil Service(Language related)- Verbal Ability.

UNIT IV **INTERVIEW SKILLS**

Different types of Interview format- answering questions- offering information- mock interviews-body language(paralinguistic features)- articulation of sounds- intonation.

UNIT V SOFT SKILLS

Motivation- emotional intelligence-Multiple intelligences- emotional intelligence- managing changes-time management-stress management-leadership straits-team work- career planning intercultural communication- creative and critical thinking

TEACHING METHODS:

- 1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
- 2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
- 3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
- 4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
- 5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.

S. No.	. No. Description of Equipment (minimum configuration)	
1	Server	1 No.
	PIV System	
	• 1 GB RAM / 40 GB HDD	

Lab Infrastructure:

12

12

12

TOTAL: 60 PERIODS

12

LTPC 0 0 4 2

	OS: Win 2000 server	
	Audio card with headphones	
	• JRE 1.3	
2	Client Systems	60 Nos.
	PIII or above	
	 256 or 512 MB RAM / 40 GB HDD 	
	OS: Win 2000	
	Audio card with headphones	
	• JRE 1.3	
3	Handicam	1 No.
4	Television 46"	1 No.
5	Collar mike	1 No.
6	Cordless mike	1 No.
7	Audio Mixer	1 No.
8	DVD recorder/player	1 No.
9	LCD Projector with MP3/CD/DVD provision for	1 No.
	Audio/video facility	

Evaluation:

Internal: 20 marks

Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

External: 80 marks

Online Test	- 35 marks
Interview	- 15 marks
Presentation	- 15 marks
Group Discussion	- 15 marks

Note on Internal and External Evaluation:

1. Interview – mock interview can be conducted on one-on-one basis.

- 2. Speaking example for role play:
 - a. Marketing engineer convincing a customer to buy his product.
 - b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
- 3. Presentation should be extempore on simple topics.
- 4. Discussion topics of different kinds; general topics, and case studies.

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD-ROM), Times Multimedia, Mumbai.

6. Robert M Sherfield and et al. "Developing Soft Skills" 4th edition, New Delhi: Pearson Education, 2009.

Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion http://www.washington.edu/doit/TeamN/present_tips.html http://www.oxforddictionaries.com/words/writing-job-applications http://www.kent.ac.uk/careers/cv/coveringletters.htm http://www.mindtools.com/pages/article/newCDV_34.htm

ME6701 POWER PLANT ENGINEERING L T P C 3 0 0 3

OBJECTIVES:

Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

UNIT I COAL BASED THERMAL POWER PLANTS

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

UNIT III NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium-Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

UNIT IV POWER FROM RENEWABLE ENERGY

Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, *Solar* Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

TOTAL: 45 PERIODS

10

10

7

10

8

OUTCOMES:

- Upon completion of this course, the students can able to understand different types of power plant, and its functions and their flow lines and issues related to them.
- Analyse and solve energy and economic related issues in power sectors.

TEXT BOOK:

Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company 1. Ltd., 2008.

REFERENCES:

- EI-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 1. 2010.
- 2. Black & Veatch, Springer, "Power Plant Engineering", 1996.
- Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second 3. Edition, Standard Handbook of McGraw - Hill, 1998.
- 4. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.

ME6702

MECHATRONICS

OBJECTIVES:

To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation.

UNIT I INTRODUCTION

Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics - Emerging areas of Mechatronics - Classification of Mechatronics. Sensors and Transducers: Static and dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance sensors - Strain gauges - Eddy current sensor - Hall effect sensor - Temperature sensors - Light sensors

UNIT II 8085 MICROPROCESSOR AND 8051 MICROCONTROLLER

Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes – Instruction set, Timing diagram of 8085 - Concepts of 8051 microcontroller - Block diagram,.

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE

Introduction – Architecture of 8255, Keyboard interfacing, LED display –interfacing, ADC and DAC interface, Temperature Control – Stepper Motor Control – Traffic Control interface.

UNIT IV PROGRAMMABLE LOGIC CONTROLLER

Introduction – Basic structure – Input and output processing – Programming – Mnemonics – Timers, counters and internal relays - Data handling - Selection of PLC.

UNIT V ACTUATORS AND MECHATRONIC SYSTEM DESIGN

Types of Stepper and Servo motors - Construction - Working Principle - Advantages and Disadvantages. Design process-stages of design process - Traditional and Mechatronics design concepts - Case studies of Mechatronics systems - Pick and place Robot - Engine Management system – Automatic car park barrier.

OUTCOMES:

Upon completion of this course, the students can able to design mechatronics system with the help of Microprocessor, PLC and other electrical and Electronics Circuits.

TEXT BOOKS:

TOTAL: 45 PERIODS

10

12

LTPC 3 0 0 3

8

7

- 1. Bolton, "Mechatronics", Printice Hall, 2008
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice Hall, 2008.

REFERENCES:

- 1. Michael B.Histand and Davis G.Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International edition, 2007.
- 2. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.
- 3. Smaili.A and Mrad.F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.
- 4. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company, 2007.
- 5. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007.
- 6. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013

ME6703 COMPUTER INTEGRATED MANUFACTURING SYSTEMS L T P C 3 0 0 3

OBJECTIVES:

• To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.

UNIT I INTRODUCTION

Brief introduction to CAD and CAM – Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM – Concurrent Engineering-CIM concepts – Computerised elements of CIM system –Types of production - Manufacturing models and Metrics – Mathematical models of Production Performance – Simple problems – Manufacturing Control – Simple Problems – Basic Elements of an Automated system – Levels of Automation – Lean Production and Just-In-Time Production.

UNIT II PRODUCTION PLANNING AND CONTROL AND COMPUTERISED PROCESS PLANNING

Process planning – Computer Aided Process Planning (CAPP) – Logical steps in Computer Aided Process Planning – Aggregate Production Planning and the Master Production Schedule – Material Requirement planning – Capacity Planning- Control Systems-Shop Floor Control-Inventory Control – Brief on Manufacturing Resource Planning-II (MRP-II) & Enterprise Resource Planning (ERP) - Simple Problems.

UNIT III CELLULAR MANUFACTURING

Group Technology(GT), Part Families – Parts Classification and coding – Simple Problems in Opitz Part Coding system – Production flow Analysis – Cellular Manufacturing – Composite part concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing – Rank Order Clustering Method - Arranging Machines in a GT cell – Hollier Method – Simple Problems.

UNIT IV FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AUTOMATED

10

9

GUIDED VEHICLE SYSTEM (AGVS)

Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and Control- Quantitative analysis in FMS - Simple Problems, Automated Guided Vehicle System (AGVS) – AGVS Application – Vehicle Guidance technology – Vehicle Management & Safety.

UNIT V **INDUSTRIAL ROBOTICS**

Robot Anatomy and Related Attributes - Classification of Robots- Robot Control systems - End Effectors - Sensors in Robotics - Robot Accuracy and Repeatability - Industrial Robot Applications -Robot Part Programming - Robot Accuracy and Repeatability - Simple Problems. **TOTAL: 45 PERIODS**

OUTCOMES:

Upon completion of this course, the student can able to understand the use of computers in process planning and use of FMS and Robotics in CIM

TEXT BOOK:

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.
- 2. Radhakrishnan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

REFERENCES:

- 1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003.
- 2. Gideon Halevi and Roland Weill, "Principles of Process Planning – A Logical Approach" Chapman & Hall, London, 1995.
- 3. Rao. P, N Tewari & T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill Publishing Company, 2000.

GE6757 TOTAL QUALITY MANAGEMENT LTPC

OBJECTIVES:

To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Costs of quality.

UNIT II **TQM PRINCIPLES**

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types. 9

UNIT IV **TQM TOOLS AND TECHNIQUES II**

9

3 0 0 3

8

8

9

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY SYSTEMS

Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation, Quality Auditing - QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors.

OUTCOMES:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

1. Dale H. Besterfiled, et at., "Total quality Management", Third Edition, Pearson Education Asia, Indian Reprint, 2006.

REFERENCES:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

ME6711 SIMULATION AND ANALYSIS LABORATORY L T P C

OBJECTIVES:

- To give exposure to software tools needed to analyze engineering problems.
- To expose the students to different applications of simulation and analysis tools.

LIST OF EXPERIMENTS

A. SIMULATION

- 1. MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables
- 2. Use of Matlab to solve simple problems in vibration
- 3. Mechanism Simulation using Multibody Dynamic software

B. ANALYSIS

- 1. Force and Stress analysis using link elements in Trusses, cables etc.
- 2. Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates and simple shells.
- 4. Stress analysis of axi symmetric components.
- 5. Thermal stress and heat transfer analysis of plates.
- 6. Thermal stress analysis of cylindrical shells.
- 7. Vibration analysis of spring-mass systems.
- 8. Model analysis of Beams.
- 9. Harmonic, transient and spectrum analysis of simple systems.

TOTAL: 45 PERIODS

OUTCOMES:

9

0032

TOTAL: 45 PERIODS

• Upon completion of this course, the Students can model, analyse and simulate experiments to meet real world system and evaluate the performance.

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Computer Work Station	15
2	Color Desk Jet Printer	01
3	Multibody Dynamic Software Suitable for Mechanism simulation and analysis	15 licenses
4	C / MATLAB	5 licenses

ME6712	MECHATRONICS LABORATORY	LTPC

OBJECTIVES:

• To know the method of programming the microprocessor and also the design, modeling & analysis of basic electrical, hydraulic & pneumatic Systems which enable the students to understand the concept of mechatronics.

LIST OF EXPERIMENTS:

1. Assembly language programming of 8085 – Addition – Subtraction – Multiplication – Division – Sorting – Code Conversion.

- 2. Stepper motor interface.
- 3. Traffic light interface.
- 4. Speed control of DC motor.
- 5. Study of various types of transducers.
- 6. Study of hydraulic, pneumatic and electro-pneumatic circuits.
- 7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using Software.
- 8. Study of PLC and its applications.
- 9. Study of image processing technique.

OUTCOMES:

TOTAL : 45 PERIODS

0032

 Upon completion of this course, the students can able to design mechatronics system with the help of Microprocessor, PLC and other electrical and Electronics Circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	NAME OF THE EQUIPMENT	Qty.
1	Basic Pneumatic Trainer Kit with manual and electrical	1 No.
	controls/ PLC Control each	
2	Basic Hydraulic Trainer Kit	1 No
3	Hydraulics and Pneumatics Systems Simulation Software	10 No
4	8051 - Microcontroller kit with stepper motor and drive	2 No
	circuit sets	
	Image processing system with hardware & software	1 No.

COMPREHENSION

To encourage the students to comprehend the knowledge acquired from the first Semester to • Sixth Semester of B.E Degree Course through periodic exercise.

METHOD OF EVALUATION:

The students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics **TOTAL: 30 PERIODS**

OUTCOMES:

OBJECTIVES:

• ability to understand and comprehend any given problem related to mechanical engineering field.

MG6863

OBJECTIVES:

To enable students to understand the fundamental economic concepts applicable to • engineering and to learn the techniques of incorporating inflation factor in economic decision making.

ENGINEERING ECONOMICS

UNIT I INTRODUCTION TO ECONOMICS

Introduction to Economics- Flow in an economy, Law of supply and demand, Concept of Engineering Economics - Engineering efficiency, Economic efficiency, Scope of engineering economics - Element of costs, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost, Break-even analysis - V ratio, Elementary economic Analysis - Material selection for product Design selection for a product, Process planning.

UNIT II VALUE ENGINEERING

Make or buy decision, Value engineering - Function, aims, Value engineering procedure. Interest formulae and their applications -Time value of money, Single payment compound amount factor, Single payment present worth factor, Equal payment series sinking fund factor, Equal payment series payment Present worth factor- equal payment series capital recovery factor - Uniform gradient series annual equivalent factor, Effective interest rate, Examples in all the methods.

UNIT III **CASH FLOW**

Methods of comparison of alternatives - present worth method (Revenue dominated cash flow diagram), Future worth method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), Annual equivalent method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), rate of return method, Examples in all the methods.

UNIT IV **REPLACEMENT AND MAINTENANCE ANALYSIS**

Replacement and Maintenance analysis - Types of maintenance, types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset - capital recovery with return and concept of challenger and defender, Simple probabilistic model for items which fail completely.

UNIT V DEPRECIATION

LTPC 3003

9

10

8

9

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation/ Annuity method of depreciation, service output method of depreciation-Evaluation of public alternatives- introduction, Examples, Inflation adjusted decisions – procedure to adjust inflation, Examples on comparison of alternatives and determination of economic life of asset.

OUTCOMES :

TOTAL: 45 PERIODS

• Upon successful completion of this course, students will acquire the skills to apply the basics of economics and cost analysis to engineering and take economically sound decisions.

TEXT BOOKS:

1. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.

REFERENCES:

- 1. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2011.
- 2. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2010.
- 3. Degarmo, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economy", Macmillan, New York, 2011.
- 4. Zahid A khan: Engineering Economy, "Engineering Economy", Dorling Kindersley, 2012

ME6811

PROJECT WORK

L T P C 0 0 12 6

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

TOTAL: 180 PERIODS

OBJECTIVES:

To enable students to deal with newer concepts of marketing concepts like strategic marketing segmentation, pricing, advertisement and strategic formulation. The course will enable a student to take up marketing as a professional career.

UNIT I MARKETING PROCESS

Definition, Marketing process, dynamics, needs, wants and demands, marketing concepts, environment, mix, types. Philosophies, selling versus marketing, organizations, industrial versus consumer marketing, consumer goods, industrial goods, product hierarchy.

UNIT II **BUYING BEHAVIOUR AND MARKET SEGMENTATION**

Cultural, demographic factors, motives, types, buying decisions, segmentation factors - demographic -Psycho graphic and geographic segmentation, process, patterns.

UNIT III PRODUCT PRICING AND MARKETING RESEARCH

Objectives, pricing, decisions and pricing methods, pricing management. Introduction, uses, process of marketing research.

UNIT IV MARKETING PLANNING AND STRATEGY FORMULATION

Components of marketing plan-strategy formulations and the marketing process, implementations, portfolio analysis, BCG, GEC grids.

UNIT V ADVERTISING, SALES PROMOTION AND DISTRIBUTION

Characteristics, impact, goals, types, and sales promotions - point of purchase - unique selling proposition. Characteristics, wholesaling, retailing, channel design, logistics, and modern trends in retailing, Modern Trends, e-Marketing. **TOTAL: 45 PERIODS**

OUTCOMES:

The learning skills of Marketing will enhance the knowledge about Marketer's Practices and create insights on Advertising, Branding, Retailing and Marketing Research.

TEXT BOOKS:

- Philip Kolter & Keller, "Marketing Management", Prentice Hall of India, 14th edition, 2012. 1.
- Chandrasekar. K.S., "Marketing Management Text and Cases", 1st Edition, Tata McGraw Hill -2. Vijaynicole, 2010.

REFERENCES:

- Ramasamy and Nama kumari, "Marketing Environment: Planning, implementation and control 1. the Indian context", 1990.
- 2. Czinkota&Kotabe, "Marketing management", Thomson learning, Indian edition 2007
- Adrain palmer. "Introduction to marketing theory and practice". Oxford university press IE 3. 2004.
- 4. Donald S. Tull and Hawkins, "Marketing Reasearch", Prentice Hall of Inida-1997.
- 5. Philip Kotler and Gary Armstrong "Principles of Marketing" Prentice Hall of India, 2000.
- Steven J.Skinner, "Marketing", All India Publishers and Distributes Ltd. 1998. 6.
- Graeme Drummond and John Ensor, "Introduction to marketing concepts", Elsevier, Indian 7. Reprint, 2007.

QUALITY CONTROL AND RELIABILITY ENGINEERING LTPC ME6001

9

9

9

9

OBJECTIVES:

- To introduce the concept of SQC
- To understand process control and acceptance sampling procedure and their application.
- To learn the concept of reliability.

UNIT I INTRODUCTION AND PROCESS CONTROL FOR VARIABLES

Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and limitation of SQC, Quality assurance, Quality control: Quality cost-Variation in process causes of variation –Theory of control chart- uses of control chart – Control chart for variables – X chart, R chart and chart-process capability – process capability studies and simple problems. Six sigma concepts

UNIT II PROCESS CONTROL FOR ATTRIBUTES

Control chart for attributes –control chart for non conformings– p chart and np chart – control chart for nonconformities– C and U charts, State of control and process out of control identification in charts, pattern study.

UNIT III ACCEPTANCE SAMPLING

Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling techniques – O.C. curves – producer's Risk and consumer's Risk. AQL, LTPD, AOQL concepts-standard sampling plans for AQL and LTPD- uses of standard sampling plans.

UNIT IV LIFE TESTING – RELIABILITY

Life testing – Objective – failure data analysis, Mean failure rate, mean time to failure, mean time between failure, hazard rate – Weibull model, system reliability, series, parallel and mixed configuration – simple problems. Maintainability and availability – simple problems. Acceptance sampling based on reliability test – O.C Curves.

UNIT V QUALITY AND RELIABLITY

Reliability improvements – techniques- use of Pareto analysis – design for reliability – redundancy unit and standby redundancy – Optimization in reliability – Product design – Product analysis – Product development – Product life cycles.

TOTAL: 45 PERIODS

Note: Use of approved statistical table permitted in the examination.

OUTCOMES:

• Upon successful completion of this course, the students can able to apply the concept of SQC in process control for reliable component production

TEXT BOOKS:

1. Douglas.C. Montgomery, "Introduction to Statistical quality control", 4th edition, John Wiley 2001.

79

2. Srinath. L.S., "Reliability Engineering", Affiliated East west press, 1991.

REFERENCES:

- 1. John.S. Oakland. "Statistical process control", 5th edition, Elsevier, 2005
- 2. Connor, P.D.T.O., "Practical Reliability Engineering", John Wiley, 1993
- 3. Grant, Eugene .L "Statistical Quality Control", McGraw-Hill, 1996
- 4. Monohar Mahajan, "Statistical Quality Control", Dhanpat Rai & Sons, 2001.
- 5.. Gupta. R.C, "Statistical Quality control", Khanna Publishers, 1997.
- 6. Besterfield D.H., "Quality Control", Prentice Hall, 1993.
- 7. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, 1998.
- 8. Danny Samson, "Manufacturing & Operations Strategy", Prentice Hall, 1991

ME6002 REFRIGERATION AND AIR CONDITIONING

9

9

8

10

OBJECTIVES:

- To understand the underlying principles of operations in different Refrigeration & Air • conditioning systems and components.
- To provide knowledge on design aspects of Refrigeration & Air conditioning systems

UNIT I INTRODUCTION

Introduction to Refrigeration - Unit of Refrigeration and C.O.P.- Ideal cycles- Refrigerants Desirable properties - Classification - Nomenclature - ODP & GWP.

UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM

Vapor compression cycle : p-h and T-s diagrams - deviations from theoretical cycle – subcooling and super heating- effects of condenser and evaporator pressure on COP- multipressure system - low temperature refrigeration - Cascade systems – problems. Equipments: Type of Compressors, Condensers, Expansion devices, Evaporators.

UNIT III OTHER REFRIGERATION SYSTEMS

Working principles of Vapour absorption systems and adsorption cooling systems - Steam jet refrigeration- Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration - Magnetic -Vortex and Pulse tube refrigeration systems.

PSYCHROMETRIC PROPERTIES AND PROCESSES UNIT IV

Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams.

AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION UNIT V

Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students can able to demonstrate the operations in different Refrigeration & Air conditioning systems and also able to design Refrigeration & Air conditioning systems.

TEXT BOOK:

Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010. 1.

REFERENCES:

- Roy J. Dossat, "Principles of Refrigeration", 4th edition, Pearson Education Asia, 2009. 1.
- Stoecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 2. 1986.
- 3. ASHRAE Hand book, Fundamentals, 2010
- Jones W.P., "Air conditioning engineering", 5th edition, Elsevier Butterworth-Heinemann, 2001 4.

ME6003

RENEWABLE SOURCES OF ENERGY

LTPC

10

5

10

8

OBJECTIVES:

 At the end of the course, the students are expected to identify the new methodologies / technologies for effective utilization of renewable energy sources.

UNIT I INTRODUCTION

World Energy Use – Reserves of Energy Resources – Environmental Aspects of Energy Utilisation – Renewable Energy Scenario in Tamil nadu, India and around the World – Potentials - Achievements / Applications – Economics of renewable energy systems.

UNIT II SOLAR ENERGY

Solar Radiation – Measurements of Solar Radiation - Flat Plate and Concentrating Collectors – Solar direct Thermal Applications – Solar thermal Power Generation - Fundamentals of Solar Photo Voltaic Conversion – Solar Cells – Solar PV Power Generation – Solar PV Applications.

UNIT III WIND ENERGY

Wind Data and Energy Estimation – Types of Wind Energy Systems – Performance – Site Selection – Details of Wind Turbine Generator – Safety and Environmental Aspects

UNIT IV BIO - ENERGY

Biomass direct combustion – Biomass gasifiers – Biogas plants – Digesters – Ethanol production – Bio diesel – Cogeneration - Biomass Applications

UNIT V OTHER RENEWABLE ENERGY SOURCES

Tidal energy – Wave Energy – Open and Closed OTEC Cycles – Small Hydro-Geothermal Energy – Hydrogen and Storage - Fuel Cell Systems – Hybrid Systems.

OUTCOMES:

 Upon completion of this course, the students can able to identify the new methodologies / technologies for effective utilization of renewable energy sources.

TEXT BOOKS:

- 1. Rai. G.D., "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 2011.
- 2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 2006.

REFERENCES:

- 1. Sukhatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- 2. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 1996.
- 3. Tiwari. G.N., Solar Energy "Fundamentals Design, Modelling & Applications", Narosa Publishing House, New Delhi, 2002.
- 4. Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, 1990.
- 5. Johnson Gary, L. "Wind Energy Systems", Prentice Hall, New York, 1985
- 6. David M. Mousdale "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2010
- 7. Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2009.

ME6004

UNCONVENTIONAL MACHINING PROCESSES

3003

9

9

9

9

TOTAL: 45 PERIODS

OBJECTIVES:

• To learn about various unconventional machining processes, the various process parameters and their influence on performance and their applications

UNIT I INTRODUCTION

Unconventional machining Process - Need - classification - Brief overview .

UNIT II MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining.(AJM, WJM, AWJM and USM). Working Principles – equipment used – Process parameters – MRR- Applications.

UNIT III ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining (EDM)- working Principle-equipments-Process Parameters-Surface Finish and MRR- electrode / Tool – Power and control Circuits-Tool Wear – Dielectric – Flushing – Wire cut EDM – Applications.

UNIT IV CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES 11

Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchants – Maskant - techniques of applying maskants - Process Parameters – Surface finish and MRR-Applications. Principles of ECM- equipments-Surface Roughness and MRR Electrical circuit-Process Parameters-ECG and ECH - Applications.

UNIT V THERMAL ENERGY BASED PROCESSES

Laser Beam machining and drilling (LBM), plasma Arc machining (PAM) and Electron Beam Machining (EBM). Principles – Equipment –Types - Beam control techniques – Applications.

TOTAL: 45 PERIODS

• Upon completion of this course, the students can able to demonstrate different unconventional machining processes and know the influence of difference process parameters on the performance and their applications.

TEXT BOOKS:

OUTCOMES:

- 1. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi, 2007
- 2. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi, 2007.

REFERENCES:

- 1. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.
- 2. Mc Geough, "Advanced Methods of Machining", Chapman and Hall, London, 1998.
- 3. Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt. Ltd., 8thEdition, New Delhi, 2001.

6

9

9

UNIT III INTRODUCTION TO COST ESTIMATION

Importance of costing and estimation -methods of costing-elements of cost estimation -Types of estimates - Estimating procedure- Estimation labor cost, material cost- allocation of over head charges- Calculation of depreciation cost

UNIT IV PRODUCTION COST ESTIMATION

Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop

UNIT V MACHINING TIME CALCULATION

Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations , Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding

OUTCOMES:

Upon completion of this course, the students can able to use the concepts of process planning and cost estimation for various products.

TEXT BOOKS:

Peter scalon, "Process planning, Design/Manufacture Interface", Elsevier science technology 1. Books, Dec 2002.

REFERENCES:

- Ostwalal P.F. and Munez J., "Manufacturing Processes and systems", 9th Edition, John Wiley, 1. 1998.
- 2. Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003.
- 3. Chitale A.V. and Gupta R.C., "Product Design and Manufacturing", 2nd Edition, PHI, 2002.

ME6006

OBJECTIVES:

- To understand the functions and design principles of Jigs, fixtures and press tools •
- To gain proficiency in the development of required views of the final design.

DESIGN OF JIGS, FIXTURES AND PRESS TOOLS

PROCESS PLANNING AND COST ESTIMATION

OBJECTIVES:

ME6005

To introduce the process planning concepts to make cost estimation for various products after process planning

UNIT I INTRODUCTION TO PROCESS PLANNING

Introduction- methods of process planning-Drawing interpretation-Material evaluation - steps in process selection-. Production equipment and tooling selection

UNIT II PROCESS PLANNING ACTIVITIES

of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies

TOTAL: 45 PERIODS

LTPC 3 0 0 3

10 Process parameters calculation for various production processes-Selection jigs and fixtures election

8

8

9

10

LTPC 3 0 0 3

UNIT I LOCATING AND CLAMPING PRINCIPLES:

Objectives of tool design-Function and advantages of Jigs and fixtures – Basic elements – principles of location – Locating methods and devices – Redundant Location – Principles of clamping – Mechanical actuation – pneumatic and hydraulic actuation Standard parts – Drill bushes and Jig buttons – Tolerances and materials used.

UNIT II JIGS AND FIXTURES

Design and development of jigs and fixtures for given component- Types of Jigs – Post, Turnover, Channel, latch, box, pot, angular post jigs – Indexing jigs – General principles of milling, Lathe, boring, broaching and grinding fixtures – Assembly, Inspection and Welding fixtures – Modular fixturing systems- Quick change fixtures.

UNIT IIIPRESS WORKING TERMINOLOGIES AND ELEMENTS OF CUTTING DIES10Press Working Terminologies - operations – Types of presses – press accessories – Computation of
press capacity – Strip layout – Material Utilization – Shearing action – Clearances – Press Work
Materials – Center of pressure- Design of various elements of dies – Die Block – Punch holder, Die
set, guide plates – Stops – Strippers – Pilots – Selection of Standard parts – Design and preparation
of four standard views of simple blanking, piercing, compound and progressive dies.

UNIT IV BENDING AND DRAWING DIES

Difference between bending and drawing – Blank development for above operations – Types of Bending dies – Press capacity – Spring back – knockouts – direct and indirect – pressure pads – Ejectors – Variables affecting Metal flow in drawing operations – draw die inserts – draw beadsironing – Design and development of bending, forming, drawing, reverse redrawing and combination dies – Blank development for axisymmetric, rectangular and elliptic parts – Single and double action dies.

UNIT V OTHER FORMING TECHNIQUES

Bulging, Swaging, Embossing, coining, curling, hole flanging, shaving and sizing, assembly, fine Blanking dies – recent trends in tool design- computer Aids for sheet metal forming Analysis – basic introduction - tooling for numerically controlled machines- setup reduction for work holding – Single minute exchange of dies – Poka Yoke.

TOTAL: 45 PERIODS

Note: (Use of P S G Design Data Book is permitted in the University examination) **OUTCOMES:**

• Upon completion of this course, the students can able to design jigs, fixtures and press tools.

TEXT BOOKS:

- 1. Joshi, P.H. "Jigs and Fixtures", Second Edition, Tata McGraw Hill Publishing Co., Ltd., New Delhi, 2004.
- 2. Joshi P.H "Press tools Design and Construction", wheels publishing, 1996

REFERENCES:

- 1. Venkataraman. K., "Design of Jigs Fixtures & Press Tools", Tata McGraw Hill, New Delhi, 2005.
- 2. Donaldson, Lecain and Goold "Tool Design", 3rd Edition, Tata McGraw Hill, 2000.
- 3. Kempster, "Jigs and Fixture Design", Third Edition, Hoddes and Stoughton, 1974.
- 4. Hoffman "Jigs and Fixture Design", Thomson Delmar Learning, Singapore, 2004.
- 5. ASTME Fundamentals of Tool Design Prentice Hall of India.
- 6. Design Data Hand Book, PSG College of Technology, Coimbatore.

8

10

ME6007

COMPOSITE MATERIALS AND MECHANICS

L	Т	Ρ	С
3	0	0	3

OBJECTIVES:

- To understand the fundamentals of composite material strength and its mechanical behavior Understanding the analysis of fiber reinforced Laminate design for different
- combinations of plies with different orientations of the fiber.
- Thermo-mechanical behavior and study of residual stresses in Laminates during processing. Implementation of Classical Laminate Theory (CLT) to study and analysis for residual stresses in an isotropic layered structure such as electronic chips.

UNIT I INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS & MANUFACTURING 12

Definition –Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Graphite, Ceramic and Metal Matrices – Characteristics of fibers and matrices. Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Typical Commercial material properties, Rule of Mixtures. Generally Orthotropic Lamina – Transformation Matrix, Transformed Stiffness. Manufacturing: Bag Moulding Compression Moulding – Pultrusion – Filament Winding – Other Manufacturing Processes

UNIT II FLAT PLATE LAMINATE CONSTITUTE EQUATIONS

Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

UNIT III LAMINA STRENGTH ANALYSIS

Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of Iaminate Failure

UNIT IV THERMAL ANALYSIS

Assumption of Constant C.T.E's. Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's. C.T.E's for special Laminate Configurations – Unidirectional, Off-axis, Symmetric Balanced Laminates, Zero C.T.E laminates, Thermally Quasi-Isotropic Laminates

UNIT V ANALYSIS OF LAMINATED FLAT PLATES

Equilibrium Equations of Motion. Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies

OUTCOMES:

- Upon completion of this course, the students can able to analyse the fiber reinforced Laminate for optimum design
- Apply classical laminate theory to study and analyse the residual stresses in Laminate.

TEXT BOOKS:

- 1. Gibson, R.F., "Principles of Composite Material Mechanics", Second Edition, McGraw-Hill, CRC press in progress, 1994, -.
- 2. Hyer, M.W., "Stress Analysis of Fiber Reinforced Composite Materials", McGraw Hill, 1998

10

TOTAL: 45 PERIODS

10

5

REFERENCES:

- Issac M. Daniel and Ori Ishai, "Engineering Mechanics of Composite Materials", Oxford 1. University Press-2006, First Indian Edition - 2007
- 2. Mallick, P.K., Fiber, "Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 1993.
- 3. Halpin, J.C., "Primer on Composite Materials, Analysis", Technomic Publishing Co., 1984.
- Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", John 4. Wiley and Sons, New York, 1990.
- 5. Mallick, P.K. and Newman, S., (edition), "Composite Materials Technology: Processes and Properties", Hansen Publisher, Munish, 1990.

ME6008

WELDING TECHNOLOGY

OBJECTIVES

To understand the basics of welding and to know about the various types of welding processes

UNIT I GAS AND ARC WELDING PROCESSES:

Fundamental principles – Air Acetylene welding, Oxyacetylene welding, Carbon arc welding, Shielded metal arc welding, Submerged arc welding, TIG & MIG welding, Plasma arc welding and Electroslag welding processes - advantages, limitations and applications.

RESISTANCE WELDING PROCESSES: UNIT II

Spot welding, Seam welding, Projection welding, Resistance Butt welding, Flash Butt welding, Percussion welding and High frequency resistance welding processes - advantages, limitations and applications.

SOLID STATE WELDING PROCESSES: UNIT III

Cold welding, Diffusion bonding, Explosive welding, Ultrasonic welding, Friction welding, Forge welding, Roll welding and Hot pressure welding processes - advantages, limitations and applications.

UNIT IV OTHER WELDING PROCESSES:

Thermit welding, Atomic hydrogen welding, Electron beam welding, Laser Beam welding, Friction stir welding, Under Water welding, Welding automation in aerospace, nuclear and surface transport vehicles.

UNIT V DESIGN OF WELD JOINTS, WELDABILITY AND TESTING OF WELDMENTS 9

Various weld joint designs - Weldability of Aluminium, Copper, and Stainless steels. Destructive and non destructive testing of weldments.

OUTCOMES:

Upon completion of this course, the students can able to compare different types of Welding • process for effective Welding of Structural components.

TEXT BOOKS:

- Parmer R.S., "Welding Engineering and Technology", 1st edition, Khanna Publishers, New 1. Delhi, 2008.
- 2. Parmer R.S., "Welding Processes and Technology", Khanna Publishers, New Delhi, 1992.

9

9

9

TOTAL: 45 HOURS

9

LTPC 3 0 0 3 3. Little R.L., "Welding and welding Technology", Tata McGraw Hill Publishing Co., Ltd., New Delhi, 34th reprint, 2008.

REFERENCES:

- 1. Schwartz M.M. "Metals Joining Manual". McGraw Hill Books, 1979.
- 2. Tylecote R.F. "The Solid Phase Welding of Metals". Edward Arnold Publishers Ltd. London, 1968.
- 3. AWS- Welding Hand Book. 8th Edition. Vol- 2. "Welding Process"
- 4. Nadkarni S.V. "Modern Arc Welding Technology", 1st edition, Oxford IBH Publishers, 2005.
- 5. Christopher Davis. "Laser Welding- Practical Guide". Jaico Publishing House, 1994.
- 6. Davis A.C., "The Science and Practice of Welding", Cambridge University Press, Cambridge, 1993

ME6009 ENERGY CONSERVATION AND MANAGEMENT L T P C 3 0 0 3

OBJECTIVES:

At the end of the course, the student is expected to

- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT I INTRODUCTION

Energy - Power – Past & Present scenario of World; National Energy consumption Data – Environmental aspects associated with energy utilization –Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.

UNIT II ELECTRICAL SYSTEMS

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

UNIT III THERMAL SYSTEMS

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS

Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

OUTCOMES:

Upon completion of this course, the students can able to analyse the energy data of industries.

Can carryout energy accounting and balancing

TOTAL: 45 PERIODS

12

8

8

5

• Can suggest methodologies for energy savings

TEXT BOOKS:

1. Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCES:

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

GE6083

DISASTER MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and

9

9

9

Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

9

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

TEXTBOOK:

OUTCOMES:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES

- 1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

ME6010

ROBOTICS

OBJECTIVES:

- To understand the functions of the basic components of a Robot.
- To study the use of various types of End of Effectors and Sensors
- To impart knowledge in Robot Kinematics and Programming
- To learn Robot safety issues and economics.

UNIT I FUNDAMENTALS OF ROBOT

Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification-Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robots-Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers,

L T P C 3 0 0 3

6

Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors, binary Sensors., Analog Sensors, Wrist Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data-Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications-Inspection, Identification, Visual Serving and Navigation.

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS

RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

OUTCOMES:

• Upon completion of this course, the students can able to apply the basic engineering knowledge for the design of robotics

TEXT BOOKS:

- 1. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.
- 2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.

REFERENCES:

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.
- 3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
- 4. Fu.K.S.,Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.
- 7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd., 1991.

GE6081

OBJECTIVES

FUNDAMENTALS OF NANOSCIENCE

L T P C 3 0 0 3

5

TOTAL: 45 PERIODS

13

• To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilmsmultilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays-functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications

UNIT IV CHARACTERIZATION TECHNIQUES

X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation

UNIT V APPLICATIONS

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery

TOTAL : 45 PERIODS

OUTCOMES

- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
- Will develop knowledge in characteristic nanomaterial

TEXT BOOKS

- 1. Edelstein. A.S. and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
- 2. John Dinardo. N, "Nanoscale charecterisation of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH, 2000

REFERENCES

- 1. Timp .G, "Nanotechnology", AIP press/Springer, 1999.
- 2. Akhlesh Lakhtakia (Editor), "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.

12

9

- 9
- 7

THERMAL TURBO MACHINES

OBJECTIVES:

ME6011

 To understand the various systems, principles, operations and applications of different types of turbo machinery components.

UNIT I PRINCIPLES

Energy transfer between fluid and rotor-classification of fluid machinery,-dimensionless parametersspecific speed-applications-stage velocity triangles-work and efficiency.

UNIT II CENTRIFUGAL FANS AND BLOWERS

Types- stage and design parameters-flow analysis in impeller blades-volute and diffusers, losses, characteristic curves and selection, fan drives and fan noise.

UNIT III CENTRIFUGAL COMPRESSOR

Construction details, impeller flow losses, slip factor, diffuser analysis, losses and performance curves.

UNIT IV AXIAL FLOW COMPRESSOR

Stage velocity diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work done simple stage design problems and performance characteristics.

UNIT V AXIAL AND RADIAL FLOW TURBINES

Stage velocity diagrams, reaction stages, losses and coefficients, blade design principles, testing and performance characteristics.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to explain the various systems, principles and applications and different types of turbo machinery components.

TEXT BOOKS:

1. Yahya, S.H., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Company, 1996.

REFERENCES:

- 1. Bruneck, Fans, Pergamom Press, 1973.
- 2. Earl Logan, Jr., Hand book of Turbomachinery, Marcel Dekker Inc., 1992.
- 3. Dixon, S.I., "Fluid Mechanics and Thermodynamics of Turbomachinery", Pergamon Press, 1990.
- 4. Shepherd, D.G., "Principles of Turbomachinery", Macmillan, 1969.
- 5. Ganesan, V., "Gas Turbines", Tata McGraw Hill Pub. Co., 1999.
- 6. Gopalakrishnan .G and Prithvi Raj .D, "A Treatise on Turbo machines", Scifech Publications (India) Pvt. Ltd., 2002.

.

9

9

9

9

L T P C 3 0 0 3

ME6012

MAINTENANCE ENGINEERING

OBJECTIVES:

- To enable the student to understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.
- To explain the different maintenance categories like Preventive maintenance, condition monitoring and repair of machine elements.
- To illustrate some of the simple instruments used for condition monitoring in industry.

UNIT I PRINCIPLES AND PRACTICES OF MAINTENANCE PLANNING

Basic Principles of maintenance planning – Objectives and principles of planned maintenance activity – Importance and benefits of sound Maintenance systems – Reliability and machine availability – MTBF, MTTR and MWT – Factors of availability – Maintenance organization – Maintenance economics.

UNIT II MAINTENANCE POLICIES – PREVENTIVE MAINTENANCE

Maintenance categories – Comparative merits of each category – Preventive maintenance, maintenance schedules, repair cycle - Principles and methods of lubrication – TPM.

UNIT III CONDITION MONITORING

Condition Monitoring – Cost comparison with and without CM – On-load testing and offload testing – Methods and instruments for CM – Temperature sensitive tapes – Pistol thermometers – wear-debris analysis

UNIT IV REPAIR METHODS FOR BASIC MACHINE ELEMENTS

Repair methods for beds, slide ways, spindles, gears, lead screws and bearings – Failure analysis – Failures and their development – Logical fault location methods – Sequential fault location.

UNIT V REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT

Repair methods for Material handling equipment - Equipment records – Job order systems - Use of computers in maintenance.

OUTCOMES:

- Upon completion of the programme, the students can able to implement the maintenance function and different practices in industries for the successful management of maintenance activities
- To identify the different maintenance categories like Preventive maintenance, condition monitoring and repair of machine elements.

TEXT BOOKS:

- 1. Srivastava S.K., "Industrial Maintenance Management", S. Chand and Co., 1981
- 2. Venkataraman .K "Maintancence Engineering and Management", PHI Learning, Pvt. Ltd., 2007

REFERENCES:

- 1. Bhattacharya S.N., "Installation, Servicing and Maintenance", S. Chand and Co., 1995
- 2. White E.N., "Maintenance Planning", I Documentation, Gower Press, 1979.
- 2. Garg M.R., "Industrial Maintenance", S. Chand & Co., 1986.
- 3. Higgins L.R., "Maintenance Engineering Hand book", 5th Edition, McGraw Hill, 1988.
- 4. Armstrong, "Condition Monitoring", BSIRSA, 1988.
- 5. Davies, "Handbook of Condition Monitoring", Chapman & Hall, 1996.
- 6. "Advances in Plant Engineering and Management", Seminar Proceedings IIPE, 1996.

9

9

9

8

TOTAL: 45 PERIODS

EE6007 MICRO ELECTRO MECHANICAL SYSTEMS

OBJECTIVES

- To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- To educate on the rudiments of Micro fabrication techniques.
- To introduce various sensors and actuators
- To introduce different materials used for MEMS
- To educate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering.

UNIT I INTRODUCTION

Intrinsic Characteristics of MEMS – Energy Domains and Transducers- Sensors and Actuators – Introduction to Micro fabrication - Silicon based MEMS processes – New Materials – Review of Electrical and Mechanical concepts in MEMS – Semiconductor devices – Stress and strain analysis – Flexural beam bending- Torsional deflection.

UNIT II SENSORS AND ACTUATORS-I

Electrostatic sensors – Parallel plate capacitors – Applications – Interdigitated Finger capacitor – Comb drive devices – Micro Grippers – Micro Motors - Thermal Sensing and Actuation – Thermal expansion – Thermal couples – Thermal resistors – Thermal Bimorph - Applications – Magnetic Actuators – Micromagnetic components – Case studies of MEMS in magnetic actuators- Actuation using Shape Memory Alloys

UNIT III SENSORS AND ACTUATORS-II

Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanical elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric sensors and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia , Acoustic, Tactile and Flow sensors.

UNIT IV MICROMACHINING

Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasma Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural and Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction methods – LIGA Process - Assembly of 3D MEMS – Foundry process.

UNIT V POLYMER AND OPTICAL MEMS

Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensors- Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS.

TOTAL : 45 PERIODS

OUTCOMES

- Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.
- Ability to understand and analyse, linear and digital electronic circuits.

ces.

L T P C 3 0 0 3

9

9

9

9

TEXT BOOKS:

- 1. Chang Liu, "Foundations of MEMS", Pearson Education Inc., 2006.
- 2. Stephen D Senturia, "Microsystem Design", Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCES:

- 1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 2. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2000
- 3. Julian w. Gardner, Vijay K. Varadan, Osama O. Awadelkarim, "Micro Sensors MEMS and Smart Devices", John Wiley & Son LTD,2002
- 4. James J.Allen, "Micro Electro Mechanical System Design", CRC Press Publisher, 2010
- 5. Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application," Springer 2012.

HYDRAULICS AND PNEUMATICS

LTPC 3 0 0 3

OBJECTIVES:

This course will give an appreciation of the fundamental principles, design and operation of hydraulic and pneumatic machines, components and systems and their application in recent automation revolution.

UNIT I FLUID POWER PRINCIPLES AND FUNDEMENTALS (REVIEW)

Introduction to Fluid power- Advantages and Applications- Fluid power systems - Types of fluids-Properties of fluids Basics of Hydraulics - Pascal's Law- Principles of flow - Work, Power and Torque. Properties of air-Perfect Gas Laws.

UNIT II HYDRAULIC SYSTEM AND COMPONENTS

Sources of Hydraulic power: Pumping Theory – Pump Classification- Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criterion of Linear, Rotary- Fixed and Variable displacement pumps, Hydraulic Actuators: Cylinders – Types and construction, Hydraulic motors Control Components: Direction control, Flow control and Pressure control valves- Types, Construction and Operation- Applications - Types of actuation. Accessories: Reservoirs, Accumulators, Intensifiers, Pressure Switches- Applications- Fluid Power ANSI Symbol.

UNIT III HYDRAULIC CIRCUITS

Industrial hydraulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure Intensifier, Airover oil, Sequence, Reciprocation, Synchronization, Fail-safe, Speed control, Hydrostatic transmission, Accumulators, Electro hydraulic circuits, Mechanical Hydraulic servo systems.

PNEUMATIC SYSTEM **UNIT IV**

Compressors- Filter, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust valves, Pneumatic actuators, Servo systems. Introduction to Fluidics, Pneumatic logic circuits.

UNIT V DESIGN OF HYDRALIC AND PNEMATIC CIRCUITS

Design of circuits using the components of hydraulic system for Drilling, Planning, Shaping, Punching, Press. - Selection, fault finding and maintenance of hydraulic components- Sequential circuit design for simple application using cascade method, Electro pneumatic circuits. Selection criteria of pneumatic components – Installation fault finding and maintenance of pneumatic components. Microprocessor and PLC- Applications in Hydraulic and Pneumatics- Low cost Automation – Hydraulic and Pneumatic power packs.

OUTCOMES:

- Identify hydraulic and pneumatics components.
- Ability to design hydraulic and pneumatic circuits.

TEXT BOOK

1. Anthony Esposito," Fluid Power with Applications", PHI / Pearson Education, 2005.

REFRENCES

- 1. Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006.
- 2. Majumdar, S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw Hill, 2001
- 3. Majumdar, S.R., "Pneumatic Systems Principles and Maintenance", Tata McGraw Hill, 2007.
- 4. Micheal J, Pinches and Ashby, J.G., "Power Hydraulics", Prentice Hall, 1989.
- 5. Dudelyt, A Pease and John J Pippenger, "Basic Fluid Power", Prentice Hall, 1987.
- 6. Srinivasan. R. "Hydraulic and Pneumatic Control", IInd Edition, Tata McGraw Hill Education, 2012.

TOTAL: 45 PERIODS

13

3

8

12

9

ME6021

IE6605

OBJECTIVES:

- To understand the various components and functions of production planning and control such as work study, product planning, process planning, production scheduling, Inventory Control.
- To know the recent trends like manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION

Objectives and benefits of planning and control-Functions of production control-Types of productionjob- batch and continuous-Product development and design-Marketing aspect - Functional aspects-Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration-Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNIT II WORK STUDY

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNIT III PRODUCT PLANNING AND PROCESS PLANNING

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning-Steps in process planning-Quantity determination in batch production-Machine capacity, balancing-Analysis of process capabilities in a multi product system.

UNIT IV PRODUCTION SCHEDULING

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance – Flow production scheduling-Batch production scheduling-Product sequencing – Production Control systems-Periodic batch control-Material requirement planning kanban – Dispatching-Progress reporting and expediting-Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system -Ordering cycle system-Determination of Economic order quantity and economic lot size-ABC analysis-Recorder procedure-Introduction to computer integrated production planning systemselements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

OUTCOMES:

- Upon completion of this course, the students can able to prepare production planning and control activities such as work study, product planning, production scheduling, Inventory Control.
- They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

- 1. Martand Telsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.
- 2. James.B.Dilworth,"Operations management Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition 1992.

REFERENCES:

L T P C 3 0 0 3

9

9

9

9

9

TOTAL: 45 PERIODS

- 1. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn. 1984
- Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management". 8th 2. Edition. John Wilev and Sons. 2000.
- Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university 3. press, 2007.
- Melvnk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill. 4.
- Norman Gaither, G. Frazier, "Operations Management", 9th edition, Thomson learning IE, 5. 2007
- 6. Jain. K.C & L.N. Aggarwal, "Production Planning Control and Industrial Management", Khanna Publishers, 1990.
- 7. Chary. S.N. "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- Upendra Kachru, "Production and Operations Management Text and cases", 1st Edition, 8. Excel books 2007.

MG6071 ENTERPRENEURSHIP DEVELOPMENT

OBJECTIVES:

To develop and strengthen entrepreneurial quality and motivation in students and to impart • basic entrepreneurial skills and understanding to run a business efficiently and effectively.

UNIT I **ENTREPRENEURSHIP**

Entrepreneur - Types of Entrepreneurs - Difference between Entrepreneur and Intrapreneur Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth.

UNIT II MOTIVATION

Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test - Stress Management, Entrepreneurship Development Programs – Need, Objectives.

BUSINESS UNIT III

Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity. Market Survey and Research, Techno Economic Feasibility Assessment - Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies.

UNIT IV FINANCING AND ACCOUNTING

Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, Management of working Capital, Costing, Break Even Analysis, Taxation - Income Tax, Excise Duty - Sales Tax.

UNIT V SUPPORT TO ENTREPRENEURS

Sickness in small Business – Concept, Magnitude, Causes and Consequences, Corrective Measures - Business Incubators - Government Policy for Small Scale Enterprises - Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting.

TOTAL : 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to gain knowledge and skills needed to run a business successfully.

TEXT BOOKS:

1. Khanka. S.S., "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013.

9

9

9

9

9

LTPC 3 0 0 3 2. Donald F Kuratko, "Entreprenuership – Theory, Process and Practice", 9th Edition, Cengage Learning, 2014.

REFERENCES:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

ME6013 DESIGN OF PRESSURE VESSELS AND PIPING

OBJECTIVES:

- To understand the Mathematical knowledge to design pressure vessels and piping
- To understand the ability to carry of stress analysis in pressure vessels and piping

UNIT I INTRODUCTION

Methods for determining stresses – Terminology and Ligament Efficiency – Applications.

UNIT II STRESSES IN PRESSURE VESSELS

Introduction – Stresses in a circular ring, cylinder –Dilation of pressure vessels, Membrane stress Analysis of Vessel – Cylindrical, spherical and, conical heads – Thermal Stresses – Discontinuity stresses in pressure vessels.

UNIT III DESIGN OF VESSELS

Design of Tall cylindrical self supporting process columns – Supports for short vertical vessels – Stress concentration at a variable Thickness transition section in a cylindrical vessel, about a circular hole, elliptical openings. Theory of Reinforcement – Pressure Vessel Design.

UNIT IV BUCKLING AND FRACTURE ANALYSIS IN VESSELS

Buckling phenomenon – Elastic Buckling of circular ring and cylinders under external pressure – collapse of thick walled cylinders or tubes under external pressure – Effect of supports on Elastic Buckling of Cylinders – Buckling under combined External pressure and axial loading.

UNIT V PIPING

Introduction – Flow diagram – piping layout and piping stress Analysis.

OUTCOMES:

 Upon completion of this course, the students can able to apply the mathematical fundamental for the design of pressure vessels and pipes. Further they can able to analyse and design of pressure vessels and piping.

TEXT BOOKS:

1. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987.

REFERENCES:

4

TOTAL: 45 PERIODS

3

15

15

8

LT P C 3 0 0 3

- 1. Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987.
- 2. Stanley, M. Wales, "Chemical process equipment, selection and Design". Buterworths series in Chemical Engineering, 1988.
- 3. William. J., Bees, "Approximate Methods in the Design and Analysis of Pressure Vessels and Piping", Pre ASME Pressure Vessels and Piping Conference, 1997.
- 4. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.

ME6014 COMPUTATIONAL FLUID DYNAMICS

LT P C 3 0 0 3

8

10

9

9

OBJECTIVES:

- To introduce Governing Equations of viscous fluid flows
- To introduce numerical modeling and its role in the field of fluid flow and heat transfer
- To enable the students to understand the various discretization methods, solution procedures and turbulence modeling.
- To create confidence to solve complex problems in the field of fluid flow and heat transfer by using high speed computers.

UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport – Physical boundary conditions – Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations – Mathematical behaviour of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.

UNIT II FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR DIFFUSION 9

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy – Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems –Parabolic equations – Explicit and Implicit schemes – Example problems on elliptic and parabolic equations – Use of Finite Difference and Finite Volume methods.

UNIT III FINITE VOLUME METHOD FOR CONVECTION DIFFUSION

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

UNIT IV FLOW FIELD ANALYSIS

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

UNIT V TURBULENCE MODELS AND MESH GENERATION

Turbulence models, mixing length model, Two equation (k-) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students can able

- To create numerical modeling and its role in the field of fluid flow and heat transfer
- To use the various discretization methods, solution procedures and turbulence modeling to solve flow and heat transfer problems.

TEXT BOOKS:

- Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The 1. finite volume Method", Pearson Education Ltd.Second Edition, 2007.
- 2. Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd., 1998.

REFERENCES:

- 1. Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 2004.
- 2. Chung, T.J. "Computational Fluid Dynamics", Cambridge University, Press, 2002.
- Ghoshdastidar P.S., "Heat Transfer", Oxford University Press, 2005 3.
- Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa 4. Publishing House, New Delhi, 1995.
- 5. ProdipNiyogi, Chakrabarty, S.K., Laha, M.K. "Introduction to Computational Fluid Dynamics", Pearson Education, 2005.
- 6. Anil W. Date "Introduction to Computational Fluid Dynamics" Cambridge University Press, 2005.

ME6015 OPERATIONS RESEARCH

OBJECTIVES:

To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems.

UNIT I LINEAR MODELS

The phase of an operation research study – Linear programming – Graphical method– Simplex algorithm – Duality formulation – Sensitivity analysis.

UNIT II TRANSPORTATION MODELS AND NETWORK MODELS

Transportation Assignment Models – Traveling Salesman problem-Networks models – Shortest route - Minimal spanning tree - Maximum flow models - Project network - CPM and PERT networks -Critical path scheduling – Sequencing models.

UNIT III **INVENTORY MODELS**

Inventory models - Economic order quantity models - Quantity discount models - Stochastic inventory models - Multi product models - Inventory control models in practice.

UNIT IV **QUEUEING MODELS**

Queueing models - Queueing systems and structures - Notation parameter - Single server and multi server models - Poisson input - Exponential service - Constant rate service - Infinite population -Simulation.

6

6

15

8

LTPC 3 0 0 3

UNIT V DECISION MODELS

Decision models – Game theory – Two person zero sum games – Graphical solution- Algebraic solution– Linear Programming solution – Replacement models – Models based on service life – Economic life– Single / Multi variable search technique – Dynamic Programming – Simple Problem. TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to use the optimization techniques for use engineering and Business problems

TEXT BOOK:

1. Taha H.A., "Operations Research", Sixth Edition, Prentice Hall of India, 2003.

REFERENCES:

- 1. Shennoy G.V. and Srivastava U.K., "Operation Research for Management", Wiley Eastern, 1994.
- 2. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 1990.
- 3. Philip D.T. and Ravindran A., "Operations Research", John Wiley, 1992.
- 4. Hillier and Libeberman, "Operations Research", Holden Day, 1986
- 5. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.

HUMAN RIGHTS

6. Tulsian and Pasdey V., "Quantitative Techniques", Pearson Asia, 2002.

GE6084

OBJECTIVES :

• To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

Human Rights – Meaning, origin and Development. Notion and classification of Rights – Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II

Evolution of the concept of Human Rights Magana carta – Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV

Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

Human Rights of Disadvantaged People – Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights – National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL : 45 PERIODS

L T P C 3 0 0 3

9

9

9

9

9

OUTCOME :

• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

ME6016

ADVANCED I.C ENGINES

OBJECTIVES:

- To understand the underlying principles of operation of different IC Engines and components.
- To provide knowledge on pollutant formation, control, alternate fuel etc. •

UNIT I **SPARK IGNITION ENGINES**

Mixture requirements – Fuel injection systems – Monopoint, Multipoint & Direct injection - Stages of combustion - Normal and Abnormal combustion - Knock - Factors affecting knock - Combustion chambers.

UNIT II **COMPRESSION IGNITION ENGINES**

Diesel Fuel Injection Systems - Stages of combustion - Knocking - Factors affecting knock - Direct and Indirect injection systems - Combustion chambers - Fuel Spray behaviour - Spray structure and sprav penetration – Air motion - Introduction to Turbocharging.

UNIT III POLLUTANT FORMATION AND CONTROL

Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter - Methods of controlling Emissions - Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement – Emission norms and Driving cycles.

UNIT IV ALTERNATIVE FUELS

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel - Properties, Suitability, Merits and Demerits - Engine Modifications.

UNIT V **RECENT TRENDS**

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers - Common Rail Direct Injection Systems - Hybrid Electric Vehicles - NOx Adsorbers -Onboard Diagnostics.

OUTCOME:

Upon completion of this course, the students can able to compare the operations of different • IC Engine and components and can evaluate the pollutant formation, control, alternate fuel

TEXT BOOKS:

- Ramalingam. K.K., "Internal Combustion Engine Fundamentals", Scitech Publications, 2002. 1.
- 2. Ganesan, "Internal Combustion Engines", II Edition, TMH, 2002.

REFERENCES:

TOTAL : 45 PERIODS

9

9

9

LTPC 3003

9

- 1. Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons 2007.
- 2. Duffy Smith, "Auto Fuel Systems", The Good Heart Willcox Company, Inc., 1987.
- 3. Eric Chowenitz, "Automobile Electronics", SAE Publications, 1995

ME6017 DESIGN OF HEAT EXCHANGERS L T P C 3 0 0 3

OBJECTIVES:

- To learn the thermal and stress analysis on various parts of the heat exchangers
- To analyze the sizing and rating of the heat exchangers for various applications

UNIT I INTRODUCTION

Types of heat exchangers, shell and tube heat exchangers – regenerators and recuperators -Temperature distribution and its implications - Parts description, Classification as per Tubular Exchanger Manufacturers Association (TEMA)

9

9

9

9

9

TOTAL: 45 PERIODS

UNIT II PROCESS DESIGN OF HEAT EXCHANGERS

Heat transfer correlations, Overall heat transfer coefficient, analysis of heat exchangers – LMTD and effectiveness method. Sizing of finned tube heat exchangers, U tube heat exchangers, Design of shell and tube heat exchangers, fouling factors, pressure drop calculations.

UNIT III STRESS ANALYSIS

Stress in tubes – header sheets and pressure vessels – thermal stresses, shear stresses - types of failures, buckling of tubes, flow induced vibration.

UNIT IV COMPACT AND PLATE HEAT EXCHANGER

Types- Merits and Demerits- Design of compact heat exchangers, plate heat exchangers, performance influencing parameters, limitations.

UNIT V CONDENSERS AND COOLING TOWERS

Design of surface and evaporative condensers – cooling tower – performance characteristics.

OUTCOMES:

• Upon completion of this course, the students can able to apply the mathematical knowledge for thermal and stress analysis on various parts of the heat exchangers components.

TEXT BOOKS:

- 1. SadikKakac and Hongtan Liu, "Heat Exchangers Selection", Rating and Thermal Design, CRC Press, 2002.
- 2. Shah,R. K., Dušan P. Sekuli, "Fundamentals of heat exchanger design", John Wiley & Sons, 2003.

REFERENCES:

- 1. Robert W. Serth, "Process heat transfer principles and applications", Academic press, Elesevier, 2007.
- 2. Sarit Kumar Das, "Process heat transfer", Alpha Science International, 2005
- 3. John E. Hesselgreaves, "Compact heat exchangers: selection, design, and operation", Elsevier science Ltd, 2001.
- 4. Kuppan. T., "Heat exchanger design hand book", New York : Marcel Dekker, 2000.

5. Eric M. Smith, "Advances in thermal design of heat exchangers: a numerical approach: directsizing, step-wise rating, and transients", John Wiley & Sons, 1999.

ADDITIVE MANUFACTURING

OBJECTIVES:

ME6018

- To know the principle methods, areas of usage, possibilities and limitations as well as • environmental effects of the Additive Manufacturing technologies
- To be familiar with the characteristics of the different materials those are used in Additive Manufacturing.

UNIT I INTRODUCTION

Overview - History - Need-Classification - Additive Manufacturing Technology in product development-Materials for Additive Manufacturing Technology – Tooling - Applications.

UNIT II **CAD & REVERSE ENGINEERING**

Basic Concept – Digitization techniques – Model Reconstruction – Data Processing for Additive Manufacturing Technology: CAD model preparation - Part Orientation and support generation -Model Slicing -Tool path Generation - Softwares for Additive Manufacturing Technology: MIMICS, MAGICS.

LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING SYSTEMS UNIT III 10

Classification - Liquid based system - Stereolithography Apparatus (SLA)- Principle, process, advantages and applications - Solid based system -Fused Deposition Modeling - Principle, process, advantages and applications, Laminated Object Manufacturing

UNIT IV POWDER BASED ADDITIVE MANUFACTURING SYSTEMS

Selective Laser Sintering – Principles of SLS process - Process, advantages and applications, Three Dimensional Printing - Principle, process, advantages and applications- Laser Engineered Net Shaping (LENS), Electron Beam Melting.

UNIT V MEDICAL AND BIO-ADDITIVE MANUFACTURING

Customized implants and prosthesis: Design and production. Bio-Additive Manufacturing- Computer Aided Tissue Engineering (CATE) – Case studies

OUTCOMES:

Upon completion of this course, the students can able to compare different method and discuss the effects of the Additive Manufacturing technologies and analyse the characteristics of the different materials in Additive Manufacturing.

TEXT BOOKS:

- Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third 1. Edition, World Scientific Publishers, 2010.
- 2. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.

REFERENCES:

Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications : A tool box for 1. prototype development", CRC Press, 2007.

5

10

TOTAL: 45 PERIODS

LTPC 3 0 0 3

10

- 2. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 3. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC press. 2000.

ME6019 NON DESTRUCTIVE TESTING AND MATERIALS LTPC

OBJECTIVES:

To study and understand the various Non Destructive Evaluation and Testing methods, theory and their industrial applications.

UNIT I **OVERVIEW OF NDT**

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection - Unaided and aided.

UNIT II SURFACE NDE METHODS

Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING (ET)

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

UNIT IV ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique – Principle, AE parameters, Applications

UNIT V **RADIOGRAPHY (RT)**

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films - graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

OUTCOMES:

Upon completion of this course, the students can able to use the various Non Destructive Testing and Testing methods understand for defects and characterization of industrial components

TEXT BOOKS:

Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa 1. Publishing House, 2009.

8

10

10

10

TOTAL: 45 PERIODS

7

3 0 0 3

2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010

REFERENCES:

- 1. ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 2. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey, 2005
- 3. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.
- 4. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing

ME6020 VIBRATION AND NOISE CONTROL L T P C 3 0 0 3

OBJECTIVES:

• The student will be able to understand the sources of vibration and noise in automobiles and make design modifications to reduce the vibration and noise and improve the life of the components

UNIT I BASICS OF VIBRATION

Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

UNIT II BASICS OF NOISE

Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

UNIT III AUTOMOTIVE NOISE SOURCES

Noise Characteristics of engines, engine overall noise levels, assessment of combustion noise, assessment of mechanical noise, engine radiated noise, intake and exhaust noise, engine necessary contributed noise, transmission noise, aerodynamic noise, tire noise, brake noise.

UNIT IV CONTROL TECHNIQUES

Vibration isolation, tuned absorbers, un-tuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL

Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

- Understanding causes, source and types of vibrations in machineries
- Gaining knowledge in sources and measurement standard of noise
- Ability to design and develop vibrations and noise control systems.

TEXT BOOKS:

1. Singiresu S.Rao, "Mechanical Vibrations", 5th Edition, Pearson Education, 2010

REFERENCES:

- 1. Benson H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University, 2007
- 2. David Bies and Colin Hansen, "Engineering Noise Control Theory and Practice",4th Edition, E and FN Spon, Taylore & Francise e-Library, 2009
- 3. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "**Theory of Vibration with Application**", 5th Edition Pearson Education, 2011
- 4. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996
- 5. Bernard Challen and Rodica Baranescu "Diesel Engine Reference Book", Second Edition, SAE International, 1999.
- 6. Julian Happian-Smith "An Introduction to Modern Vehicle Design"- Butterworth-Heinemann, 2004
- 7. Rao, J.S and Gupta, K., "Introductory course on Theory and Practice of Mechanical Vibration", 2nd Edition, New Age International Publications, 2010
- 8. Shabana. A.A., "Theory of vibrations An introduction", 2nd Edition, Springer, 2010
- 9. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009
- 10. John Fenton, "Handbook of Automotive body Construction and Design Analysis Professional Engineering Publishing, 1998