
B.ARUNKUMAR, Asst. Prof.,/ECE Page 1

UNIT I

NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

Introduction

Basically there are two types of signals in electronics,

i) Analog

ii) Digital

Digital systems

Advantages:

 The usual advantages of digital circuits when compared to analog circuits are:Digital systems

interface well with computers and are easy to control with software. New features can often be added

to a digital system without changing hardware.

 Often this can be done outside of the factory by updating the product's software. So, the product's

design errors can be corrected after the product is in a customer's hands.

 Information storage can be easier in digital systems than in analog ones. The noise- immunity of

digital systems permits data to be stored and retrieved without degradation.

 In an analog system, noise from aging and wear degrade the information stored.

 In a digital system, as long as the total noise is below a certain level, the information can be recovered

perfectly.

Disadvantages:

 In some cases, digital circuits use more energy than analog circuits to accomplish the same tasks, thus

producing more heat as well. In portable or battery-powered systems this can limit use of digital

systems.

 Digital circuits are sometimes more expensive, especially in small quantit ies.The sensed world is

analog, and signals from this world are analog quantities.

 Digital circuits are sometimes more expensive, especially in small quantities. The sensed world is

analog, and signals from this world are analog quantities.

 For example, light, temperature, sound, electrical conductivity, electric and magnetic fields are

analog.

Review of number systems, binary codes, error detection and correction codes (Parity and Ha mming code)

– Digital Logic Families -comparison of RTL, DTL, TTL, ECL and MOS families -operation,

characteristics of digital logic family.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 2

REVIEW OFNUMBER SYSTEMS

Many number systems are in use in digital technology. The most common are the decimal, binary,

octal, and hexadecimal systems. The decimal system is clearly the most familiar to us because it is tools

that we use every day.

Types of Number Systems are

 Decimal Number system

 Binary Number system

 Octal Number system

 Hexadecimal Number system

Table: Types of Number Systems

DECIMAL

BINARY

OCTAL

HEXADECIMAL

 0 0000 0 0
1 0001 1 1
2 0010 2 2

3 0011 3 3
4 0100 4 4

5 0101 5 5
6 0110 6 6

7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C

13 1101 15 D
14 1110 16 E

15 1111 17 F

Table: Numbersystemandtheir Base value

Number Systems

System Base Digits

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

B.ARUNKUMAR, Asst. Prof.,/ECE Page 3

Code Conversion:

 Convertingfromonecodeformtoanothercodeformiscalledcodeconversion,likeconvertingfrom binaryto

decimal orconverting from hexadecimal to decimal.

Binary-To-DecimalConversion:

 Anybinarynumbercanbeconvertedtoitsdecimalequivalent simplybysummingtogether
theweights of the variouspositions in the binarynumber whichcontaina1.

Binary Decimal

110112

=2
4
+2

3
+0

1
+2

1
+2

0 =16+8+0+2+1

Result 2710

Decimal to binary Conversion:

Division Remainder Binary

25/2 =12+remainder of1 1 (LeastSignificantBit)

12/2 =6 +remainder of0 0

6/2 =3 +remainder of0 0

3/2 =1 +remainder of1 1

½ =0 +remainder of1 1 (MostSignificantBit)

Result 2510 =110012



Binary to octal:

Example: 100 1110102=(100)(111)(010)2=4 7 28

Octal to Binary:

Decimal to octal:

Division Result Binary

177/8 =22+remainder of1 1 (LeastSignificantBit)

22/ 8 =2 +remainder of6 6

2 / 8 =0 +remainder of2 2 (Most Significant Bit)

Result 17710 =2618

Binary =0101100012

B.ARUNKUMAR, Asst. Prof.,/ECE Page 4

Octal to Decimal:

Example:

Decimal to Hexadecimal:

Division Result Hexadecimal

378/16 =23+remainder of10 A(LeastSignificantBit)23

23/16 =1 +remainder of7 7

1/16 =0 +remainder of1 1 (Most Significant Bit)

Result 37810 =17A16

Binary =00010111 10102

Binary-To-Hexadecimal:

Example: 1011 0010 11112= (1011) (0010) (1111)2=B2F16

Hexadecimal to binary:

Octal-To-Hexadecimal / Hexadecimal-To-Octal Conversion:

 Convert Octal (Hexadecimal) to Binary first.
 Regroup the binary number by three bits per group starting from LSB if Octal is required.

 Regroup the binary number by four bits per group starting from LSB if Hexadecimal is required.

Octal to Hexadecimal: (May 2014)

Octal Hexadecimal

=2 6 5 0

= 010 110101000 =0101 1010 1000(Binary)

Result =(5A8)16

B.ARUNKUMAR, Asst. Prof.,/ECE Page 5

Hexadecimal to octal:

Hexadecimal Octal

(5A8)16 =0101 1010 1000(Binary)

 =010 110101000(Binary)

Result =2 6 5 0(Octal)

1’s and2’s complement:

 Complements are used in digital computers to simplify the subtraction operation and for logical
manipulation.

 ThereareTWOtypesofcomplementsforeachbase-rsystem: theradixcomplementand the diminished
radix complement.

 The first is referred to as there’s complement and the second as the (r-

1)'scomplement,whenthevalueofthebaserissubstitutedinthename.Thetwo typesarereferredtoasthe
2's complement and 1's complement for binary numbers and the 10’s complement and 9's

complement for decimal numbers.

Note:

 T h e1’scompl ement o fabin arynu mberi sth en u mbert hat result sw henw ech an geall 1

’s to zeros and th e zeros t o on es .
 T h e2’s complement i s th e bi nary nu mber t hat result s wh en weadd1 t o th e1’s

compl ement .
 I t is u sed t o represent n egati ven u mbers.

2’s complement=1’scomplement+1

Example 1) : Find 1’s complement of (1101)2

Sol: 1 1 0 1 Number
 0 0 1 0 1’s complement

Example 2) : Find 2’s complement of (1001)2

Sol: 1 0 0 1 number

0 1 1 0 1’s complement
+ 1

0 1 1 1

Diminished Radix Complement:

Given a number N in base r having n digits, the (r - 1)’s complement of N, i.e., its diminished
radix complement, is defined as (rn- 1) - N.

The9’s comple mentof546700 is 999999-546700= 453299.

The9’s comple mentof012398 is 999999-012398= 987601.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 6

Radix Complement:

The r’s complement of an n-digit number N in base r is defined as rn- N for N≠0 and as 0

for N = 0.

For examples:
The10’scomplementof 012398 is 987602
The10’scomplementof246700 is 753300

Model 1: (Dec 2009)

Using10’scomple ment, subtract72532-3250.

M = 72532

10’s complement o fN = +96750

Sum = 169282

Discard endcarry105 = -100000

Answer = 69282

Model 2:

Using10’scomple ment, subtract3250-72532.

M = 03250

10>s complementofN = +27468
Sum = 30718

Model 3:

Given the two binary numbers X= 1010100andY= 1000011, performthesubtraction

(a)X-Y and (b) Y-Xbyusing2’scomple ments. [NOV – 2019]

(a) X= 1010100

2’s complementofY= + 0111101

Sum = 10010001

Discard endcarry27 = -10000000

Answer:X-Y= 0010001

(b) Y= 1000011

2’s complement of X= 0101100

Sum = 1101111

There is no end carry.Therefore, the answer isY- X=-(2 ’s complementof1101111) =

-0010001.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 7

Model 4:

Given the two binary numbers X=1010100 and Y= 1000011, perform the subtraction (a) X-Y and

(b) Y-X by using 1’s complements. (Dec 2009)

(a)X-Y= 1010100-1000011

X= 1010100

1’s complementofY= +0111100

Sum = 10010000

End around carry = + 1

Answer:X-Y= 0010001

(b)Y-X= 1000011-1010100

Y= 1000011

1’s complement of X= +0101011

Sum = 1101110

There is no end carry. Therefore ,the answer is Y- X=-(1’s complementof1101110)=

-0010001.

**

ARITHMETIC OPERATIONS

Binary Addition:

Rules of Binary Addition

 0 +0 =0

 0 +1 =1

 1 +0 =1

 1 +1 =0,and carry1tothe next most significant bit

Example:

Add: 00011010+00001100=00100110

 1 1

0

0

0

1

1

0

1

0

+0 0 0 0 1 1 0 0

0 0 1 0 0 1 1 0

mailto:End@around

B.ARUNKUMAR, Asst. Prof.,/ECE Page 8

 0 0 1 0 0 1 0 1

 - 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0

Binary Subtraction:



Rules of Binary Subtraction

0 -0 =0

0 -1 =1,and borrow 1fromthe nextmoresignificantbit

1 -0 =1

1 -1 =0



Example:

Sub: 00100101-00010001= 00010100

Binary Multiplication:

RulesofBinaryMultiplication









0 x 0 =0

0 x 1 =0

1 x 0 =0

1 x 1 =1,andnocarryorborrowbits

Example:Multiply the following binary numbers:

(a) 0111 and 1101 (b) 1.011 and 10.01.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 9

Binary Division:

Binarydivisionisthe repeatedprocess ofsubtraction,justasindecimaldivision.

Example: Divide the following

**

BINARYCODES

Explain the various codes used in digital systems with an example.(or)Explain in detail about Binary

codes with an example

 In digital systems a variety of codes are used to serve different purposes, such as data entry, arithmetic

operation, error detection and correction, etc.

 Selection of a particular codedepends on the requirement.

 Binarycodesarecodeswhicharerepresentedinbinarysystemwithmodification from the original ones.

 Codes can be broadly classified into five groups.

 (i) Weighted Binary Codes

(ii) Non-weighted Codes

(iii) Error-detection Codes

(iv) Error-correcting Codes

(v) Alphanumeric Codes

Weighted Binary Codes

 If each position of a number represents a specific weight then the coding scheme is called weighted

binary code.

BCD Code or 8421 Code:

 The full form of BCD is ‘Binary-Coded Decimal’. Since this is a coding scheme relating decimal and

binary numbers, four bits are required to code each decimal number.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 10

 A decimal number in BCD (8421) is the same as its equivalent binary number only when the number

is between 0 and 9. A BCD number greater than 10 looks different from its equivalent binary number,

even though both contain 1’s and 0’s. Moreover,the binary combinations 1010 through 1111 are not

used and have no meaning in BCD.

 Consider decimal 185 and its corresponding value in BCD and binary:

(185)10= (0001 1000 0101)BCD = (10111001)2

 For example, (35)10 is represented as 0011 0101 using BCD code, rather than (100011)2

 Example: Give the BCD equivalent for the decimal number 589.

The decimal number is 5 8 9

 BCD code is 0101 1000 1001

 Hence, (589)10 = (010110001001)BCD

2421 Code:

 Another weighted code is 2421 code. The weights assigned to the four digits are 2, 4,2, and 1.

 The 2421 code is the same as that in BCD from 0 to 4. However, it varies from5 to 9.

 For example, in this case the bit combination 0100 represents decimal 4; whereas the bit combination

1101 is interpreted as the decimal 7, as obtained from 2 × 1 + 1 × 4+ 0 × 2 + 1 × 1 = 7.

 This is also a self-complementary code.

BCD Addition:

Examples:

 Consider the addition of 184 + 576 = 760 in BCD:

 Add the following BCD numbers: (a) 1001 and 0100, (b) 00011001 and 00010100

B.ARUNKUMAR, Asst. Prof.,/ECE Page 11

Non-weighted Codes

 It basically means that each position ofthe binary number is not assigned a fixed value.

 Excess-3 codes and Gray codes are such non-weighted codes.

Excess-3 code:

 Excess-3isanon- weightedcodeusedtoexpressdecimalnumbers.Thecodederivesitsnamefrom

thefactthateachbinarycodeisthecorresponding8421codeplus0011(3).

Example:1000of8421 (BCD)=1011in Excess-3

 Convert (367)10 into its Excess-3 code.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 12

Graycode:

 Thegraycodebelongstoaclassofcodescalledminimumchangecodes,inwhichonlyonebitin

thecodechangeswhenmovingfrom onecodetothenext.

 TheGraycodeisnon-weightedcode,asthe positionofbitdoesnotcontainanyweight.In

digitalGraycodehasgot a specialplace.

Decimal

Number

BinaryCode GrayCode

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

 Thegraycodeisareflective digitalcodewhichhas the special propertythat

anytwosubsequentnumberscodes differ byonlyonebit. This is also calledaunit-distance code.

 Importantwhenananalogquantity mustbeconvertedtoadigitalrepresentation.Onlyonebitchanges

between two successiveintegers whicharebeing coded.

Example:

Binary toGray CodeConversion:

Any binary number can be converted into equivalent Gray code by the following steps:

i) the MSB of the Gray code is the same as the MSB of the binary number;

ii) the second bit next to the MSB of the Gray code equals the Ex-OR of the MSB and second bit of
the binary number; it will be 0 if there are same binary bits or it will be 1 for different binary
bits;

iii) the third bit for Gray code equals the exclusive-OR of the second and third bits of the binary
number, and similarly all the next lower order bits follow the same mechanism.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 13

GrayCode to Binary Code Conversion:

Any Gray code can be converted into an equivalent binary number by the following steps:

i. The MSB of the binary number is the same as the MSB of the Gray code.

ii. the second bit next to the MSB of the binary number equals the Ex-OR of the MSB of the binary

number and second bit of the Gray code; it will be 0 if there are samebinary bits or it will be 1

for different binary bits;

iii. the third bit for the binary number equals the exclusive-OR of the second bit of the binary number

and third bit of the Gray code, and similarly all the next lower orderbits follow the same

mechanism.

Errordetectingcodes

 Whendataistransmittedfromonepointtoanother,likeinwirelesstransmission, o r itisjuststored,

likeinharddisksandmemories,therearechancesthatdata maygetcorrupted.

 Todetectthesedata errors,weusespecialcodes,whichareerrordetection codes.

Twotypes ofparity

 Evenparity:Checksifthereisanevennumberofones;ifso,paritybitiszero.Whenthenumberof

one’sisoddthenparitybitissetto 1.

 OddParity:Checksifthereisanoddnumberofones;ifso,paritybitiszero. Whenthenumberof

one’siseventhenparitybitis set to 1.

Errorcorrectingcode

 Error-correctingcodesnotonlydetecterrors,butalsocorrectthem.
 Thisisused normallyinSatellite communication,whereturn-arounddelayisveryhighasisthe

B.ARUNKUMAR, Asst. Prof.,/ECE Page 14

probabilityofdata gettingcorrupt.

Hamming codes

 Hammingcodeaddsaminimumnumberofbitstothedatatransmitted inanoisychannel,tobeableto

correct everypossible one-bit error.
 It candetect(not correct)two-biterrorsandcannotdistinguish between1-bitand2-bits

inconsistencies. Itcan't- ingeneral-detect 3(ormore)-bits errors.

Alphanumeric Codes

 An alphanumeric code is a binary code of a group of elements consisting of ten decimal digits, the

26 letters of the alphabet (both in uppercase and lowercase), and a certain number of special

symbols such as #, /, &, %, etc.

ASCII(AmericanStandardCode for InformationInterchange)

 It is actually a 7-bit code, where a character is represented with seven bits.

 The character is stored as one byte with one bit remainingunused.

 But often the extra bit is used to extend the ASCII to represent an additional128 characters.


EBCDIC codes

 EBCDICstandsforExtendedBinary CodedDecimalInterchange.

 It is also an alphanumeric code generally used in IBM equipment and in large computersfor

communicating alphanumeric data.

 For the different alphanumeric characters the code grouping in this code is different from the

ASCII code. It is actually an 8-bit code and a ninth bit is added as the parity bit.

**

B.ARUNKUMAR, Asst. Prof.,/ECE Page 15

Boolean Algebra and Theorems

Explain various theorems of Boolean algebra. (Nov – 2018)

Definition:

Boolean algebra is an algebraic structure defined by a set of elements B, together with two binary

operators. ‘+’ and ‘-‘, provided that the following (Huntington) postulates are satisfied;

Theorems of Boolean algebra:

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and also

to transform the given expression into a more useful and meaningful equivalent expression.

Postulates of Boolean algebra:

The postulates of a mathematical system form the basic assumptions from which itis possible to

deduce the rules, theorems, and properties of the system. The following are the important postulates of

Boolean algebra:

1. 1.1 = 1, 0+0 = 0.

2. 1.0 = 0.1 = 0, 0+1 = 1+0 = 1.

3. 0.0 = 0, 1+1 = 1

4. 1’ = 0 and 0’ = 1.

Many theorems of Boolean algebra are based on these postulates, which can be used to

simplifyBoolean expressions.

The operators and postulates have the following meanings:

 The binary operator + defines addition.

 The additive identity is 0.

 The additive inverse defines subtraction.

 The binary operator .(dot) defines multiplication.

 The multiplicative identity is 1.

 The only distributive law applicable is that of .(dot) over +:

B.ARUNKUMAR, Asst. Prof.,/ECE Page 16

a . (b + c) = (a . b) + (a . c)

Two‐Valued Boolean Algebra:

 A two‐valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with

rulesfor the two binary operators + and .(dot) as shown in the following operator tables.

Duality Principle:

The duality principle states that every algebraic expression deducible from the postulates of

Boolean algebra remains valid if the operators and identity elements are interchanged. If the dual of an

algebraic expression is desired, we simply interchange OR and AND operators and replace 1’s b y 0’s and

0’s by 1’s.

DeMorgan’s theorem:

1. The complement of product is equal to the sum of their complements. (X.Y)’=X’+Y’

2. The complement of sum is equal to the product of their complements. (X+Y)’ = X’.Y’

Basic Theorems:

State and prove postulates and theorems of Boolean algebra.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 17

B.ARUNKUMAR, Asst. Prof.,/ECE Page 18

Boolean Functions

 Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean

function described by an algebraic expression consists of binary variables, the constants 0 and 1, and

the logic operation symbols.

 For a given value of the binary variables, the function can be equal to either 1 or 0.

Example, consider the Boolean functionF1 = x + y’z

The function F1 is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is equalto 0 otherwise.

The complement operation dictates that when y’ = 1, y = 0. Therefore,F1 = 1 if x = 1 or if y = 0 and z = 1.

A Boolean function expresses the logical relationshipbetween binary variables and is evaluated by

determining the binary value ofthe expression for all possible values of the variables. The gate

implementation of F1 is shown below.

Example: Consensus Law: (function 4)

Complement of a function:

The complement of a function F is obtained from an interchange of 0’s for 1’sand 1’s for 0’s in the value

of F.

Example:

1.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 19

2. Find the complement of the functions F1 = x’yz’ + x’y’z and F2 = x(y’z’ + yz).

 By applying DeMorgan’s theorems as many times as necessary, the complements areobtained as

follows:

3. Find the complement of the functions F1 = x’yz’ + x’y’z and F2 = x(y’z’ + yz) by taking their

duals and complementing each literals.

Solution:

**

Canonical and Standard forms:

Explain canonical SOP & POS form with suitable example.

 Binary logic values obtained by the logical functions and logic variables are in binary form. An

arbitrary logic function can beexpressed in the following forms.

 (i) Sum of the Products (SOP)

 (ii) Product of the Sums (POS)

 Boolean functions expressed as a sum of minterms or product of maxterms are said to be in

canonical form.

Product term:

 The AND function is referred to as a product. The variable in a product term can appear either in

complementary or uncomplimentary form. Example: ABC’

Sum term:

 The OR function is referred to as a Sum. The variable in a sum term can appear either in

complementary or uncomplimentary form. Example: A+B+C’

Sum of Product (SOP):

 The logical sum of two or more logical product terms is called sum of product expression. It is

basically an OR operation of AND operated variables. Example: Y=AB+BC+CA

Product of Sum (POS):

 The logical product of two or more logical sum terms is called product of sum expression. It is

basically an AND operation of OR operated variables. Example: Y=(A+B).(B+C).(C+A)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 20

Minterm:

 A product term containing all the K variables of the function in either complementary or

uncomplimentary form is called Minterm or standard product.

Maxterm:

 A sum term containing all the K variables of the function in either complementary or

uncomplimentary form is called Maxterm or standard sum.

Canonical SOP Expression:

 The minterms whosesum defines the Boolean function are those which give the 1’s of the

function in a truth table.

Procedure for obtaining Canonical SOP expression:

 Examine each term in a given logic function. Retain if it is a minterm, continue to examine the

next term in the same manner.

 Check for the variables that are missing in each product which is not minterm. Multiply the

product by (X+X’), for each variable X that is missing.

 Multiply all the products and omit the redundant terms.

Example:

Express the Boolean function F = A + B’C as a sum of minterms. (May -10)(Nov – 2018)

Solution:

The function hasthree variables: A, B, and C.

 The first term A is missing two variables; therefore,

A = A(B + B’) = AB + AB’

This function is still missing one variable, so

A = AB(C + C’) + AB’(C + C’)

= ABC + ABC’ + AB’C + AB’C’

The second term B’C is missing one variable; hence,

B’C = B’C(A + A’) = AB’C + A’B’C

B.ARUNKUMAR, Asst. Prof.,/ECE Page 21

Combining all terms, we have

F = A + B’C =ABC + ABC’ + AB’C + AB’C’ + A’B’C

But AB’C appears twice, and according to theorem 1 (x + x = x), it is possible toremove one of

those occurrences. Rearranging the minterms in ascending order, wefinally obtain

F = A’B’C + AB’C’+ AB’C + ABC’ + ABC= m1 + m4 + m5 + m6 + m7

F(A, B, C) = ∑(1, 4, 5, 6, 7)

Example:Obtain the canonical sum of product form of the following function. (May 2014)

Canonical POS Expression:

 The Maxterms whose product defines the Boolean function are those which give the 1’s of the

function in a truth table.

Procedure for obtaining Canonical POS expression:

 Examine each term in a given logic function. Retain if it is a maxterm, continue to e xamine the

next term in the same manner.

 Check for the variables that are missing in each sum which is not maxterm. Add (X.X’), for each

variable X that is missing.

 Expand the expression using distributive property eliminate the redundant terms.

Example:

B.ARUNKUMAR, Asst. Prof.,/ECE Page 22

Example:

Obtain the canonical product of the sum form of the following function.

F (A, B, C) = (A + B′) (B + C) (A + C′) (Dec 2012)

Solution:

Karnaugh Map (K-map):

 Using Boolean algebra to simplify Boolean expressions can be difficult. The Karnaugh map provides

a simple and straight- forward method of minimizing Boolean expressions which represent

combinational logic circuits.

 A Karnaugh map is a pictorial method of grouping together expressions with common factors and

then eliminating unwanted variables.

 A Karnaugh map is a two-dimensional truth-table. Note that the squares are numbered so that the

binary representations for the numbers of two adjacent squares differ in exactly one position.

Rules for Grouping together adjacent cells containing 1's:

 Groups must contain 1, 2, 4, 8, 16 (2n) cells.

 Groups must contain only 1 (and X if don't care is allowed).

 Groups may be horizontal or vertical, but not diagonal.

 Groups should be as large as possible.

 Each cell containing a 1 must be in at least one group.

 Groups may overlap.

 Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost

cell and the top cell in a column may be grouped with the bottom cell.

 There should be as few groups as possible.

Obtaining Product Terms

 If A is a variable that has value 0 in all of the squares in the grouping, then the complemented

form A is in the product term.

 If A is a variable that has value 1 in all of the squares in the grouping, then the true form A is in

the product term.

http://electronics-course.com/combinational-logic

B.ARUNKUMAR, Asst. Prof.,/ECE Page 23

 If A is a variable that has value 0 for some squares in the grouping and value 1 for others, then it

is not in the product term

The Format of K-Maps:

K-Maps of 2 Variables:

K-Maps of 3 Variables:

 Simplify the boolean function F (x, y, z) =

 Simplify the boolean function F (x, y, z) =

B.ARUNKUMAR, Asst. Prof.,/ECE Page 24

K-Maps of 4 Variables:

 Simplify the boolean function F(w,x,y, z) =



B.ARUNKUMAR, Asst. Prof.,/ECE Page 25

Note:

Karnaugh Maps - Rules of Simplification

The Karnaugh map uses the following rules for the simplification of expressions by grouping

together adjacent cells containing ones

 Groups may not include any cell containing a zero

 Groups may be horizontal or vertical, but not diagonal.

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj

B.ARUNKUMAR, Asst. Prof.,/ECE Page 26

 Groups must contain 1, 2, 4, 8, or in general 2n cells. That is if n = 1, a group will contain

two 1's since 21 = 2. If n = 2, a group will contain four 1's since 22 = 4.

 Each group should be as large as possible.

 Each cell containing a one must be in at least one group.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 27

 Groups may overlap.

 There should be as few groups as possible, as long as this does not contradict any of the

previous rules.

Summmary:

1. No zeros allowed.

2. No diagonals.

3. Only power of 2 numbers of cells in each group.

4. Groups should be as large as possible.

5. Everyone must be in at least one group.

6. Overlapping allowed.

7. Wrap around allowed.

8. Fewest numbers of groups possible.

Don’t care combination:

 In certain digital systems, some input combinations never occur during the process of normal

operation because those input conditions are guaranteed never to occur. Such input combinations are

don’t care conditions.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 28

Completely specified functions:

 If a function is completely specified, it assumes the value 1 for some input combinations and the

value 0 for others.

Incompletely specified functions:

 There are functions which assume the value 1 for some combinations and 0 for some other and

either 0 or 1 for the remaining combinations. Such a functions are called incompletely specified .

Prime Implicants:

A primeimplicant is a product term obtained by combining the maximum possible number

ofadjacent squares in the map. If a minterm in a square is covered by only one primeimplicant, that prime

implicant is said to be essential.

Quine-McCluskey (or) Tabulation Method

Minimization of Logic functions:

Steps:

 A set of all prime implicants of the function must be obtained.

 From the set of prime implicants, a set of essential implicants must be determined by

preparing a prime implicant chart.

 The minterm which are not covered by the essential implicants are taken into

consideration and a minimum cover is obtained from the remaining prime implicants.

Example: (Nov-06,07,10,May- 10,08)

Simplify the boolean function F(A,B,C,D)= ∑m (1,3,6,7,8,9,10,12,14,15) + ∑d (11,13) using Quine

McClusky method. (Apr 2017)

Step:1

B.ARUNKUMAR, Asst. Prof.,/ECE Page 29

Step:2

B.ARUNKUMAR, Asst. Prof.,/ECE Page 30

Step:3

Step:4

Logic gates

Explain about different types of logic gates. (OR) What are Universal gates? Construct any four basic

gates using only NOR gates and using only NAND gates. (May 2011)[NOV – 2019]

 A logic gate is an idealized or physical device implementing a Boolean function; that is, it performs a

logical operation on one or more logical inputs, and produces a single logical output.

Positive and Negative Logic

 The binary variables two states, i.e. the logic ‘0’ state or the logic ‘1’ state. These logic states in

digital systems such as computers.

 These are represented by two different voltage levels or two different current levels.

 If the more positive of the two voltage or current levels represents a logic ‘1’ and the less posit ive of

the two levels represents a logic ‘0’, then the logic system is referred to as a positive logic system.

 If the more positive of the two voltage or current levels represents a logic ‘0’ and the less positive of

the two levels represents a logic ‘1’, then the logic system is referred to as a negative logic system.

https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Logical_operation

B.ARUNKUMAR, Asst. Prof.,/ECE Page 31

Truth Table

A truth table lists all possible combinations of input binary variables and the corresponding

outputs ofa logic system.

Universal Gates

 The OR, AND and NOT gates are the three basic logic gates as they together can be used to

construct the logic circuit for any given Boolean expression.

 The NOR and NAND gates have the property that they individually can be used to hardware-

implement a logic circuit corresponding to any given Boolean expression.

 That is, it is possible to use either only NAND gates or only NOR gates to implement any

Boolean expression. This is so because a combination of NAND gates or a combination of NOR

gates can be used to perform functions of any of the basic logic gates. It is for this reason that

NAND and NOR gates are universal gates.

43

1. What is digital logic family? Give the classification of digital logic family.

DIGITAL LOGIC FAMILIES:

 A digital family is a group of compatible devices with the same logic levels and

supply voltages.

 According to components used in the logic family, digital logic families are

classified into

 Figure 1.1 : classification of logic families

2. What are the characteristics of digital logic family? Explain its

characteristics. (Dec-06,08; May-08,11,14,18)

Characteristics of digital logic families:

Propagation delay:

 The propagation delay of a gate is basically the time interval between the

application of the input pulse and the occurrence of the resulting output pulse.

 The propagation delay is very important characteristic of logic circuits because it

limits the speed at which they can operate.

 The shorter the propagation delay, higher the speed of the circuit and vice-versa.

 The propagation delay is determined using two basic time intervals:

1. tPLH : It is the delay time measured when output is changing from logic 0 to

logic 1 state (LOW to HIGH)

2. tPHL : It is the delay time measured when output is changing from logic 1 to

logic 0 state (HIGH to LOW).

 When the tPHL and tPLH are not equal, the larger value is considered as a

propagation delay time for that logic gate, i.e.

tp = max (tPLH, tPHL)

44

Power dissipation:

 The amount of power that an IC dissipates is determined by the average supply

current, ICC that it draws from the VCC supply. It is the product of ICC and VCC.

 For ICs, the value of ICC for a LOW gate output (ICCL) is different from a HIGH

output (ICCH).

 Therefore, average ICC is determined based on the 50% duty cycle operation of

the gate (LOW half of the time and HIGH half of the time).

ICC(avg) =
ICCH +ICCL

2

This can be used to calculate average power dissipation as,

PD(avg) = ICC(avg)X VCC

Current and voltage parameter:

VIL(min) – High-Level input voltage: It is the minimum voltage level required for a

logic 1 at an input. Any voltage below this level will not be accepted as a HIGH by

the logic circuit.

VIL(max) – Low-Level input voltage: It is the maximum voltage level required for a

logic 0 at an input. Any voltage above this level will not be accepted as a LOW by the

logic circuit.

VOH(min) – High-level output voltage: It is the minimum voltage level at the logic

circuit output in the logical 1 state under defined load conditions.

VOL(max) – Low-level output voltage: It is the maximum voltage level at the logic

circuit output in the logical 0 state under defined load conditions.

IIH – High-level input current: It is current that flows into an input when a

specified high-level voltage is applied to that input.

IIL – Low-level input current: It is current that flows into an input when a specified

low-level voltage is applied to that input.

Figure 1.2 : currents and voltages in the two logic states

45

IOH – High-level output current: It is the current that flows from an output in the

logical 1 state under specified load conditions.

IOL – Low-level output current: It is the current that flows from an output in the

logical 0 state under specified load conditions.

Noise margin and logical voltages levels:

In digital circuits, the binary 0 and 1 are represented by a pair of voltage levels.

Each logic family has a different standard which is shown in the table

Family Logic 0 Logic 1

TTL 0V +5V

ECL -1.7V -0.9V

CMOS 0V 3-15V

 The unwanted signals are called noise and can sometimes cause the voltage at

the input to logic circuit to drop below VIH(min) or rise above VIL(max), which could

produce unpredictable operation.

 The noise immunity at the logic circuit refers to the circuit’s ability to tolerate the

noise without causing spurious changes in the output voltage.

 To avoid this problem due to noise, voltage level VIH(min) is kept at a few fraction of

volts below VOH(min) and voltage level VIL(max) is kept above VOL(max), at the design

time.

Figure 1.3 : Noise margins

 VNH is the difference between the lowest possible HIGH output, VoH(min) and the

minimum voltage, VIH(min) required for a HIGH input.

 This voltage difference, VNH is called high-state noise margin. Similarly, we have

low-state noise margin.

 It is the voltage difference between the largest possible low output, VOL(max) and

the maximum voltage, VIL(max) required for a Low input.

46

 In short we can write as,

VNH = VOH(min)– VIH((min) and

VNH = VIL(max) – VOL(max)

 The noise margin allows the digital circuit to function properly if noise voltages

are within the limits of VNH and VNL for a particular logic family.

Fan-in and fan-out:

 The maximum number of inputs of several gates that can be driven by the

output of a logic gate is decided by the parameter called fan-out.

 For example, a logic gate with fan-out 10 can drive maximum 10 logic inputs

from the same family.

 The fan-in of a digital logic gate refers to the number of inputs. For example, an

inverter has a fan-in of 1, a 2-input NOR gate has a fan-in of 2, a 4-input NAND

gate has a fan-in of 4 and so-on.

Current sinking:

 A device output is said to sink current when current flows from the power

supply, through the load and through the device output to ground.

Current sourcing:

 A device output is said to source current when the current from the power

supply, out of the device output and through the load to ground.

Figure 1.4(a) :Current sinking

Figure 1.4(b) :Current sourcing

Speed power product:

 In general, for any digital IC, it is desirable to have shorter propagation delays

(higher speed) and lower values of power dissipation.

 There is usually a trade-off between switching speed and power dissipation in

the design of logic circuit i.e. speed is gained at the expense of increased power

dissipation.

47

 Therefore, a common means of measuring and comparing the overall

performance of an IC family is the speed-power product (SPP). It is also called

Figure of Merit.

3. Write a note on RTL family? Explain the operation of 2-input RTL NOR

gate. (Dec-17)

Resistor – Transistor Logic (RTL):

RTL circuit:

 RTL circuits consist of resistors and transistors. The figure 1.5 shows the 2-

input RTL NOR gate.

 In this circuit, emitters of both the transistors are connected to a common

ground and collectors of both transistors are tied through a common collector

resistor RCto a supply voltage VCC.

 The resistor RC is commonly known as passive pull-up resistor.

 Figure 1.5: 2-input RTL NOR gate

Circuit operation:

 Inputs representing logic levels are applied at A and B terminals.

 When both the inputs are low, transistors Q1 and Q2 are cut-off and the output

is HIGH.

 A HIGH level on any input devices the corresponding transistor to saturation

causing the output to go LOW. The below table shows the truth table for 2-input

NOR gate.

INPUT A INPUT B INPUT C

0 0 1

0 1 0

1 0 0

1 1 0

Truth table for 2-input NOR gate

48

 RTL gates the LOW level output voltage is 0.2 V. In RTL a HIGH level output

voltage depends on the number of gates connected to the Output.

 As number of gates connected to the output increases, output voltage decreases.

Specifications:

 The RTL gates have poor noise margin, poor fan-out capabilities, low speed and

high power dissipation.

Parameter Value

Propagation Delay 12nsec

Power Dissipation 30-100 mW

Noise Margin 0.2 V

Fan-Out 4

4. Write a note on DTL family. Explain the operation of two input DTL NAND

gate. (Dec-17, May-18)

Diode – Transistor Logic (DTL):

 The DTL is more complex than RTL but because of its greater fan-out and

improved noise margins it has replaced RTL.

DTL Circuit:

 Figure 1.6 shows the discrete circuit for DTL NAND gate. It consists of input

diodes and resistor RD forming an AND gate and following them in transistor

inverter.

Figure 1.6: 2-input DTL NAND gate

49

Circuit operation:

 When both inputs are LOW, diode DA and DB conduct resulting 0.7 volts at point

P. This 0.7 voltage at point is not sufficient to drive transistor Q1.

 Therefore, Q1 is cut off giving output voltage V0 = VCC logic 1. A LOW level on any

input cause corresponding diode to conduct resulting voltage at point P =0.7 V.

 This causes transistor to remain in cut-off and the output voltage is equal VCC =

logic 1.

 When both inputs are logic high, diodes DA and DB are reversed biased. This

causes the base of the Q1 to flow through RD, D1, D2 and base of transistor Q1.

 This drives the transistor Q1 in saturation giving output voltage VCE(sat) = 0.2V =

logic 0.

 When A and B inputs are HIGH, transistor Q1 is driven to saturation and its base

to emitter junction capacitance is charged.

 Now if any of the input goes low, voltage at the point B becomes 0.7V and

transistor Q1 will try to come out of saturation.

 To drive transistor from saturation to cut-off region it is necessary to discharge

the stored charge on the internal capacitance.

 The resistance, RB is connected to the -2V supply to increase the rate of

discharge.

INPUT A INPUT B INPUT C

0 0 1

0 1 1

1 0 1

1 1 0

 Truth table of 2-input DTL NAND gate

Specifications:

Parameter Value

Propagation Delay 30nsec

Power Dissipation 60 W

Noise Margin 0.7 V

Pan-Out 8

 Thus we can say that the DTL has the advantage of greater fan-out and improved

noise margins, but it suffers from somewhat lower speed.

Modified integrated DTL NAND gate:

 To increase the fan-out of DTL gate the base current of T1 has to be increased.

This can be done by replacing diode D1 by the transistor, as shown in the figure

1.7.

50

Figure 1.7: modified 3-input DTL NAND gate

5. Write short note on TTL family. Explain concept, operation and

characteristics of TTL family. (Dec-07,10, 17)

Transistor TransistorLogic (TTL):

 TTL is named for its dependence on transistors alone to perform basic logic

operations.

Draw the circuit diagram and explain the working of TTL inverter. (Dec-04)

TTL Inverter:

 We have seen that when input voltage is LOW, the output voltage is HIGH and

vice-versa. Therefore we can make a logic inverter from an npn transistor in the

common emitter configuration as shown in the figure 1.8.

Figure1.8: TTL inverter

The figures 1.9(a) and 1.9(b)Shows the operation of transistor inverter for both the

inputs (HIGH and LOW) using switching analogy.

51

Figure: 1.9 (a)

Figure: 1.9 (b)

6. Explain the working of 2-input TTL NAND gate. (Dec-05, May-08,17)

2-Input TTL NAND gates:

 The figure 1.10 Shows the circuit diagram of 2-input NAND gate.

 Its input structure consists of multiple-emitter transistor and output structure

consists of totem-pole output.

 Here Q1 is the NPN transistor having two emitters, one for each input to the

gate.

52

Figure 1.10:2-input TTL NAND gate

 Although this circuit looks complex, we can simplify its analysis using the diode

equivalent of the multiple-emitter transistor Q1, as shown in figure 1.11.

 Diodes D2 and D3 represent the two E-B junction of Q1 and D4 is the collector –

base (C-B) junction.

Figure 1.11: Diode equivalent for Q1.

 The input voltages A and B are either LOW (ideally grounded) or HIGH (ideally +5

volts).

 If either both A and B are low, the corresponding diode conducts and the base of

Q1 is pulled down to approximately 0.7V.

 This reduces the base voltage of Q2 almost to zero. Therefore Q2 cuts off. With

Q2 open, Q4 goes into cut-off and the Q3 base is pulled HIGH.

 Since Q3 acts as an emitter follower, the Y output is pulled up to a HIGH voltage.

53

 On the other hand, when both A and B are HIGH, the emitter diode of the Q1 are

reversed biased making them off.

 This causes the collector diode D4 to go into forward condition. This forces Q2

base to go HIGH.

 In turn, Q4 goes into saturation, producing a low output. The following table

summarizes all input and output conditions.

A B C

0 0 1

0 1 1

1 0 1

1 1 0

 Truth table for 2-input NAND gate

 Without diode D1 in the circuit, Q3 will conduct slightly when the output is low.

 To prevent this, the diode is inserted; its voltage drop keeps the base-emitter

diode of Q3 reverse-biased. In this way, only Q4 conducts when the output is

low.

7. Explain the working of 2-input TTL NAND gate. (Dec-05)

3-input TTL NAND gate:

 The figure 1.12 shows the three input TTL NAND gate. It is same as that of two

input TTL NAND gate except that it’s Q1 (NPN) transistor has three emitters

instead of two. Rest of the circuit is same.

Figure 1.12: Three input TTL NAND gate

54

 For three input NAND gate if all the input are logic 1 then and then only output

is logic 0; otherwise output is logic 1.

 The operation is similar to the 2-input NAND gate. The table below shows the

truth table for 3-input NAND gate.

A B C Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Truth table of 3-input NAND gate

8. Explain the totem-pole output stage in TTL with circuit diagram. (Dec-

2018)

Totem-pole output:

 Transistor Q3 and Q4 form a totem-pole. Such a configuration is known as active

pull-up or totem pole output.

 Totem-pole transistors are used because they produce LOW output impedance.

 Either way, the output impedance is low. This means that the output voltage can

be change quickly from one state to the other because any stray output

capacitance is rapidly charged or discharged through the low output impedance.

 Thus the propagation delay is low in totem-pole TTL logic.

Figure1.13: Two input NAND gate with totem-pole output.

 One problem with totem pole output is that two outputs cannot be tied together.

The figure 1.14Shows this problem.

55

Figure 1.14: Totem-pole outputs tied together can produce harmful current

Open-collector output:

 Some TTL devices provide another type of output called open collector output.

 The output of two different gates with open collector output can be tied together.

This is known as wired logic.

 Figure 1.15 shows a 2-input NAND gate with an open-collector output eliminates

the pull-up transistor Q3, D1 and R4.

 The output is taken from the open collector terminal of transistor Q4.

Figure 1.15: Open collector 2-input TTL NAND gate

 Because the collector of Q4 is open, a gate like this will not work properly until

you connect an external pull-up resistor, as shown in figure 1.16.

 When Q4 is ON, output is low and when Q4 is OFF output is tied to VCC through

an external pull up resistor.

56

Figure 1.16: Open collector output with pull-up resistor

 As mentioned earlier, the open collector outputs of two or more gates can be

connected together, as shown in the figure 1.17 (a).

 The connection is called a wired-AND and represented schematically by the

special AND gate symbol as shown in figure 1.17 (b).

Figure 1.17

9. Give the difference between Totem-Pole and Open-Collector outputs.

 (May-15,17)

Comparison between Totem-Pole and Open-Collector outputs:

S.NO Totem-pole Open collector

1.

Output stage consists of pull-up

Transistor(Q3),diode resistor and

pull down transistor(Q4).

Output stage consists of only pull down

transistor.

2.
External Pull-Up Resistor is not

Required.

External Pull-Up Resistor is Required

for proper operation of gate.

3.
Output of two gates cannot be tied
together.

Output of two gate can be tied together
using wired AND technique.

4. Operating speed is high. Operating speed is Low.

57

10. Explain the working of TTL inverter with tristate output. (May-09)

Tri-State TTL Inverter:

 The tristate configuration is a third type of TTL output configuration.

 It utilizes the high-speed operation of the totem-pole arrangement while

permitting outputs to be wired-ANDed (connected together).

 It is called tristate TTL because it allows three possible output stages : HIGH,

LOW and high-impedance.

 We know that transistor Q3 is ON when output is HIGH and Q4 is ON when

output is LOW.

 In the high impedance state both transistors, transistors Q3 and Q4 in the

totem-pole arrangement are turned OFF.

 As a result, the output is open or floating, it is neither LOW nor HIGH.

Figure 1.18: Tristate TTL inverter

 A is the normal logic input whereas E is an ENABLE input. When ENABLE input

is HIGH, the circuit works as a normal inverter.

 When ENABLE input is LOW, both transistors are OFF and output is at high

impedance state.

 When ENABLE input is HIGH, ENABLE input is active high. In some circuits

ENABLE input can be active LOW, i.e. circuit operates when ENABLE input

LOW.

Tristate outputs can be connected together as shown in the figure 1.19.

58

Figure 1.19: Tristate outputs connected together.

11. Name and explain the characteristics of TTL family.(Dec-04, 10) (May-06)

Characteristics of TTL Family:

 There are several series/ subfamilies in the TTL family of logic devices. Let us see

the characteristics of standard TTL family.

Supply voltage and temperature range:

 Both the 74 series and 54 series operate on supply voltage of 5V.

 The 74 series works reliably over the range 4.75V to 5.25V, while the 54 series

can tolerate a supply variation of 4.5 to 5.5 V.

 The 74 series devices are guaranteed to work reliably over a temperature range of

0to 70○C where as 54 series devices can handle temperature variations fromm-

55 to +125○C.

 From the above values we can say that 54 series devices have greater tolerance

of voltage and temperature variations.

 Hence, these devices are used where it is necessary to maintain reliable

operation over an extreme range of conditions.

 For example, in military and space application. The only disadvantage of these

devices is that they are expensive.

Voltage levels and noise margin:

 Table below shows the input and output logic voltage levels for the standard 74

series.

 The minimum and maximum values shown in the table are for worst case

conditions of power supply, temperature and loading conditions.

Voltages Minimum Typical Maximum

VOL - 0.2 0.4

VOH 2.4 3.4 -

VIL - - 0.8

VIH 2.0 - -

59

 Looking at the Table. We can say that, in the worst case, there is difference of

0.4V between the driver output voltages and the required load input voltages. For

instance, the worst-case low values are

VOL(max) = 0.4 V driver output

VIL(max) = 0.8 V load input

 Similarly, the worst-case high values are

VOH(min) = 2.4 V driver output

VIH(max) = 2 V load input

 In either case, the difference is 0.4 V. This difference is called noise margin. For

TTL, low state noise margin, VNL and high state noise margin, VNH both are equal

and 0.4 V. This is illustrated in figure 1.20.

 It provides built-in protection against noise. It ensures reliable operation of the

device for induced noise voltages less than 0.4 V.

Figure 1.20: TTL logic levels and noise margin

Power dissipation and propagation delay:

 A standard TTL gate has an average power dissipation of about 10 mW. It may

vary from this value because of signal levels, tolerances etc.

 We know that, the propagation delay time is the time it takes for the output of a

gate to change after the inputs have changed.

 The propagation delay time of a TTL gate is approximately 10 nanoseconds.

Fan-out:

 A standard TTL output can typically drive 10 standard TTL inputs. Therefore,

standard TTL has fan-out 10.

60

S.NO Characteristics Values

1. Supply Voltage
For 74 series-(4.75 to 5.25) units

For 54 series-(4.75 to 5.5)units

2. Temperature
For 74 series-(0 to 70’C) units

For 54 series-(-55 to 125’C)units

3. Voltage Level

VOL(max) – 0.4V

VOH(max) – 2.4V

VIH(max) – 0.8V

VIH(max) – 2.0V

4. Noise Margin 0.4

5. Power Dissipation 10mW per gate

6. Propagation Delay Typically 10 ns

7. Fan-out 10

Standard TTL characteristics

12. Draw and explain the NOR gate using TTL logic. (Dec-11)

TTL NOR GATE:

 The figure 1.21 Shows the circuit diagram for an LS-TTL two-input NOR gate

(74LS02). The circuit is basically divided into three functional parts.

 Input circuits.

 Phase splitter.

 Output stage.

 It is almost identical to those of an LS-TTL NAND gate.

 The difference is that an LS-TTL NAND gate uses diode to perform the AND

function, while an LS-TTL NOR gate uses parallel transistors in the phase

splitter to perform the OR function.

 If either input A and B is HIGH, the corresponding phase splitter transistor Q2A

or Q2B is turned on, which turns off Q3 and Q4 while turning on Q5 and Q6 and

the output is LOW.

 If both the inputs are LOW, then both phase-splitter transistors are OFF and the

output is forced HIGH. This functional operation is summarized in functional

table.

61

Figure 1.21: Circuit diagram of a two-input LS-TTL NOR gate

A B Q2A Q2B Q3 Q4 Q5 Q6 Y

0 0 OFF OFF ON ON OFF OFF 1

0 1 OFF ON OFF OFF ON ON 0

1 0 ON OFF OFF OFF ON ON 0

1 1 ON ON OFF OFF ON ON 0

 (a) Functional table

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

 (b) Truth table

Advantages of TTL:

 High speed operation. Fastest among the saturated logic families. The

propagation delay time is about 10ns.

 Moderated power dissipation.

 Available in commercial and military versions.

 Available for wide range of functions..

62

 Low cost.

 Moderate packaging density.

Disadvantages of TTL:

 Higher power dissipation than CMOS.

 Lower noise immunity than CMOS.

 Less fan-out than CMOS.

MOS Families:(Dec 07,10)

Digital circuits with MOSFETs can be grouped into three categories:

 PMOS – uses only P-channel enhancement MOSFETs,

 NMOS – uses only N-channel enhancement MOSFETs and

 CMOS (complementary MOS) – uses both P and N-channel devices.

13. Explain the CMOS inverter.

NMOS Inverter:

 Figure 1.22 shows the basic NMOS inverter circuit. It consist two N-channel

MOSFETs. Q2 is a switching MOSFET and Q1 is a load MOSFET.

 Q1 acts as load resistance (Rd) for Q2. As gate of Q1 is permanently connected to

the VDD, it is always ON, and hence the load resistance is equal to the RON of the

MOSFET.

 Particularly, Q1 is designed to have greater RON than the RON of Q2. To achieve

this channel of Q1 is made much narrower than channel of Q2. Typically RON of

Q1 is 100 K whereas RON of Q2 is 1 K.

 Know that MOS devices are voltage controlled devices. When positive voltage

(HIGH input) is applied between gate and source, Q2 is switched ON and it

makes the output low.

 On the other hand, when input is LOW Q2 is switched OFF and therefore, output

is high.

Figure 1.22: NMOS inverter circuit and its equivalent circuit

63

VIN (VGS) Q2 Vo = VIN

0 V (logic 0) OFF + 5 V (logic 1)

5 V (logic 1) ON 0 V (logic 0)

Operation of NMOS inverter

14. Explain the operation of NMOS NAND Gate.

NMOS NAND Gate:

 Figure 1.23 shows 2-input NMOS NAND gate. Q1 acts as a load resistor and Q2

and Q3 are the switching MOSFETs controlled by the inputs A and B.

 The equivalent switching circuit consist of resistor and two switches in series. If

either A and B or both inputs are low, the corresponding MOSFETs are OFF i.e,

the corresponding switches are open and the output is high.

 If A and B both inputs are high, the corresponding MOSFETs are ON i.e, the

corresponding switches Are closed and the output is low.

Figure 1.23: 2-input NMOS NAND gate

A B Q2 Q3 Vo = AB

0 0 OFF OFF 1

0 1 OFF ON 1

1 0 ON OFF 1

1 1 ON ON 0

Operation of NMOS NAND gate

64

15. Explain the operation of NMOS NOR Gate.

NMOS NOR Gate:

 Figure 1.24 shows 2-input NMOS NOR gate. Q1 acts as a load resistor and Q2

and Q3 are the switching MOSFETs controlled by the inputs A and B.

 The equivalent switching circuit consist of a resistor and two switches connected

in parallel.

 When either or both input are high, the corresponding MOSFETs are ON i.e,

corresponding switches are closed making the output low.

 If both inputs are low, both MOSFETs are OFF i.e, both switches are open and

the output is high.

Figure 1.24:2-input NMOS NOR gate

A B Q2 Q3 Vo = A + B

0 0 OFF OFF 1

0 1 OFF ON 0

1 0 ON OFF 0

1 1 ON ON 0

Operation of NMOS NOR gate

Characteristics of NMOS:

Operating speed:

 Low operating speed with propagation delay time around 50 ns.

 This is because it has high output resistance, very high input resistance and

reasonably high input capacitance.

Noise margin: Typically 1.5 V.

Fan out: Typically 30.

Power drain: less, around 0.1 mW per gate.

65

16. Write short note on PMOS logic.

PMOS Logic:

 The figure 1.25 Shows PMOS inverter, NAND gate and NOR gate.

 For p-channel, enhancement-type MOSFET a negative voltage is needed at the

gate terminal to form a channel.

 According to the positive logic, logic 0 is approximately –VDD<-VT, which is the

low-voltage signal value, which logic 1 is approximately ground, which is the

high voltage signal value.

Figure 1.25: PMOS logic gates

VIN (VGS) Q2 Vo = VIN

0 V (logic 0) OFF + 5 V (logic 1)

5 V (logic 1) ON 0 V (logic 0)

Operation of PMOS inverter

A B Q2 Q3 Vo = AB

0 0 OFF OFF 1

0 1 OFF ON 1

1 0 ON OFF 1

1 1 ON ON 0

 Operation of PMOS NAND gate

66

A B Q2 Q3 Vo = A + B

0 0 OFF OFF 1

0 1 OFF ON 0

1 0 ON OFF 0

1 1 ON ON 0

Operation of PMOS NOR gate

17. Explain the operation of CMOS Inverter. (May-04)

CMOS Inverter:

 Figure 1.26 shows the basic CMOS inverter circuit.

 It consist of two MOSFETs in series in such a way that the p-channel device has

its source connected to +VDD (a positive voltage) and the n-channel device has its

source connected to ground.

 The gates of the two devices are connected together as the common input and

the drains are connected together as the common output.

 Figure 1.26: CMOS inverter circuit

 When input is HIGH, the gate of Q1 (p-channel) is at 0V relative to the source of

Q1 i.e Vgs1 = 0V. Thus, Q1 is OFF. On the other hand, the gate of Q2 (n-channel)

is at +VDD. Thus, Q2 is ON. This will produce VOUT = 0V, a shown in figure 1.27

(a)

 When input is LOW, the gate of Q1(p-channel) is at a negative potential relative

to its source while Q2 is ON and Q2 is OFF. This produces output voltage

approximately +VDD, as shown in the figure1.27 (b).

67

Figure 1.27: Operation of CMOS inverter for both input conditions

A Q1 Q2 Output

0 ON OFF 1

1 OFF ON 0

Operation of CMOS inverter circuit

18. Explain the operation of CMOS NAND Gate. (Dec-03, June-08)

CMOS NAND Gate:

 Figure 1.28 shows CMOS 2-input NAND gate.

 It consists of two p-channel MOSFETs, Q1 and Q2, connected in parallel and two

n-channel MOSFETs, Q3 and Q4 connected in series.

 The equivalent switching circuit has both inputs are low. Here, the gates of both

p-channel MOSFETs are negative with respect to their sources, since the sources

are connected to +VDD. Thus, Q1 and Q2 are both ON.

68

 (c) (d)

 Figure 1.28: CMOS NAND gate

 Since the gate-to-source voltages of Q3 and Q4 (n-channel MOSFETs) are both

0V, those MOSFETs are Off. The output is therefore connected to +VDD (HIGH)

through Q1 and Q2 and is disconnected from ground, as shown in the figure

1.28 (b).

 And figure1.28(c) shows the equivalent switching circuit when A = 0 and B =

+VDD. In this case, Q1 is on because VGS1 = - VDD and Q4 is ON because VGS4 =

+VDD.

 MOSFETs Q2 and Q3 are off because their gate-to-source voltages are 0V. Since

Q1 is ON and Q3 is OFF, the output is connected to +VDD and it is disconnected

from ground.

 When A = +VDD and B = 0V, the situation is similar (not shown); the output is

connected to +VDD through Q2 and it is disconnected from ground because Q4 is

OFF.

 Finally, when both the inputs are high(A= B = +VDD), MOSFETs Q1 and Q2 are

both OFF and Q3 and Q4 are both ON.

 Thus, the output is connected to the ground through Q3 and Q4 and it is

disconnected from +VDD. The table summarizes the operation of 2-input CMOs

NAND gate.

A B Q1 Q2 Q3 Q4 Output

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

Truth table of NAND gate

69

Figure 1.29: CMOS 3-input NAND gate

A B C Q1 Q2 Q3 Q4 Q5 Q6 Z

0 0 0 ON OFF OFF OFF ON ON 1

0 0 1 ON OFF OFF ON ON OFF 1

0 1 0 ON OFF ON OFF OFF ON 1

0 1 1 ON OFF ON ON OFF OFF 1

1 0 0 OFF ON OFF OFF ON ON 1

1 0 1 OFF ON OFF ON ON OFF 1

1 1 0 OFF ON ON OFF OFF ON 1

1 1 1 OFF ON ON ON OFF OFF 0

Truth table of three input NAND gate

19. Explain the operation of CMOS NOR Gate. (Dec-15)

CMOS NOR Gate:

 Figure 1.30 shows 2-input CMOS NOR gate. Here, p-channel MOSFETs Q1 and

Q2 are connected in series and n-channel MOSFETs Q3 and Q4 are connected in

parallel.

 Like NAND circuit, this circuit can be analyzed by realizing that a LOW at any

input turns ON its corresponding p-channel MOSFET and turns OFF its

corresponding n-channel MOSFET, and vice-versa for high input.

 This is illustrated in figure 1.30. The table summarizes the operation of two

input NOR gate.

70

Figure 1.30: CMOS NOR gate

A B Q1 Q2 Q3 Q4 Output

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 0

1 0 OFF ON ON OFF 0

1 1 OFF OFF ON ON 0

Truth table for NOR gate

71

20. Explain the characteristics of CMOS family. (May-04, 07; Dec-06, 11)

Characteristics of CMOS Family:

Operating speed:

 Slower than TTL series. Approximately 25 to 100 ns depending on the subfamily

of CMOS. It also depends on the power supply voltage.

Voltage levels and Noise Margins:

 The voltage level for CMOS varies according to their subfamilies. These are listed

in table.

Parameter
CMOS series

4000 B 74 HC 74 HCT 74 AC 74 ACT

VIH(min) 3.5 3.5 2.0 3.5 2.0

VIL(max) 1.5 1.0 0.8 1.5 0.8

VOH(min) 4.95 4.9 4.9 4.9 4.9

VOL(max) 0..5 0.1 0.1 0.1 0.1

VNH 1.45 1.4 2.9 1.4 2.9

VNL 1.45 0.9 0.7 1.4 0.7

 Noise margins in table are calculated as follows.

VNH = VOH(min) – VIH(min)

VNL = VIL(max) – VOL(max)

Fan-out:

 The CMOS inputs have an extremely large resistance (1012) that draws

essentially no current from signal source, each CMOS input, however, typically

presents a 5 pF load to ground as shown in figure 1.31

 This input capacitance limits the number of CMOS inputs that one CMOS output

can drive.

Figure 1.31: One CMOS output driving several CMOS inputs

72

 The fan-out for CMOS depends on the permissible maximum propagation delay.

 Typically, CMOS outputs are limited to a fan-out of 50 for low-frequency

operation (≤ 1MHz). Of course, for high-frequency operation the fan-out would

have to be less.

Power Dissipation (PD):

 The power dissipation of a CMOS IC is very low as long as it is in a d.c.

condition. Unfortunately, power dissipation of CMOS IC increases in proportion

to the frequency at which the circuits are switching states.

 When CMOS output switches from LOW to HIGH, a transient charging current

has to be supplied to the load capacitance.

 Therefore, as the switching frequency increases, the average current drawn from

VDD also increases, resulting increase in power dissipation.

Propagation Delay:

 The propagation delay in CMOS is the sum of delay due to internal capacitance

and due to load capacitance.

 The delay due to internal capacitance is called the intrinsic propagation delay.

The delay due to load capacitance can be approximated as follows,

tp(CL) = 0.5 R0 CL seconds

wheretp(CL) is either tpLH or tpHL.

R0 is the output resistance of the gate and CL is the total load capacitance.

The R0 depends on the supply voltage and it can be approximated as

 Ro ≈
Vcc

Ios

Where IOS is the short circuit output current.

Unused inputs:

 CMOS inputs should never be left disconnected. All CMOS inputs have to be tied

either to a fixed voltage level (0 V or VDD) or to another input.

 This rule applies even to the inputs of extra unused logic gates on a chip.

 An unused CMOS input is susceptible to noise and static charges that could

easily bias both the P and N-channel MOSFETs in the conductive state, resulting

in increased power dissipation and possible overheating.

Static-charge susceptibility (CMOS Hazards):

 The primary source of charge is “static” electricity, usually produced by handling

and the motion of various kinds of plastics and textiles.

 The CMOS devices are protected against this static charge by on-chip diode-

resistor network, as shown in figure 1.32

 These diodes are designed to turn ON and limit the size of the input voltage to

well below any damaging value.

73

Figure 1.32: Typical network used to product CMOS from static charges.

Latch-up:

 CMOS integrated circuits contain parasitic PNP and NPN transistors.

 Their existence is not intentional but is unavoidable.

 Because of conducting paths between a pair of such transistors, a device can be

triggered into a heavy conduction mode, known as latch-up.

Advantages of CMOS Family:

 Consumes less power.

 Can be operated at high voltages, resulting in improved noise immunity.

 Fan-out is more.

 Better noise margin.

Disadvantages of CMOS Family:

 Susceptible to static charge.

 Switching speed low.

 Greater propagation delay.

21. Write a short notes on ECL family. (May-08) (Dec-17)

ECL Family:

 Another logic family has been developed that prevents transistor saturation,

thereby increasing overall switching speed by using a radically different circuit’s

structure, called Current Mode Logic (CML). This logic family is also called

Emitter-Coupled Logic (ECL).

 Unlike TTL and CMOS families, ECL does not produce a large voltage swing

between the LOW and HIGH levels.

 It has a small voltage swing, less than volt, and it internally switches current

between two possible paths, depending on the output state.

Explain the characteristics of ECL family. (Dec-06)

Characteristics of ECL Family:

 It is the fastest of logic families. The popular 10K and 100K ECL families offer

propagation delays as short as 1ns. The latest ECL family, ECL in PS (ECL in

picoseconds), offers maximum delays under 0.5 ns (500 ps).

74

 Transistors are not allowed to go into complete saturation and thus eliminating

storage delays.

 To prevent transistors from going into complete saturation, logic levels are kept

close to each other. Due to this transistor is not driven into saturation when its

input switches from low to high.

 As logic levels are kept close to each other, noise margin is reduced and it is

difficult to achieve good noise immunity.

 Another disadvantage of this approach is that power consumption is more

because transistors are not completely saturated.

 Switching transients are less because power supply current is more stable than

in TTL and CMOS circuits.

Basic ECL circuit:

 The figure 1.33shows the basic inverter/buffer circuit in ECL family.

 It consists of two transistors connected in differential single ended input mode

with a common emitter resistance.

 The circuit has two outputs: inverting output (OUT1) and non-inverting output

(OUT2). For this circuit, the input LOW and HIGH voltage levels are defined as

3.6V and 4.4V, and it produces output LOW and HIGH levels as 4.2V and 5.0V.

Figure 1.33: Basic ECL invertor/buffer circuit

 When VIN is HIGH (4.4 V), transistor Q1 is ON, but not saturated and transistor

Q2 is OFF. Thus, VOUT2 is pulled to 5.0 V (HIGH) through R2 and drop across R1

is 0.8 V so that VOUT1 Is 4.2 V(LOW).

 When VIN is LOW (3.6V), transistor Q2 is ON, but not saturated and transistor

Q1 is OFF. Thus, VOUT1 is pulled to 5.0 V (HIGH) through R1 and drop across R2

is 0.8 V so that VOUT2 is 4.2 V (LOW).

75

22. Explain ECL OR/NOR gate.

ECL OR / NOR Gate:

 Figure 1.34 shows, 2-input ECL OR/NOR gate and it logic symbol. There has an

additional transistor in parallel with Q1 as compared to ECL inverter.

 If any input is HIGH corresponding transistor is active, and VOUT1 is LOW (NOR

output). At the same time Q3 is OFF producing VOUT2 HIGH (OR output).

 Figure 1.34: 2-input ECL OR/NOR gate

 We can observe that the input and output LOW and HIGH voltage levels for basic

ECL family are not same, it has 0.6V difference.

 This is a problem. This problem cannot be solved by connecting diode in series

with output to lower its voltage by 0.6 volt because if we do this, it results poor

fan-out.

 Another problem occurs when output is HIGH and it drives another ECL input.

This HIGH output has to drive base current of another ECL input, resulting drop

across R1 or R2, reducing the output voltage.

 These problem of basic ECL are solved by 10 K ECL family.

Advantages of ECL Family:

 It is a fastest logic family. Offers propagation delay about 1 ns.

 Transistors are not allowed to go into complete saturation and thus

eliminating storage delays.

 Less switching transients since power supply current is more stable.

 Large fan-out.

Disadvantages of ECL Family:

 Low noise immunity.

 High power dissipation.

76

23. Compare the characteristics of TTL, ECL and CMOS logic families.

(Dec-12)

Comparison between TTL, CMOS and ECL Families:

S.NO Parameter CMOS TTL ECL

1. Device used

n-channel and

p-channel

MOSFET

Bipolar

junction

transistor

Bipolar

junction

transistor

2. VIH(min) 3.5 V 2 V -1.2 V

3. VIL(max) 1.5 V 0.8 V -1.4 V

4. VOH(min) 4.95 V 2.7 V -0.9 V

5. VOL(max) 0.005 V 0.4 V -1.7 V

6.
High level

noise margin
VNH = 1.45 V 0.4 V 0.3 V

7.
Low level noise

margin
VNL = 1.45 V 0.4 V 0.3 V

8.
Noise

immunity

Better than

TTL

Less than

CMOS

More
vulnerable to

noise

9.
Propagation
delay

70 ns 10 ns 500 ps

10.
Switching

speed
Less than TTL

Faster than

CMOS
Fastest

11.

Power

dissipation per

gate

0.1 mW 10 mW 25 mW

12.
Speed power

product
0.7 pJ 100 pJ 0.5 pJ

13. Fan-out 50 10 25

14.
Power supply
voltage

3-15 V Fixed 5 V -4.5 – 5.2 V

15.
Power

dissipation

Increase with

frequency

Increase with

frequency

Constant with

frequency

16. Application

Portable

instrument

where battery
supply is used.

Laboratory

instruments.

High speed

instruments.

24. Compare the various digital logic families. (Dec-08)

Comparison between various digital logic families:

Parameter RTL DTL TTL ECL CMOS

Components
used

Resistors

and

transistor

Resistor,

diode and

transistor

Resistor,

diode and

transistor

Resistor

and

transistor

N-channel

and P-
channel

MOSFET

77

Circuits Simple Moderate Complex Complex Moderate

Noise margin

[Noise

immunity]

Nominal Good Very good Good Very good

Fan-out
Low

(4)

Medium

(8)

More

(10)

High

(25)
50

Power

dissipation

in mW per

gate

12 8 - 12 10 40 - 55 0.1

Basic gate NOR NAND NAND OR-NOR NAND/NOR

Propagation

delay in ns
12 30 10

2(ECL 10 K)
0.75(ECL

100 K)

70

Speed power

product (PJ)
144 300 100

100 (ECL 10
K)

40 (ECL

100K)

0.7

Applications Absolute Absolute
Laboratory

instruments

Due to low

propagation
delay the

are used in

high speed

switching

applications

Due to low

power

consumption

they are
used in

portable

instrument

where

battery
supply is

used.

Number of
functions

High Fairly high Very high High Low

Clock rate

MHz
8 12 - 30 15 - 60 60 - 400 5

 Page 1

UNIT II

COMBINATIONAL LOGIC

COMBINATIONAL CIRCUITS

 A combinational circuit consists of logic gates whose outputs at any time are determined from only the

present combination of inputs.

 A combinational circuit performs an operation that can be specified logically by a set of Boolean

functions.

Sequential circuits:

 Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of

the inputs and the state of the storage elements.

 Because the state of the storage elements is a function of previous inputs, the outputs of a sequential

circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior must

be specified by a time sequence of inputs and internal states.

ANALYSIS PROCEDURE

Explain the analysis procedure. Analyze the combinational circuit the following logic diagram.

 (May 2015)

 The ana lys is o f a combina tiona l c ircu it requires tha t we de termine the func tion tha t

the c ircuit imp lements .

 The ana lys is can be pe rfo rmed manua lly by f ind ing the Boo lean func tions o r t ruth

tab le o r by us ing a compute r s imu la t ion p rogram.

 The f irs t step in the ana lys is is to make tha t the g iven c ircuit is combina tiona l o r

sequentia l.

 Once the log ic d iagram is ve r if ied to be combina tiona l, one can p roceed to obta in the

output Boo lean func tions or the t ruth tab le .

 To obtain the output Boolean functions from a logic diagram,

 Label all gate outputs that are a function of input variables with arbitrary symbols or names.

Determine the Boolean functions for each gate output.

 Label the gates that are a function of input variables and previously labeled gates with other

arbitrary symbols or names. Find the Boolean functions for these gates.

 Repeat the process in step 2 until the outputs of the circuit are obtained.

 By repeated substitution of previously defined functions, obtain the output Boolean functions in

terms of input variables.

Combinational logic - representation of logic functions-SOP and POS forms, K-map

representations - minimization using K maps - simplification and implementation of

combinational logic – multiplexers and de multiplexers - code converters, adders,

subtractors, Encoders and Decoders.

 Page 2

Logic diagram for analysis example

The Boolean functions for the above outputs are,

 Proceed to obtain the truth table for the outputs of those gates which are a function of previously
defined values until the columns for all outputs are determined.

 Page 3

DESIGNPROCEDURE

Explain the procedure involved in designing combinational circuits.

 The design of combinational circuits starts from the specification of the design objective and culminates

in a logic circuit diagram or a set of Boolean functions from which the logic diagram can be obtained.

 The procedure involved involves the following steps,

 From the specifications of the circuit, determine the required number of inputs and outputs and assign a

symbol to each.

 Derive the truth table that defines the required relationship between inputs and outputs.

 Obtain the simplified Boolean functions for each output as a function of the input variables.

 Draw the logic diagram and verify the correctness of the design.

**

CIRCUITS FOR ARITHMETIC OPERATIONS

Half adder:

Construct a half adder with necessary diagrams. (Nov-06,May- 07)

 A half-adder is an arithmetic circuit block that can be used to add two bits and produce two outputs

SUM and CARRY.

 The Boolean expressions for the SUM and CARRY outputs are given by the equations

Truth Table:

Logic Diagram: Half adder using NAND gate:

 Page 4

Full adder:

Design a full adder using NAND and NOR gates respectively. (Nov -10)

 A Full-adder is an arithmetic circuit block that can be used to add three bits and produce two outputs

SUM and CARRY.

 The Boolean expressions for the SUM and CARRY outputs are given by the equations

Truth table:

Karnaugh map:

 K-Map for Sum K-Map for Carry

 The simplified Boolean expressions of the outputs are

S = X′A′B + X′AB′ + XA′B′ + XAB

C = AB + BX + AX

Logic diagram:

 Page 5

 The Boolean expressions of S and C are modified as follows

Full adder using Two half adder:

 Logic diagram according to the modified expression is shown Figure.

 Page 6

Half subtractor:

Design a half subtractor circuit. (Nov-2009)

 A half-subtractor is a combinational circuit that can be used to subtract one binary digit from anotherto

produce a DIFFERENCE output and a BORROW output.

 The BORROW output here specifies whether a ‘1’ has been borrowed to perform the subtraction. The

Boolean expression for difference and borrow is:

Logic diagram:

Full subtractor:

Design a full subtractor. (Nov-2009,07)

 A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also takes

into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower minuend bit

or not.

 As a result, there are three bits to be handled at the input of a full subtractor, namely the two bits to be

subtracted and a borrow bit designated as Bin .

 There are two outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

BORROW output bit tells whether the minuend bit needs to borrow a ‘1’ from the next possible higher

minuend bit. The Boolean expression for difference and barrow is:

 Page 7

K-Map:

Full subtractor using two half subtractor:

 Page 8

Parallel Binary Adder: (Ripple Carry Adder):

Explain about four bit adder. (or) Design of 4 bit binary adder – subtractor circuit. (Apr – 2019)

 A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be

constructed with full adders connected in cascade, with the output carry from each full adder connected

to the input carry of the next full adder in the chain.

 Addition of n-bit numbers requires a chain of n- full adders or a chain of one-half adder and n-1 full

adders. In the former case, the input carry to the least significant position is fixed at 0.

 Figure shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry

adder.

 The carries are connected in a chain through the full adders. The input carry to the adder is C0, and it

ripples through the full adders to the output carry C4. The S outputs generate the required sum bits.

Example: Consider the two binary numbers A = 1011and B = 0011. Their sum S = 1110 is formed with

the four-bit adder as follows:

 The carry output of lower order stage is connected to the carry input of the next higher order stage.

Hence this type of adder is called ripple carry adder.

 In a 4-bit binary adder, where each full adder has a propagation delay of tp ns, the output in the fourth

stage will be generated only after 4tp ns.

 The magnitude of such delay is prohibitive for high speed computers.

 One method of speeding up this process is look-ahead carry addition which eliminates ripple carry

delay.

Complement of a number:

1’s complement:

The 1’s complement of a binary number is formed bychanging 1 to 0 and 0 to 1.

Example:

1. The 1’s complement of 1011000 is 0100111.

2. The 1’s complement of 0101101 is 1010010.

 Page 9

2’s complement:

 The 2’s complement of a binary number is formed by adding 1 with 1’s complement of a binary

number.

Example:

1. The 2’s complement of 1101100 is 0010100

2. The 2’s complement of 0110111 is 1001001

Subtraction using 2’s complement addition:

 The subtraction of unsigned binary number can be done by means o f complements.

 Subtraction of A-B can be done by taking 2’s complement of B and adding it to A.

 Check the resulting number. If carry present, the number is positive and remove the carry.

 If no carry present, the resulting number is negative, take the 2’s complement of result and put

negative sign.

Example:

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction

(a) X - Y and (b) Y - X by using 2’s complements.

Solution:

(a) X = 1010100

2’s complement of Y = + 0111101

Sum= 10010001

Discard end carry. Answer: X - Y = 0010001

(b) Y = 1000011

2’s complement of X= + 0101100

Sum= 1101111

There is no end carry. Therefore, the answer is Y - X = -(2’s complement of 1101111) =-0010001.

Parallel Binary Subtractor:

 The subtraction of unsigned binary numbers can be done most conveniently by meansof compleme nts.

The subtraction A - B canbe done by taking the 2’s complement of B and adding it to A . The 2’s

complement canbe obtained by taking the 1’s complement and adding 1 to the least significant pair

 Page 10

ofbits. The 1’s complement can be implemented with inverters, and a 1 can be added tothe sum through

the input carry.

 The circuit for subtracting A - B consists of an adder with inverters placed betweeneach data input B and

the corresponding input of the full adder. The input carry C in mustbe equal to 1 when subtraction is

performed. The operation thus performed becomes A,plus the 1’s complement of B , plus 1. This is equal

to Aplus the 2’s complement of B.

 For unsigned numbers, that gives A-B if A>=B or the 2’s complement of B - Aif A <B. For signed

numbers, the result is A - B, provided that there is no overflow.

Fast adder (or) Carry Look Ahead adder:

Design a carry look ahead adder circuit. (Nov-2010)

 The carry look ahead adder is based on the principle of looking at the lower order bits of the augend

and addend to see if a higher order carry is to be generated.

 It uses two functions carry generate and carry propagate.

Consider the circuit of the full adder shown in Fig. If we define two new binaryvariables

the output sum and carry can respectively be expressed as

Gi is called a carry generate, and it produces a carry of 1 when both Ai and Bi are 1,regardless of

the input carry Ci. Pi is called a carry propagate, because it determines whether a carry into stage i will

propagate into stage i + 1 (i.e., whether an assertion of Ci will propagate to an assertion of Ci+1).

We now write the Boolean functions for the carry outputs of each stage and substitutethe value

of each Ci from the previous equations:

 Page 11

 The construction of a four-bit adder with a carry lookahead scheme is shown in Fig.

 Each sum output requires two exclusive-OR gates.

 The output of the first exclusive-OR gate generates the Pi variable, and the AND gate generates the Gi

variable.

 The carries are propagated through the carry look ahead generator and applied as inputs to the second

exclusive-OR gate.

 All output carries are generated after a delay through two levels of gates.

 Thus, outputs S1 through S3 have equal propagation delay times. The two-level circuit for the output

carry C4 is not shown. This circuit can easily be derived by the equation-substitution method.

 Page 12

4 bit-Parallel adder/subtractor:

Explain about binary parallel / adder subtractor. [NOV – 2019]

 The addition and subtraction operations can be combined into one circuit with one common binary adder

by including an exclusive-OR gate with each full adder. A four-bit adder–subtractor circuit is shown in

Fig.

 The mode input M controls the operation. When M = 0, the circuit is an adder, and when M = 1, the

circuit becomes a subtractor.

 Page 13

 It performs the operations of both addition and subtraction.

 It has two 4bit inputs A3A2A1A0 and B3B2B1B0.

 The mode input M controls the operation when M=0 the circuit is an adder and when M=1 the circuits

become subtractor.

 Each exclusive-OR gate receives input M and one of the inputs of B .

 When M = 0, we have B xor0 = B. The full adders receive the value of B , the input carry is 0, and the

circuit performs A plus B . This results in sum S3S2S1S0and carry C4.

 When M = 1, we have B xor 1 = B’ and C0 = 1. The B inputs are all complemented and a 1 is added

through the input carry thus producing 2’s complement of B.

 Now the data A3A2A1A0will be added with 2’s complement of B3B2B1B0to produce the sum i.e., A-B if

A≥B or the 2’s complement of B-A if A<B.

Comparators

Design a 2 bit magnitude comparator. (May 2006)

It is a combinational circuit that compares two numbers and determines their relative magnitude. The

output of comparator is usually 3 binary variables indicating:

A<B, A=B, A>B

1-bitcomparator: Let’s begin with 1bit comparator and from the name we can easily make out that this

circuit would be used to compare 1bit binary numbers.

 Page 14

A B A>B A=B A<B

0 0 0 1 0

1 0 1 0 0

0 1 0 0 1

1 1 0 1 0

For a 2-bit comparator we have four inputs A1 A0 and B1 B0 and three output E (is 1 if two numbers are

equal) G (is 1 when A>B) and L (is 1 when A<B) If we use truth table and K-map the result is

Design of 2 – bit Magnitude Comparator.

The truth table of 2-bit comparator is given in table below

 Page 15

Truth table:

K-Map:

 Page 16

Logic Diagram:

4 bit magnitude comparator:

Design a 4 bit magnitude comparators. (Apr – 2019)

Input

 Page 17

Function Equation

 Page 18

BCD Adder:

Design to perform BCD addition.(or) What is BCD adder? Design an adder to perform arithmetic

addition of two decimal bits in BCD. (May -08)(Apr 2017,2018)[Nov – 2019]

 Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from a

previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than 9 + 9 + 1

= 19, the 1 in the sum being an input carry.

 Suppose we apply two BCD digits to a four-bit binary adder. The adder will form the sum in binary and

produce a result that ranges from 0 through 19. These binary numbers are listed in Table and are labeled

by symbols K, Z8, Z4, Z2, and Z1. K is the carry, and the subscripts under the letter Z represent the

weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code.

 Page 19

 A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. The two

decimal digits, together with the input carry, are first added in the top four-bit adder to produce the

binary sum.

 When the output carry is equal to 0, nothing is added to the binary sum. When it is equal to 1, binary

0110 is added to the binary sum through the bottom four-bit adder.

 The condition for a correction and an output carry can be expressed by the Boolean function

C = K + Z8Z4 + Z8Z2
 The output carry generated from the bottom adder can be ignored, since it supplies information already

available at the output carry terminal.

 A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from

one stage must be connected to the input carry of the next higher order stage.

Binary Multiplier:

Explain about binary Multiplier.

 Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers.

The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit. Each

such multiplication forms a partial product.

 Successive partial products are shifted one position to the left. The final product is obtained from the

sum of the partial products.

 A combinational circuit binary multiplier with more bits can be constructed in a similar fashion.

 A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are bits in

the multiplier.

 The binary output in each level of AND gates is added with the partial product of the previous level to

form a new partial product. The last level produces the product.

 Page 20

 Page 21

CODE CONVERSION

Design a binary to gray converter. (Nov-2009)(Nov 2017)

Binary to Grayconverter

Gray code is unit distance code.

Input code: Binary [B3 B2 B1 B0]

output code: Gray [G3 G2 G1 G0]

Truth Table

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

K-MAP FORG3: K-MAP FORG2:

G3=B3 G2=B3’B2+B3B2’=B3 B2

 Page 22

K-MAP FORG1: K-MAP FORG0:

G1=B1’B2+B1B2’=B1 B2 G0=B1’ B0+B1B0’=B1 B0

Logic diagram:

Gray to Binary converter:

Design a gray to binary converter.(OR) Design a combinational circuit that converts a four bit gray

code to a four bit binary number using exclusive – OR gates. (Nov-2009) [NOV – 2019]

Gray code is unit distance code.

Input code: Gray [G3 G2 G1 G0]

output code: Binary [B3 B2 B1 B0]

 Page 23

Truth Table:

K-Map:

 Page 24

Logic Diagram:

BCD to Excess -3 converter:

Design a combinational circuits to convert binary coded decimal number into an excess-3 code.

 Excess-3 code is modified form of BCD code. (Nov-06,09,10, May-08,10)

 Excess -3 code is derived from BCD code by adding 3to each coded number.

 Page 25

Truth table:

K-Map:

 Page 26

Logic Diagram

Excess -3 to BCD converter:

Design a combinational circuit to convert Excess-3 to BCD code. (May 2007)

Truth table:

 Page 27

 Page 28

 Page 29

Design Binary to BCD converter.

Truth table:

K-map:

 Page 30

Logic diagram:

 Page 31

DECODERS AND ENCODERS

Decoder:

Explain about decoders with necessary diagrams. (Apr 2018)(Nov 2018)

 A decoder is a combinational circuit that converts binary information from n input lines to a maximum

of 2n unique output lines. If the n -bit coded information has unused combinations, the decoder may

have fewer than 2n outputs.

 The purpose of a decoder is to generate the 2n (or fewer) minterms of n input variables, shown below for

two input variables.

2 to 4 decoder:

3 to 8 Decoder:

Design 3 to 8 line decoder with necessary diagram. May -10)

Truth table:

 Page 32

Logic diagram:

Design for 3 to 8 decoder with 2 to 4 decoder:

 Not that the two to four decoder design shown earlier, with its enable inputs can be used to build a three

to eight decoder as follows.

 Page 33

Implementation of Boolean function using decoder:

 Since the three to eight decoder provides all the minterms of three variables, the realisation of a

function in terms of the sum of products can be achieved using a decoder and OR gates as follows.

Example: Implement full adder using decoder.

Sum is given by ∑m(1, 2, 4, 7) while Carry is given by ∑m(3, 5, 6, 7) as given by the minterms

each of the OR gates are connected to.

Design for 4 to 16 decoder using 3 to 8 decoder: Design 5 to 32 decoder using 3 to 8 and 2 to 4 decoder:

BCD to seven segment decoder
Design a BCD to seven segment code converter. (May-06,10, Nov- 09)

 Page 34

Truth table:

K-Map:

 Page 35

Logic Diagram:

 The specification above requires that the output be zeroes (none of the segments are lighted up) when

the input is not a BCD digit.

 In practical implementations, this may defer to allow representation of hexadecimal digits using the

seven segments.

 Page 36

Encoder:

Explain about encoders. (Nov 2018)

 An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2n (or

fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary code

corresponding to the input value.

Octal to Binary Encoder:

 The encoder can be implemented with OR gates whose inputs are determined directly from the truth

table. Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7.

 Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can

be expressed by the following Boolean output functions:

The encoder can be implemented with three OR gates.

Truth table:

 Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is generated when all the

inputs are 0; but this output is the same as when D0 is equal to 1. The discrepancy can be resolved by

providing one more output to indicate whether at least one input is equal to 1.

 Page 37

Logic Diagram:

Priority Encoder:

Design a priority encoder with logic diagram.(or) Explain the logic diagram of a 4 – input priority

encoder. (Apr – 2019)

A priority encoder is an encoder circuit that includes the priority function. The operationof the

priority encoder is such that if two or more inputs are equal to 1 at the same time,the input having the

highest priority will take precedence.

Truth table:

Modified Truth table:

 Page 38

K-Map:

Logic Equations:

Logic diagram:

 Page 39

MULTIPLEXERS AND DEMULTIPLEXERS

Multiplexer: (MUX)

Design a 2:1 and 4:1 multiplexer.

 A multiplexer is a combinational circuit that selects binary information from one of many input lines and

directs it to a single output line. The selection of a particular input line is controlled by a set of selection

lines.

 Normally, there are 2n input lines and n selection lines whose bit combinations determine which input is

selected.

2 to 1 MUX:

A 2 to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one input of an

AND gate. Selection lines S are decoded to select a particular AND gate. The truth table for the 2:1 mux

is given in the table below.

 To derive the gate level implementation of 2:1 mux we need to have truth table as shown in figure. And

once we have the truth table, we can draw the K-map as shown in figure for all the cases when Y is

equal to '1'.

Truth table:

Logic Diagram:

 Page 40

4 to 1 MUX:

 A 4 to 1 line multiplexer is shown in figure below, each of 4 input lines I0 to I3 is applied to one input

of an AND gate.

 Selection lines S0 and S1 are decoded to select a particular AND gate.

 The truth table for the 4:1 mux is given in the table below.

Logic Diagram:

Truth Table:

Problems :

Example: Implement the Boolean expression using MUX

 F(A,B,C,D) = ∑m(0,1,5,6,8,10,12,15) (Apr 2017, Nov 2017)

SELECT

INPUT

OUTPUT

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

 Page 41

Example: Implement the boolean function using Multiplexer. [NOV – 2019]

F (x, y, z) = Σm (1, 2, 6, 7)

 Solution:

Implementation table:

Multiplexer Implementation:

Example: 32:1 Multiplexer using 8:1 Mux (Nov 2018) (Apr – 2019)

 Page 42

DEMULTIPLEXERS:

Explain about demultiplexers.

 The de-multiplexer performs the inverse function of a multiplexer, that is it receives information on one

line and transmits its onto one of 2n possible output lines.

 The selection is by n input select lines. Example: 1-to-4 De-multiplexer

Logic Diagram: Truth Table:

INPUT OUTPUT

E D S0 S1 Y0 Y1 Y2 Y3

1 1 0 0 1 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 0 0 1 0

1 1 1 1 0 0 0 1

 Page 43

Example:

1. Implement full adder using De-multiplexer.

2. Implement the following functions using de-multiplexer.

f1 (A,B,C) = ∑m(1,5,7), f2 (A,B,C) = ∑m(3,6,7)

Solution:

 Page 44

Parity Checker / Generator:

 A parity bit is an extra bit included with a binary message to make the number of 1’s either odd or

even. The message, including the parity bit, is transmitted and then checked at the receiving end for

errors. An error is detected if the checked parity does not correspond with the one transmitted.

 The circuit that generates the parity bit in the transmitter is called a parity generator. The circuit that

checks the parity in the receiver is called a parity checker.

 In even parity system, the parity bit is ‘0’ if there are even number of 1s in the data and the parity bit

is ‘1’ if there are odd number of 1s in the data.

 In odd parity system, the parity bit is ‘1’ if there are even number of 1s in the data and the parity bit is

‘0’ if there are odd number of 1s in the data.

3-bit Even Parity generator:

Truth Table:

Logic Diagram:

 Page 45

4-bit Even parity checker:

Truth Table:

Logic Diagram:

1

PART-B - 16 MARKS

1. Define sequential circuits.

Sequential circuits:

 Sequential circuits employ storage elements in addition to logic gates. Their

outputs are a function of the inputs and the state of the storage elements.

 Because the state of the storage elements is a function of previous inputs.

 The outputs of a sequential circuit depend not only on present values of inputs,

but also on past inputs.

 The circuit behaviour must be specified by a time sequence of inputs and

internal states.

Figure 3.1: Block diagram of sequential circuit/FSM

Types of sequential circuits:

 There are two main types of sequential circuits, and their classification is a

function of the timing of their signals.

1. Synchronous sequential circuit:

It is a system whose behaviour can be defined from the knowledge of its

signals at discrete instants of time.

2. Asynchronous sequential circuits:

The behaviour of an asynchronous sequential circuit depends upon the

input signals at any instant of time and the order in which the inputs

change.

The storage elements commonly used in asynchronous sequential circuits

are time-delay devices.

2. Define Flip-Flop.

Flip-Flop:

 The storage elements used in clocked sequential circuits are called flip-flops.

 A flip-flop is a binary storage device capable of storing one bit of information. In a

stable state, the output of a flip-flop is either 0 or 1.

 A sequential circuit may use many flip-flops to store as many bits as necessary.

The block diagram of a synchronous clocked sequential circuit is shown in Fig.

 A storage element in a digital circuit can maintain a binary state indefinitely (as

long as power is delivered to the circuit), until directed by an input signal to

switch states.

 The major differences among various types of storage elements are in the

number of inputs they possess and in the manner in which the inputs affect the

binary state.

2

3. Define Latch.

Latch:

 The storage elements that operate with signal levels (rather than signal

transitions) are referred to as latches those controlled by a clock transition are

flip-flops.

 Latches are said to be level sensitive devices.

 Flip-flops are edge-sensitive devices.

4. Explain about triggering of flip flops in detail. (Dec-14)

Triggering of Flip Flops:

 The state of a latch or flip-flop is switched by a change in the control input.

 This momentary change is called a trigger, and the transition it causes is said to

trigger the flip-flop.

Level Triggering:

 SR, D, JK and T latches are having enable input.

 Latches are controlled by enable signal, and they are level triggered, either

positive level triggered or negative level triggered as shown in figure (a).

 The output is free to change according to the input values, when active level is

maintained at the enable input.

Edge Triggering:

 A clock pulse goes through two transitions: from 0 to 1 and the return from 1 to

0. As shown in above Fig (b) and (c)., the positive transition is defined as the

positive edge and the negative transition as the negative edge.

3

Excitation table for all flip flops:

SR latch:It is also called as RS latch.

5. Realize SR Latch using NOR and NAND gates and explain its operation.

(Dec-2018)

 The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled

NAND gates, and two inputs labelled S for set and R for reset.

 The SR latch constructed with two cross-coupled NOR gate is shown in Fig.

 The latch has two useful states. When output Q = 1 and Q’= 0, the latch is said

to be in the set state. When Q = 0 and Q’ = 1, it is in the reset state.

 Outputs Q and Q’ are normally the complement of each other.

 However, when both inputs are equal to 1 at the same time, a condition in which

both outputs are equal to 0 (rather than be mutually complementary) occurs.

 If both inputs are then switched to 0 simultaneously, the device will enter an

unpredictable or undefined state or a metastable state. Consequently, in

practical applications, setting both inputs to 1 is forbidden.

SR Flip-Flop: (Dec-14,15, May-12, 18)

Logic symbol

4

Figure 3.2: Input and Output waveform of SR Flip-Flop

D Flip-Flop: (Dec-12)

Figure 3.3: Input and output waveform of D Flip-Flop

JK Flip-Flop: (May-08, 18, Dec-12)

 Logic symbol Truth Table

5

Figure 3.4: JK flip-flop using NAND gates

6. What is race around condition and how is it overcome? (May-06)

Race-around condition:

 In JK flip-flop, when J = K = 1, the output toggles (output changes either from 0

to 1 or from 1 to 0).

 Consider that initially Q=0 and J = K = 1. After the time interval ∆t equal to the

propagation delay through two NAND gates in series, the output will change to

Q=1 and after another time interval of ∆t the output will change back to Q=0.

 This toggling will continue until the flip-flop is enabled and J = K = 1.

 At the end of clock pulse the flip-flop is disabled and the value of Q is uncertain.

This situation is referred to as the race-around condition.

Figure 3.5: Input and output waveform for clocked JK flip-flop

6

7. Explain the working operation of master-slave JK Flip-flop.

(Dec-2018)(Dec-08, 10, May-15)

Master-Slave JK Flip-flop:

 It consists of clocked JK flip-flop as a master and clocked JK flip-flop as a slave.

 The output of the master flip-flop is fed as an input to the slave flip-flop.

 As shown in figure, the clock signal is connected directly to the master flip-flop,

but it is connected through inverter to the slave flip-flop.

Figure 3.6: Master-Slave JK Flip-flop

 Therefore, the information present at the J and K inputs is transmitted to the

output of master flip-flop on the positive clock pulse and it is held there until the

negative clock pulse occurs, after which it is allowed to pass through to the

output of slave flip-flop.

T Flip-Flop: (May-18) (Dec-2018)

T Flip-flop is also known as Toggle flip-flop.

7

8. Explain various Realization of one Flip-Flop using other Flip-Flop.

 (May-12, 15, Dec-08, 10, 15)

1. Design of JK Flip-flop using SR Flip-Flop.

2. Design of SR Flip-flop using JK Flip-Flop.

3. Design of D Flip-flop using SR Flip-Flop.

8

4. Design of SR Flip-flop using D Flip-Flop.

5. Design of T Flip-flop using JK Flip-Flop. (Dec-16)

6. Design of D Flip-flop using JK Flip-Flop.

7. Design of JK Flip-flop using D Flip-Flop. Dec 2009,11

9. Explain clocked sequential circuits.

9

Clocked sequential circuits:

The states of the output of the flip-flop in the sequential circuit give the state of the

sequential circuit.

Present state: The status of all state variables, at some time t, before the next clock

edge, represents condition called present state.

Next state: The status of all state variables, at some time, t+1, represents a

condition called next state.

The synchronous or clocked sequential circuits are represented by two models.

Moore model: The output depends only on the present state of the flip-flops.

Mealy model: The output depends on both the present state of the flip-flop and on

the input.

10. Draw and explain the operation of Moore and Mealy model.

Moore Model:

When the output of the sequential circuit depends only on the present state of the

flip-flop, the sequential circuit is referred to as Moore model.

Moore model

Example of Moore model

Mealy Model:

10

When the output of the sequential circuits depends on both the present stateof flip-

flop and on the inputs, the sequential circuit is referred to Mealy model.

Mealy circuit model

Example of Mealy model

11. Compare Moore and Mealy circuit Models. (May-05)

S.NO Moore model Mealy model

1.
Its output is a function of present

state only.

Its output is a function of present

state as well as present input.

2.
Input changes does not affect the
output.

Input changes may affect the output
of the circuit.

3.

Moore model requires more

number of states for implementing
same function.

It requires less number of states for

implementing same function.

11

12. What is counter? State the types of counter. (Dec-08)

Counters:

 A counter is a register capable of counting the number of clock pulse arriving at

its clock input.

 Count represents the number of clock pluses arrived.

 On arrival of each clock pulse, the counter is incremented by one.

Figure 3.2: Logic symbol of counter

Types of counters

 Synchronous Counter

 Asynchronous Counter / Ripple Counter

Synchronous Counter:

 When counter is clocked such that each flip-flop in the counter is triggered at the

same time, the counter is called Synchronous Counter.

Asynchronous Counter / Ripple Counter:

 A binary asynchronous/ ripple counter consists of a series connection of

complementing flip-flop, with the output of each flip-flop connected to a clock

inputs of the next higher order flip-flop.

 The flip-flop holding the least significant bit receives the incoming clock pulses.

What is MOD counter?

Module of counter

 The total number of counts or stable states a counter can indicate is called

‘Modulus’.

 The modulus of a four-stage counter would be 1610, since it is capable of

indicating 00002 to11112.

 The term ‘modulo’ is used to describe the count capability of counters.

13. Explain in detail about ripple counter. (Dec-09, 14)

Ripple/Asynchronous counters:

 A binary ripple/asynchronous counter consist of a series connection of

complementing flip-flops, with the output of each flip-flop connected to the clock

input of the next higher-order flip-flop.

 The flip-flop holding the least significant bit receives the incoming clock pulses.

 A complementing flip-flop can be obtained from a JK flip-flop with the J and K

inputs tied together as shown in figure 3.3

12

 A third alternate is to use a D flip-flop with the complement output connected to

the D input.

 The D input is always the complement of the present state and the next clock

pulse will cause the flip-flop to complement.

 Figure 3.3: A two-bit asynchronous binary counter

 The clock signal is connected to the clock input of only first stage flip-flop.

 Figure 3.4: Timing diagram for the counter of two-bit asynchronous counter

 It illustrates the changes in the state of the flip-flop outputs in response to the

clock.

 J and K input of JK flip-flops are tied to logic HIGH hence output will toggle for

each negative edge of the clock input.

14. Extend the 2-bit asynchronous binary counter for 3-stages, and draw output

waveforms.

3-bit asynchronous counter:

Solution:

 Figure 3.5: Logic diagram

13

 Figure 3.6: Output waveform for 3-bit asynchronous counter

 In timing diagram for 3-bit asynchronous counter, we have not considered the

propagation delays of flip-flops, for simplification.

 If we consider the propagation delay, we see that the propagation delay of the

first stage is added in the propagation delay of second stage to decide the

transition time of the third stage.

 This cumulative delay of the asynchronous counter is the major disadvantage in

many applications because it limits the rate at which the counter can be clocked

and creates decoding problems.

15. Draw the logic diagram for 4-stage asynchronous counter with positive edge

triggered flip-flops. Also draw necessary timing diagram. Is there any

frequency division concept in it. (Dec-09)

4-stage asynchronous counter with positive edge triggered:

 When flip-flops are positive edge triggered, the output of previous stage is

connected to the clock input of the next stage.

 Figure 3.7 shows the 4-stage asynchronous counter with positive edge triggered

flip-flops.

 Figure 3.7: Logic diagram of 4-stage positive edge triggered ripple counter.

 The figure 3.8Shows the timing diagram for 4-bit ripple up counter using positive

edge triggered JK-FFs.

14

 Figure 3.8: Timing diagram of the 4-bit counter

From the timing diagram we can observe that

 Frequency at output

 Frequency at output

 Frequency at output

 Frequency at output

 In general we say that the frequency at the MSB output of counter is

 where N represent number of stages/bits of the counter.

16. Design an asynchronous down counter using JK flip-flop. (Dec-14)

Asynchronous/Ripple down counter:

 The down counter will count downward from a maximum count to zero.

 Figure 3.9: 4-bit asynchronous down counter using JK flip-flop

 The clock signal is connected to the clock input of only first flip-flop.

 The clock input of the remaining flip-flop is triggered by the output of the

previous stage instead of output of the previous stage.

15

 The figure 3.10 shows the timing diagram for 4-bit asynchronous down counter.

It illustrates the changes in the state of the flip-flop outputs in response to the

clock.

 Figure 3.10: Timing diagram of the 4-bit asynchronous down counter.

 The J and K inputs of JK flip-flops are tied to logic HIGH hence output will toggle

for each negative edge of the clock input.

17. Design and explain the working of an up-down ripple counter. (May-03)

Asynchronous Up/Down counters:

 To form an asynchronous up/down counter one control input say M is necessary

to control the operation of the up/down counter.

 When M=0, the counter will count up and when M=1, the counter will count

down.

 To achieve this M input should be used to control whether the normal flip-flop

output (Q) or the inverted flip-flop output is fed to drive the clock signal of

the successive stage flip-flop, as shown in the figure 3.11

16

 Figure 3.11: Asynchronous up/down counter.

 Figure 3.12 shows the 3-bit up/down counter that will count from 000 up to

111. When mode control input M is 1 and from 111 down to 000 when mode

control input M is 0.

 Figure 3.12: 3-bit asynchronous up/down counter

 Logic 1 on M enables AND gates 1 and 2 and disables AND gates 3 and 4. This

allows the QA and QB outputs to drive the clock inputs of their respective next

stages. So the counter will count up.

 When M is logic 0, AND gates 1 and 2 are disabled and AND gate 3 and 4 are

enabled. This allows the and outputs to drive the clock inputs of their

respective next stages so that counter will count down.

17

 Figure 3.13: Timing diagram for 3-bit up/down ripple counter.

18. Design a 4-bit up/down ripple counter with a control for up/down counting.

Solution:

 The 4-bit counter needs four flip-flops. The circuit for 4-bit up/down ripple

counter is similar to 3-bit up/down ripple counter except that 4-bit counter has

one more flip-flop and its clock driving circuiting.

 Figure 3.14: 4-bit asynchronous up/down counter.

18

Design of Ripple (asynchronous) counters:

Steps involved in the design of asynchronous counter

1. Determine the number of flip-flops needed.

2. Choose the type of flip-flops to be used: T or JK. If T flip-flops are used

connect T input of all flip-flops to logic 1. If JK flip-flops are used connect

both J and K inputs of all flip flops to logic 1.

Such connection toggles the flip-flop output on each clock transition.

3. Write the truth table for the counter.

4. Derive the reset logic by K-map simplification.

5. Draw the logic diagram.

19. Design BCD ripple counter using JK flip-flop. (May-10,11)

Solution:

Step 1: Determine the number of flip-flops needed. The BCD counter goes through

states 0-9, i.e. total 10 states. Thus, N=10 and for 2n ≥ N, we need n=4, i.e. 4 flip-

flops required.

Step 2: Type of flip-flops to be used : JK

Step 3: Write the truth table for the counter.

Truth table for BCD counter

Step 4: Derive reset logic

19

Step 5: Draw logic diagram

20. Define synchronous counter and various types of synchronous counter.

Synchronous counters:

 When counter is clocked such that each flip-flop in the counter is triggered at the

same time, the counter is called as synchronous counter.

2-bit synchronous Binary Up counter:

 Clock signal is connected in parallel to clock inputs of both the flip-flops.

 Figure 3.15: A two-bit synchronous binary counter

 The QA output of the first stage is used to drive the J and K inputs of the second

stage.

 Initially, we assume that the QA = QB = 0.

20

 When positive edge of the first clock pulse is applied, flip-flop A will toggle

because JA = KA = 1, whereas flip-flop B output will remain zero, because JB =

KB = 0.

 After first clock pulse QA = 1 and QB = 0.

 At negative going edge of the second clock pulse both flip-flops will toggle

because they both have a toggle condition on their J and K inputs (JA = KA = JB =

KB = 1). Thus after second clock pulse, QA = 0 and QB = 1.

 At negative going edge of the third clock pulse flip-flop A toggles making QA = 1,

but flip-flop B remains set i.e. QB = 1.

 Finally, at the leading edge of the fourth clock pulse both flip-flops toggle as their

JK inputs are at logic 1. This results QA = QB = 0 and counter recycled back to its

original state.

Figure 3.16: Timing diagram and state sequence for the 2-bit synchronous counter.

21. Explain the working of 3-bit synchronous binary up counter. (May-08)

3-bit synchronous Binary Up counter:

 Figure 3.17: A three-bit synchronous binary counter

 We see that QA changes on each clock pulse as we progress from its original state

to its original state to its final state and then back to its original state.

 Flip-flop A is held in the toggle mode by connecting J and K inputs to HIGH.

 Flip-flop B toggles, when QA is 1.

 When QA is 0, flip-flop B is in the no-change mode and remains in its present

state.

21

Figure 3.18: Timing diagram

 Looking at the table we can notice that flip-flop C has to change its state only

when QB and QA both are at logic 1.

 This condition is detected by AND gate and applied to the J and K inputs of flip-

flop C. whenever both QA and QB are HIGH, the output of the AND gate makes

the J and K inputs of flip-flop C HIGH and flip-flop C toggles on the following

clock pulse.

 At all other times, the J and K inputs of flip-flop C are held LOW by the AND gate

output and flip-flop does not change state.

State sequence

4-bit synchronous Binary up counter:

 Figure 3.19: Logic diagram for 4-bit synchronous binary counter.

 As counter is implemented with negative edge triggered flip-flops, the transitions

occur at the negative edge of the clock pulse.

 In this circuit, first three flip-flops work same as 3-bit counter discussed

previously.

 For the fourth stage, flip-flop has to change the state when QA = QB = QC = 1.

This condition is decoded by 3-input AND gate G2.

22

 Therefore, when QA = QB = QC = 1, flip-flop D toggles and for all other times it is

in no change condition.

 Figure 3.20: A four bit synchronous binary counter and timing diagram

22. Explain synchronous up/down counters.

Synchronous Down and up/down counters:

 A parallel/synchronous down counter can be constructed by using the inverted

FF outputs to drive the following JK inputs.

 For example, the parallel up counter can be converted to a down counter by

connecting the , , and outputs in place of QA, QB, QC and QD

respectively.

 The counter will then proceed through the following sequence as input pulses

are applied:

 To form a parallel up/down counter the control input) is used to

control whether the normal flip-flop outputs or the inverted flip-flop outputs are

fed to the J and K inputs of the following flip-flops.

 A logic 1 on the enables AND gates 1 and 2 and disables AND gates 3

and 4. This allows the QA and QB outputs through to the J and K inputs of the

next flip-flops so that the counter will count up as pulses are applied.

 When line is logic 0, AND gates 1 and 2 are disables and AND gates 3

and 4 are enabled. This allows the and outputs through to the J and K

inputs of the next flip-flops so that the counter will count down as pulses are

applied.

Figure 3.21: 3-bit synchronous/parallel up/down counter

23

 Figure 3.22: Timing diagram for 3-bit up-down counter

Design of synchronous counters:

1. Determine the number of flip-flops needed. If n represents number of flip-

flops 2n ≥ number of states in the counter.

2. Choose the type of flip-flops to be used.

3. Using excitation table for selected flip-flop determine the excitation table for

the counter.

4. Use K-map or any other simplification method to derive the flip-flop input

functions.

5. Draw the logic diagram.

Ex.1: Design a MOD-5 synchronous counter using JK flip-flops and implement

it. Also draw the timing diagram. (May-15)

Solution:

Step 1: Determine the number of flip-flop needed

 Flip-flops required are 2n ≥ N.

 Hence, N=5 n=3 i.e. three flip-flops are required.

Step 2: Type of flip-flop to be used : JK

Step 3: Determine the excitation table for the counter.

Present

state
Next state Flip-flop inputs

A B C A+ B+ C+ JA KA JB KB JC KC

0 0 0 0 0 1 0 X 0 X 1 X

0 0 1 0 1 1 0 X 1 X X 0

0 1 0 X X X X X X X X X

0 1 1 1 1 1 1 X X 0 X 0

1 0 0 0 0 0 X 1 0 X 0 X

1 0 1 X X X X X X X X X

1 1 0 1 0 0 X 0 X X 0 X

24

1 1 1 1 1 0 X 0 X X X 1

Step 4: K-Map simplification

Step 5: Draw the logic diagram

Synchronous counter

Timing diagram

Ex:2: Design a counter with the sequence 0,1,3,7,6,4,0 (Dec-10,11)

Solution:

25

Step 1: Determine the number of flip-flops needed. Here, counter should count

maximum count = 7 = (111)2 which is 3-bit. Thus, we need 3-flip-flops.

Step 2: Flip-flops to be used : JK.

Step 3: Determine the excitation table for counter. Here, the next state for each

present state is written according to given sequence. For example, the next state for

the present state 3 (001) is 7 (111). The counts which are not in sequence are

treated as don’t cares.

 Excitation table of JK flip-flop

Present

state
Next state Flip-flop inputs

A B C A+ B+ C+ JA KA JB KB JC KC

0 0 0 0 0 1 0 X 0 X 1 X

0 0 1 0 1 1 0 X 1 X X 0

0 1 0 X X X X X X X X X

0 1 1 1 1 1 1 X X 0 X 0

1 0 0 0 0 0 X 1 0 X 0 X

1 0 1 X X X X X X X X X

1 1 0 1 0 0 X 0 X X 0 X

1 1 1 1 1 0 X 0 X X X 1

Step 4: K-Map simplification

Qn Qn+1 J K

0 0 0 X

0 1 1 X

1 0 X 1

26

Step 5: Draw logic diagram.

Ex:3: Design and implement a synchronous decade counter using T flip-flop.

Draw the timing diagram. (May-08,10,11, Dec-15)

Solution:

Step 1: Since N=10, n=4 i.e. flip-flops needed = 4.

Step 2: Flip-flops to be used : T

Step 3: determine excitation table for counter

Present state Next state Flip-flop inputs

27

Step 4: K-Map simplification

Step 5: Logic diagram

QD QC QB QA QD+1 QC+1 QB+1 QA+1 TD TC TB TA

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 1 0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 1 0 0 1 1

0 0 1 1 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 1 0 1 1 1

0 1 1 1 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 1 1 0 0 1

1 0 0 1 X 0 0 0 X 0 0 0

1 0 1 0 X X X X X X X X

1 0 1 1 X X X X X X X X

1 1 0 0 X X X X X X X X

1 1 0 1 X X X X X X X X

1 1 1 0 X X X X X X X X

1 1 1 1 X X X X X X X X

28

Step 6: Timing diagram

23. What is register?

REGISTER:

 A group of flip-flop can be used to store a word, which is called register.

 A flip-flop can store 1-bit information. So an n-bit register has a group of n flip-

flops and is capable of storing any binary information/number containing n-bits.

24. What is buffer register?

Buffer Register:

 Figure 3.23 shows the simplest register constructed with four D flip-flops. This

register is also called buffer register.

 Each D flip-flop is

triggered with a common negative edge clock pulse.

 The input bits set up the flip-flops for loading.

 When the first negative clock edge arrives, the stored binary information

becomes QAQBQCQD = ABCD.

Figure 3.23: Buffer Register

 In this register, four D flip-flops are used. So it can store 4-bit binary

information.

 The number of flip-flop stages in a register determines its total storage capacity.

29

25. Controlled Buffer Register:

 We can control input and output of the register by connecting tri-state devices at

the input and output sides of register, so this register is called controlled buffer

register.

 Hence the tri-state switches are used to control the operation.

 When you want to store data in the register, you have to make or signal

low to activate the tri-state buffers.

 When you want the data at the output, you have to make signal low to active

the buffers.

 Controlled buffer registers are commonly used for temporary storage of data

within a digital system.

Figure 3.24: Controlled buffer register

26. What is shift register? Explain its types. (May-06, 15, Dec-06, 17)

Shift registers:

 The binary information in the register can be moved from stage to stage within

the register or into or out of the register upon application of clock pulses.

 This type of bit movement or shifting is essential for certain arithmetic and logic

operations used in microprocessors. This gives rise to a group of registers called

shift registers.

30

Figure 3.25: Basic data movement in registers.

 They are very important in applications involving the storage and transfer of data

in digital systems.

 The figure 3.25 shows the symbolical representation of the different types of data

movement in shift register operation.

Types of shift registers:

 According to data movement there are different types of shift registers, they are

 Serial In Serial Out (SISO)

 Serial In Parallel Out(SIPO)

 Parallel In Parallel Out(PIPO)

 Parallel In Serial Out(PISO)

Series In series Out (SISO) shift register:

 Figure 3.26 shows the SISO shift left registers.

Figure 3.26: shift-left register

 We will illustrate the entry of the four bit binary number 1111 into the register,

beginning with the right-most bit. Initially, register is cleared.

 So Q3Q2Q1Q0 = 0000

 The table summarizes the shift left operation.

shift left operation

31

Figure 3.27: waveform for the shift left register

Shift Right Mode:

 Figure 3.28 shows SISO shift right register.

Figure 3.28: shift right register.

 We will illustrate the entry of the four bit binary number 1111 into the register,

beginning with the left-most bit. Initially, register is cleared. So Q3Q2Q1Q0 =

0000.

 Table summarizes the shift right operation

Shift right operation

32

Figure 3.29: waveform for shift right register

Series In Parallel Out (SIPO) shift register: (Dec-16)

 The data bit are entered serially into the register but the output is taken in

parallel.

 Once the data are stored, each bit appears on its respective output line and all

bits are available simultaneously as shown in figure 3.30.

Figure 3.30: A Serial In Parallel Out (SIPO) shift register

CP Q3 Q2 Q1 Q0

- NC NC NC NC

↓ D3 D2 D1 D0

Truth Table

Parallel In Serial Out (PISO) Shift Register:

 In this type, the bits are entered in parallel i.e simultaneously into their

respective stages on parallel lines.

 Figure 3.31 illustrates a four-bit parallel in series out register.

33

Figure 3.31: Parallel in Serial Out (PISO) Shift Register

 There are four input lines A3, A2, A1, A0 for entering data in parallel into the

register.

 SHIFT/ is the control input which allows shift or loading data operation of

the register.

 When SHIFT/ is low, gates G1, G2, G3 are enabled, allowing each input data

bit to be applied to D input of its respective flip-flop.

 When a clock pulse is applied, the flip-flops with D=1 will SET and those with

D=0 will RESET.

 All four bits are stored simultaneously.

 When SHIFT/ is high, gates G1, G2, G3 are disabled and gates G4, G5, G6 are

enabled. This allows the data bits to shift right from one stage to the next.

 The OR gates at the D-inputs of the flip-flops allow either the parallel data entry

operation or shift operation, depending on which AND gates are enabled by the

level on the SHIFT/ input.

Parallel In Parallel Out (PIPO) Shift Register:

 In parallel in parallel out register, there is simultaneous entry of all data bits and

the bits appear on parallel outputs simultaneously.

 Figure 3.32 shows this type of register.

34

Figure 3.32: Parallel In Parallel Out (PIPO) Shift Register

27. Explain bidirectional shift register. (May -15)(Dec-2018)

Bidirectional Shift Register:

 This type of register allows shifting of data either to the left or to the right side. It

can be implemented by using logic gate circuitry that enables the transfer of data

from one stage to the next stage to the right or to the left, depending on the level

of a control line.

 Figure 3.33 illustrate a four-bit bidirectional register.

Figure 3.33: 4-bit bidirectional shift register

 The RIGHT/ is the control input signal which allows data shifting either

towards right or towards left.

 A high on this line enables the shifting of data towards right and a low enables it

towards left.

 When RIGHT/ signal is high, gates G1, G2, G3, G4 are enabled.

 The state of the Q output of each flip-flop is passed through the D input of the

following flip-flop.

 When a clock pulse arrives, the data are shifted one place to the right.

 When the RIGHT/ signal is low, gates G5, G6, G7, G8 are enabled.

 The Q output of each flip-flop is passed through the D input of the preceding flip-

flop.

 When clock pulse arrives, the data are shifted one place to the left.

Bidirectional Shift Register with Parallel Load:

 When parallel load capability is added to the shift register, the data entered in

parallel can be taken out in serial fashion by shifting the data stored in the

register.

 Such a register is called bidirectional shift register with parallel load.

 Figure 3.34 showsbidirectional shift register with parallel load.

35

 Figure 3.34: 4-bit bidirectional shift register with parallel load.

 The decoder select lines select the one source out of three as shown in the table.

SL1 SL0 Selected source

0 0 Parallel input

0 1
Output of right adjacent

FF

1 0
Output of left adjacent

FF

Shift Register using JK Flip-flops:

 By applying complement inputs to J and K we can construct serial-in serial-out

shift right register using JK flip-flops.

Figure 3.35: Shift right register using JK flip-flops

28. Explain the operation of universal shift register. (Dec-08, 10, May-09, 10)

Universal Shift Register:

 A register capable of shifting in one direction only is a unidirectional shift

register.

 A register capable of shifting in both directions is a bidirectional shift register.

 If the register has both shifts (right shift and left shift) and parallel load

capabilities, it is referred to as universal shift register.

 Figure 3.36 shows the 4-bit universal shift register.

36

Figure 3.36:4-bit universal shift register

 It consists of four flip-flops and four multiplexers.

 The four multiplexers have two common selection inputs S1 and S0, and they

select appropriate input of D flip-flop.

 The table shows the register operation depending on the selection inputs of

multiplexers.

Mode control
Register operation

S1 S2

0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

 When S1S0 = 00, input 0 is selected and the present value of the register is

applied to the D inputs of the flip-flops. This results no change in the register

value.

 When S1S0 = 01, input 1 is selected and the circuit connections are such that it

operates as a right shift register.

 When S1S0 = 10, input 2 is selected and the circuit connections are such that it

operates as a left shift register.

 Finally, when S1S0 = 11, the binary information on the parallel input lines is

transferred into the register simultaneously and it is a parallel load operation.

29. What are the applications of shift register?

Applications of Shift Registers:

 Primary use of shift register is temporary data storage and bit manipulations.

Some of the common applications of shift registers are

37

Delay line:

 A Serial-In-Serial-Out (SISO) shift register can be used to introduce time delay ∆t

in digital signals. The time delay can be given as

 ∆t = N X

 Where N is the number of stages (i.e. flip-flops) and fc is the clock frequency.

 An input pulse train appears at the output delayed by ∆t.

 The amount of delay can be controlled by the clock frequency or by the number

of flip-flop in the shift register.

Serial-to-parallel converter:

 A Serial-In-Parallel-Out (SIPO) shift register can be used to convert data in the

serial form to the parallel form.

Parallel-to-serial converter:

 A Parallel-In-Serial-Out (PISO) shift register can be used to convert data in the

parallel form to the serial form.

Shift register counters:

 A shift register with the serial output connected back to the serial input is called

shift register counter.

 The most common shift register counters are the ring counter and the Johnson

counter.

Pseudo-Random Binary sequence (PRBS) generator:

 A shift register can be used as a pseudo-random binary sequence generator.

 A suitable feedback is used to generate pseudo-random sequence.

 The term random here means that the outputs do not cycle through a normal

binary count sequence.

 The term pseudo here refers to the fact that the sequence is not truly random

because it does cycle through all possible combinations once every 2n – 1 clock

cycles, where n represents the number of shift register stages (number of flip-

flops).

Sequence Generator:

 The shift register can be used to generate a particular bit pattern respectively.

 Left most flip-flop input accepts the serial input and the right most flip-flop gives

serial data output.

 The serial data output signal is connected as a serial data in.

 On every clock pulse the data shift operation takes place.

 The loaded bit pattern at the serial output is in a sequence.

38

 Same bit pattern is again loaded in the register since serial output is connected

serial in of the register. Thus, the circuit generates a particular bit pattern

respectively.

Sequence Detector:

 The shift register can be used to detect the desired sequence.

 The detection process requires two registers: one register stores the bit pattern to

be detected i.e. R1 and other register accepts the input data stream i.e. R2.

 Input data stream enters a shift register as serial data in and leaves as serial

out.

 In every clock cycle, bit-wise comparisons of these two registers are done using

EX-NOR gates as shown in figure 3.37.

Figure 3.37: 4-bit sequence detector

 The two-input EX-NOR gate gives logic high output when both inputs are either

low or high, i.e. when both the inputs are equal.

 When outputs of all the EX-NORs gates are logic high we can say that all bits are

matched and hence the desired bit pattern is detected.

 The final output which indicates that the pattern is detected is taken from four-

input AND gate.

 The 4-bit sequence detector can be made programmable by loading the desired

4-bit data in the register R2.

30. Explain the operation of 4-bit ring counter. (Dec-04, 05)

Ring counters:

 The figure 3.38 shows the logic diagram for four-bit ring counter.

39

Figure 3.38: Four-bit ring counter

 The Q output of each stage is connected to the D input of the next stage and the

output of the last stage is fed back to the input of first stage.

 The followed by makes the output of first stage to’1’ and remaining

outputs are zero, i.e. QA is one and QB, QC, QD are zero.

 The first clock pulse produces QB = 1and remaining outputs are zero.

 According to the clock pulses applied at the clock input CP, a sequence of four

states is produced. These states are listed in table.

Ring counter sequence 4-bits

 1 is always retained in the counter and simply shifted around the ring advancing

one stage for each clock pulse. In this case four stages of flip-flops are used. So a

sequence of four states is produced and repeated.

 Figure 3.39 gives the timing sequence for a four-bit ring counter.

Figure 3.39: Timing sequence for a four-bit ring counter.

40

 The ring counter can be used for counting the number of pulses.

 The number of pulses counted is read by noting which flip-flop is in state 1.

 No decoding circuitry is required.

 Since there is one pulse at the output for each of the N clock pulses, this circuit

is also referred to as a divide-by-N-counter or an N:1 scalar.

 Ring counters can be instructed for any desired MOD number, that is MOD-N

ring counter requires N flip-flops.

31. Explain the operation of Johnson counter. (Dec-05, 06, 11)

Johnson or Twisting Ring or Switch Tail Counter:

 In a Johnson counter, the Q output of each stage of flip-flop is connected to the

D input of the next stage.

 The single exception is that the complement output of the last flip-flop is

connected back to the D-input of the first flip-flop .

 Johnson counter can be implemented with SR or JK flip-flops as well.

 As shown in figure 3.40 there is a feedback from the rightmost flip-flop

complement output to the leftmost flip-flop input. This arrangement produces a

unique sequence of states.

Figure 3.40: Four-bit Johnson counter.

 Initially, the register (all flip-flops) is cleared. So all the outputs, QA, QB, QC, QD

are zero.

 The output of last stage, QD is zero. Therefore complement output of last stage,

 is one. This is connected back to the D input of first stage. So DA is one.

 The first falling clock edge produces QA = 1 and QB = 0, QC = 0, QD = 0 since DB,

DC, DD are zero.

 The next clock pulse produces QA = 1, QB = 1, QC = 0, QD = 0.

 The sequence of states is summarized in table.

41

Four-bit Johnson sequence

 After 8 states the same sequence is repeated.

 In this case, four-bit register is used. So the four-bit sequence has a total of eight

states.

 Figure 3.41 gives the timing sequence for a four-bit Johnson counter.

Figure 3.41: timing sequence for a four-bit Johnson counter

 If we design a counter of five-bit sequence, it has a total of ten states.

 An n-stage Johnson counter will produce a modulus of 2Xn, where n is the

number of stages (i.e. flip-flops) in the counter.

 Johnson counter requires only half the number of flip-flops compared to the

standard ring counter. However, it requires more flip-flop than binary counter.

Ex.1:Draw a 5 flip-flop shift (Johnson) counter, its truth table and waveforms.

Explain its operation as a decade counter. (Dec-05)

Solution:The figure shows the 5-bit shift (Johnson) counter. Since this counter goes

through 10 states, the frequency at the output of last flip-flop is 1/10th of the clock

frequency and hence it is a decade counter.

42

 Figure 3.42: Flip-flop shift (Johnson counter)

The table shows the truth table for the 5 flip-flop shift counter and illustrate its

operation.

 CLK Q4 Q4 Q4 Q4 Q4 state
Decimal

equivalent

 - 0 0 0 0 0 1 0

1 ↓ 0 0 0 0 1 2 1

1 ↓ 0 0 0 1 1 3 3

1 ↓ 0 0 1 1 1 4 7

1 ↓ 0 1 1 1 1 5 15

1 ↓ 1 1 1 1 1 6 31

1 ↓ 1 1 1 1 0 7 30

1 ↓ 1 1 1 0 0 8 28

1 ↓ 1 1 0 0 0 9 24

1 ↓ 1 0 0 0 0 10 16

1 ↓ 0 0 0 0 0 1 0

Truth table

Figure 3.43: Waveform for 5 flip-flop shift counter

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT

43

Design and analyze of clocked sequential circuit with an example.

The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of

inputs, outputs and internal states.

Fig: Example of sequential circuit

Consider the sequential circuit is shown in figure. It consists of two D flip-flops A and B, an input x

and an output y.

A state equation specifies the next state as function of the present state and inputs.

A(n+1)= A(n)x(n)+B(n)x(n)

B(n +1)= A (n)x(n)

They can be written in simplified form as,

A(n+1) = Ax +Bx

B(n +1) = Ax

The present state value of the output can be expressed algebraically as,

y(n) =(A+ B) x

DESIGN OF SYNCHRONOUS COUNTERS

Design and analyze of clocked sequential circuit with an example.

44

The procedure for designing synchronous sequential circuit is given below,

1. From the given specification, Draw the state diagram.

2. Plot the state table.

3. Reduce the number of states if possible.

4. Assign binary values to the states and plot the transition table by choosing the type of Flip-

Flop.

5. Derive the Flip flop input equations and output equations by using K-map.

6. Draw the logic diagram.

State Diagram:

 State diagram is the graphical representation of the information available in a state table.

 In state diagram, a state is represented by a circle and the transitions between states are indicated

by directed lines connecting the circles.

State Table:

 A state table gives the time sequence of inputs, outputs ad flip flops states. The table consists of

four sections labeled present state, next state, input and output.

 The present state section shows the states of flip flops A and B at any given time „n‟. The input

section gives a value of x for each possible present state.

 The next state section shows the states of flip flops one clock cycle later, at time n+1.

The state table for the circuit is shown. This is derived using state equations.

The above state table can also be expressed in different forms as follows.

45

The state diagram for the logic circuit in below figure.

Flip-Flop Input Equations:

The part of the circuit that generates the inputs to flip flops is described algebraically by a set of

Boolean functions called flip flop input equations.

The flip flop input equations for the circuit is given by,

DA =Ax +Bx

DB =A x

**

Design of a Synchronous Decade Counter Using JK Flip- Flop (Apr 2018, Nov 2018)

A synchronous decade counter will count from zero to nine and repeat thesequence.

State diagram:

The state diagram of this counter is shown in Fig.

46

Excitation table:

K-Map:

47

48

Logic Diagram:

Design of an Asynchronous Decade Counter Using JK Flip- Flop.

An asynchronous decade counter will count from zero to nine and repeat thesequence. Since

the JK inputs are fed from the output of previous flip-flop,therefore, the design will not be as

complicated as the synchronous version.

At the ninth count, the counter is reset to begin counting at zero. The NAND gateis used to

reset the counter at the ninth count. At the ninth count the outputs offlip-flop Q3 and Q1 will be high

simultaneously. This will cause the output ofNAND to go to logic “0” that would reset the flip-flip.

The logic design of thecounter is shown in Fig.

49

Design of a Synchronous Modulus-Six Counter Using SR Flip-Flop(Nov 2017)

The modulus six counters will count 0, 2, 3, 6, 5, and 1 and repeat the sequence.This modulus

six counter requires three SR flip-flops for the design.

State diagram:

Truth table:

K-Map:

50

Logic Diagram:

MEALY AND MOORE MODELS

Write short notes on Mealy and Moore models in sequential circuits.

 In synchronous sequential circuit the outputs depend upon the order in which its input variables

change and can be affected at discrete instances of time.

General Models:

 There are two models in sequential circuits. They are:

1. Mealy model

2. Moore model

Moore machine:

 In the Moore model, the outputs are a function of present state only.

51

Mealy machine:

 In the Mealy model, the outputs are a function of present state and external inputs.

Difference between Moore model and Mealy model.

Example:

A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one output (y).

The Flip-Flop input functions are:

DA= Ax+ Bx

DB= A’xand

the circuit output function is, Y= (A+ B) x’.

(a) Draw the logic diagram of the circuit, (b) Tabulate the state table, (c) Draw the state diagram.

Solution:

52

State table:

State diagram:

1

UNIT 4 ` Asynchronous sequential circuits

Asynchronous sequential logic circuits-Transition tability, flow tability-race conditions, hazards &errors in

digital circuits; analysis of asynchronous sequential logic circuitsi ntroduction to Programmability Logic Devices:

PROM – PLA –PAL, CPLD-FPGA.

1. Write short notes on types of Asynchronous sequential circuits.

 (Dec-12, 15)

ASYNCHRONOUS SEQUENTIAL CIRCUITS

 Sequential circuits without clock pulses are called Asynchronous Sequential

Circuits. They are classified into 2 types:

1. Fundamental mode circuits

2. Pulse mode circuits

Fundamental Mode Circuits:

It assumes that:

 The input variables should change only when the circuit is stable.

 Only one input variable can change at a given time.

 Inputs and outputs are represented by levels.

Pulse Mode Circuits:

It assumes that:

 Inputs and outputs are represented by pulses.

 The width of the pulse is long enough for the circuit to respond to the input.

 The pulse width must not be so long that it is still present after the new state

is reached.

Block diagram of Asynchronous Sequential circuits

The communication oftwo units, with each unithavingits own independent

2

clock, must be donewith asynchronous circuits.

Stable state:

 If the circuit reaches a steady state condition with present state yi = next

state Yi for i=1,2,3…K then the circuit is said to be stable state.

 A transition from one stable to another occurs only in response to a change

in an input variable.

Unstable state:

 In a circuit, if present state yi ≠ next state Yi for i=1,2,3…K then the circuit

is said to be unstable state.

 The circuit will be in continuous transition till it reached a stable state.

2. Explain in detail about analysis procedure of fundamental mode

sequential circuits.

ANALYSIS PROCEDURE OF FUNDAMENTAL MODE SEQUENTIAL CIRCUITS:

 The analysis of asynchronous sequential circuits consists of obtaining a table

or a diagram that described the sequence of internal states and outputs as a

function of changes in the input variables.

 Let us consider the synchronous sequential circuit is shown in figure.

 The analysis of the circuit starts by considering the excitation variables (Y1 and

Y2) as outputs and the secondary variables (y1 and y2) as inputs.

Step1:

 The Boolean expressions are,

Step 2:

 Thenext step is to plottheY1and Y2functions in amap

3

 Combiningthe binaryvalues in correspondingsquares the followingtransition

table is obtained

 ThetransitiontableshowsthevalueofY=Y1Y2insideeachsquare.ThoseentrieswhereY

=yarecircled to indicateastable condition.

 The circuit has four stable total states, y1y2x=000,011,110, and 101 and four

unstable total states-001, 010, 111 and 100.

 The state table of the circuit is shown below:

 This table provides thesame information as the transition table.

Step 3:

Transition table

 The transition table is obtained by combining the maps for Y1and Y2.

 The transition table is a table which gives the relation between present state, input

and next state. If the secondary variables y1 y2 is same as excitation variables Y1 Y2,

the state is said to be stable.

 The stable states are indicated by circles. An uncircled entry represents an

unstable state.

4

 In a transition table, usually there will be at least one stable state in each row.

Otherwise, all the states in that row will be unstable.

Step 4:

Flowtable

 Ina flow table thestatesarenamed bylettersymbols. Examples of flow tables

areas follows:

 In order to obtain thecircuitdescribed bya flow table, it is necessaryto assign

to each stateadistinct value.

3. Explain in detail about design procedure of asynchronous sequential

circuits. (Dec-11, 12, May-12, 13, 15)

DESIGN PROCEDURE OF ASYNCHRONOUS SEQUENTIAL CIRCUITS

 Thereareanumberofstepsthatmustbecarriedoutinordertominimizethecircuitco

mplexityandto produceastable circuitwithoutcritical races.

 Thedesign steps areas follows:

 Obtain a primitive flow table from thegivenspecification.

 Reducethe flow table bymerging rows inthe primitive flow table.

 Assign binarystates variables to eachrowof the reduced flowtable to

obtain thetransition table.

 Assign outputvalues to thedashes associated with the unstable states

to obtainthe output maps.

 Simplifythe Boolean functions of the excitation and output variables

and draw the logic diagram.

 Thedesign process will be demonstrated bygoingthrough

aspecificexample

Example:

Designagatedlatchcircuitwithtwoinputs,G(gate)andD(data),andoneoutputQ.The

gatedlatchis amemory

elementthatacceptsthevalueofDwhenG=1andretainsthisvalueafterGgoesto0.On

ce G =0, a change in D does notchangethe valueofthe output Q.

(Or)

Design an asynchronous sequential circuit with two inputs D and G with one

output Z. Whenever G is 1, input D is transferred to Z. When G is 0, the

5

output does not change for any change in D. Use SR latch for

implementation of the circuit. (Dec-2018)

PrimitiveFlowTable

 Aprimitiveflowtableisaflowtablewithonlyonestabletotalstateineachrow.Thetotalsta

teconsists ofthe internal statecombined with the input.

 To derivethe primitive flow table, first a tablewithallpossible total states in

thesystem is needed:

 Eachrowintheabovetablespecifiesatotalstate;theresulting

primitivetableforthegatedlatchis shown below:

 First,fillinonesquareineachrowbelonging tothestablestateinthatrow.

 Nextrecallingthat both inputsarenotallowedtochangeatthesametime.

 Thenenterdashmarksineachrowthatdiffersintwo

ormorevariablesfromtheinputvariablesassociatedwiththestablestate.

Reduction of primitive flow table:

 Two or more rows in the primitive flow table can be merged into one row if there

are non- conflicting states and outputs on each of the columns.

 This can be done by implication table and merger diagram.

 The implication table has all states except the first vertically and all states

except the last across bottom horizontally.

 The tick (√)mark denotes that the pair (rows) is compatible.

6

 Two states are compatible, if the states are identical with non-conflicting

outputs.

 The cross (X) mark implies non-compatible.

 The compatible pairs are

(a,b), (a,c), (a,d), (b,e), (b,f), (c,d), (e,f)

Merger Diagram:

 The maximum compatible sets can be obtained from merger diagram as shown

in figure.

 The merger diagram is a graph in which each state is represented by a dot

placed along the circumference of a circle.

 Lines are drawn between any two corresponding dot that form a compatible pair.

 Based on the geometrical patterns formed by the lines, all the possible

compatibilities can be obtained.

 An isolated dot represents a state that is not compatible with any other state.

 A line represents a compatible pair.

 A triangle constitutes a compatible with three states.

 An n-state compatible is represented in the merger diagram by an n-sided

polygon with all its diagonal connected.

 So, the maximal compatibilities are

(a,b) , (a,c,d) , (b,e,f)

Closed covering condition:

 In the above, if only (a,c,d) and (b,e,f) are selected, all the six states are incuded.

7

 This set satisfies the covering condition.

 Thus, the rows a,c,d can be merged as one row and b,e,f states can be merged as

another row.

 Consider a,c,d =a and b,e,f =b

 A race free binary assignment is made and transition table and output map is

obtained.a -> 0, b-> 1

Logic Diagram using SR Latch:

8

4. Explain in detail about race -Free State assignment. (Dec-10, 14)

Explain the problems in asynchronous circuits with examples.

RACE -FREE STATE ASSIGNMENT

 Once areducedflow tablehasbeenderivedfor

anasynchronoussequentialcircuit,thenextstepinthe designistoassignbinary

variablestoeachstablestate.

 Theprimaryobjectiveinchoosing aproperbinary state

assignmentisthepreventionofcriticalraces.

 Criticalracescanbeavoidedbymakingabinarystate assignmentinsuchawaythatonly

onevariablechangesatanygiventimewhenastatetransitionoccurs in the flow table.

Cycles

 A cycle occurs when an asynchronous circuit makes a transition through a

series of unstable state.

 When a state assignment is made so that it introduces cycles, care must be

9

taken that it terminates with a stable state.

 Otherwise, the circuit will go from one unstable state to another, until the

inputs are changed.

 Examples of cycles are:

Fig: Examples ofcycles

Race Conditions

 Araceconditionexistsinanasynchronouscircuitwhentwoormorebinary state

variableschangevalue inresponsetoachangeinaninputvariable.

 Whenunequaldelaysare encountered,araceconditionmay cause

thestatevariableto changein an unpredictable manner.

 Ifthe final stable statethat the circuitreachesdoes not depend on the orderin

which thestatevariables change, theraceis calledanoncritical race.

 Ifthe final stable statethat the circuitreachesdepends on the orderin which

thestatevariables change, theraceis calleda critical race.

 Examples of noncritical racesareillustratedin the transition tables below:

 Initial stable state is y1y2x = 000 and then input changes from 0 to 1.

 The state variables y1y2 must change from 00 to 11,(race condition).

Possible transitions are

00 11

00 01(y2 faster) 11

00 10(y1 faster) 11

10

 In all cases final stable state is same, which results in a non-critical race

condition.

 Examples of critical racesareillustratedin the transition tables below:

Fig: Examples

ofcritical races

 The initial stable state is y1y2 x=000 and let us consider that the input changes

from 0 to 1. Then, the state variables must change from 00 to 11.

 If they change simultaneously, the final total state is 111.

 Due to unequal propagation delay, if y2 changes to 1 before y1 does, then the

circuit goes to total stable state y1y2 x=011 and remains there.

 If y1 changes first, then the circuit will be in total stable state is y1y2 x=101.

 Hence the race is critical because the circuit goes to different stable states

depending on the order in which the state variables change.

Three-RowFlow-Table Example

Fig: Three rowflowtable

example

 Toavoidcriticalraces,wemustfindabinarystateassignmentsuchthatonly

onebinaryvariable changesduring eachstatetransition.

 Anattempttofindsuchanassignmentisshowninthetransition diagram.

 Statea isassignedbinary 00,

 Statecisassignedbinary 11.

 Thisassignmentwillcausea criticalraceduringthetransitionfromatoc .

11

 Becausetherearetwochangesinthebinary statevariables

andthetransitionfromatocmay occurdirectlyorpassthroughb.

 Notethatthetransitionfromctoaalsocausesaracecondition,butitisnoncriticalbecau

sethetransitiondoesnotpassthroughother states

Fig:Flowtable with an extrarow

 Arace-freeassignmentcanbeobtainedifweaddanextra rowtotheflow table.

 Theuseofa fourthrow

doesnotincreasethenumberofbinarystatevariables,butitallowstheformationof

cycles betweentwo stablestates.

 Thetransitiontablecorrespondingtotheflowtablewiththeindicatedbinarystateassig

nmentisshown inFig.

 Thetwodashesinrowdrepresentunspecifiedstatesthatcanbeconsidereddon't-care

conditions.

 However,caremustbetakennottoassign10tothesesquares,inordertoavoidthepossib

ility ofan unwanted stablestatebeingestablishedin thefourth row.

Fig: Transitiontable

Four-RowFlow-Table

 A flow tablewith four rows requiresaminimum of two statevariables.

 Although arace-freeassignment issometimespossiblewithonly twobinary

statevariables,inmany casestherequirementofextrarows to avoid critical races

willpermit touse of threebinarystate variables

12

Fig:Four-rowflow-table example

 Thefollowing figureshowsastateassignmentmapthatissuitableforany four-

rowflowtable.Statesa, b,canddaretheoriginalstatesande,fandgareextrastates.

 Thetransitionfromatodmustbe

directedthroughtheextrastateetoproduceacyclesothatonly

onebinaryvariablechangesatatime.

 Similarly,thetransitionfromctoaisdirectedthroughgandthetransitionfromdtocgoest

hroughf.

 Byusingtheassignmentgivenby themap,thefour-rowtablecanbeexpandedtoaseven-

rowtablethat is freeofcritical races.

Fig: Choosing extrarowsfor theflowtable

 Notethatalthoughtheflowtablehas sevenrowsthereareonlyfourstablestates.

 Theuncircledstatesin the three extra rowsaretheremerelyto providearace-

freetransition between thestablestates.

13

Fig: Stateassignment to modified flowtable

Multiple-RowMethod

 Themethodformakingrace-

freestaleassignmentsbyaddingextrarowsintheflowtableisreferredto asthe shared-

rowmethod.

 A second methodcalled themultiple-rowmethodisnotasefficient, butis

easiertoapply.

 Inmultiple-rowassignmenteachstateintheoriginalrowtableisreplacedby twoor

more combinationsofstate variables.

Fig:Multiple

rowassignment

 Therearetwobinary

statevariablesforeachstablestate,eachvariablebeingthelogicalcomplementof the

other.

14

5. Explain various types of hazards in sequential circuits design and the

methods to eliminate them. (Dec-12, 14, 17) (Dec-2018)

HAZARDS

 Hazardsareunwantedswitchingtransientsthatmay

appearattheoutputofacircuitbecausedifferent

pathsexhibitdifferentpropagationdelays.

 Hazardsoccurincombinationalcircuits,wheretheymay causeatemporary

falseoutputvalue.

 But inasynchronous sequentialcircuits hazardsmay resultin a transitionto

awrongstable state.

Types of Hazards

 Static Hazard

 Dynamic Hazard

 Essential Hazard

Static Hazard

 Static Hazard is a condition which results in a single momentary incorrect

output due to change in a single input variable when the output is expected to

remain in the same state.

 The static hazard may be either static-0 or Static -1.

Hazards inCombinational Circuits

 Ahazardisaconditioninwhichachangeinasinglevariableproducesamomentary

changeinoutput when no changein output should occur.

Fig: Circuits with Hazards

 Assumethatallthreeinputsareinitially

equalto1.Thiscausestheoutputofgate110be1,thatofgate

2tobe0andthatofthecircuittobe1.Nowconsiderachangeinx2from1to0.

 Thentheoutputof gate1changesto0and thatofgate2changesto1,leaving

theoutputat 1.

 However,theoutputmay

15

momentarilygoto0ifthepropagationdelaythroughtheinverteristakenintoconsi

deration.

 Thedelay in theinvertermaycausetheoutput ofgate1 to changeto 0 beforethe

output of gate2 changes to1.

 Thetwo circuits shown in Figimplement theBoolean function in sum-of-

products form:

 This type of implementation may cause the output to go to 0 when it should

remain a 1. If however, the Circuit is implemented instead in product-of-

sums form namely,

then the output may momentarily go to 1 when it should remain 0.

 The first case is referred to a static 1-hazard and the second case as static

0-hazard.

 Athirdtypeofhazard,knownasdynamichazard,causestheoutputtochangethr

eeormoretimes when itshould changefrom1 to 0 or from 0 to 1.

Fig: Types ofhazards

 The change in

x2from1to0movesthecircuitfromminterm111tominterm101.The hazard

exists because the changein input results in a different product term

coveringthe twominterm.

Fig: Illustrates hazardandits

removal

 Minterm111iscoveredby

theproducttermimplementedingate1andminterm101iscoveredbythe

16

producttermimplementedingate2.

 Theremedy foreliminating ahazardistoenclosethetwominterms

withanotherproducttermthatoverlapsbothgroupings.

 Thehazard-freecircuitobtainedbysucha configurationisshowninfigure below.

 The extra gate inthecircuitgeneratesthe producttermx1x3.

 In general,hazardsincombinationalcircuitscanberemoved by coveringany

twomintermsthatmay producea hazardwithaproducttermcommontoboth.

 Theremovalofhazardsrequirestheadditionof redundantgates to thecircuit.

Hazards in SequentialCircuits:

Fig: HazardinanAsynchronous sequential circuit

 Innormalcombinational-

circuitdesignassociatedwithsynchronoussequentialcircuits,hazardsareof

17

noconcern,sincemomentaryerroneoussignalsare notgenerallytroublesome.

 However,ifamomentary incorrectsignalisfed

backinanasynchronoussequentialcircuit,itmay causethecircuittogotothe

wrongstable state.

 Ifthe circuitis in total stable stateyx1x2=111 and inputx2changesfromIto0, the

next total stablestate shouldbe110.However,because ofthehazard,outputYmay

goto0momentarily.

 Ifthisfalsesignal

feedsbackintogate2beforetheoutputoftheinvertergoesto1,theoutputofgate2willrem

ainat0 andthecircuitwillswitchtotheincorrecttotalstablestate 010.

 Thismalfunctioncanbe eliminatedby adding an extragate.

Essential Hazards

 Essentialhazardiscausedby

unequaldelaysalongtwoormorepathsthatoriginatefromthesame input.

 Anexcessivedelaythroughaninvertercircuitincomparisontothedelayassociatedwit

hthe feedback path maycausesuchahazard.

 Essentialhazards cannotbecorrectedby

addingredundantgatesasinstatichazards.The problemthat they

imposecanbecorrectedbyadjustingtheamountofdelay intheaffectedpath.

 Toavoidessential

hazards,eachfeedbackloopmustbehandledwithindividualcaretoensurethatthedel

ayinthe

feedbackpathislongenoughcomparedwithdelaysofothersignalsthatoriginate

fromtheinput terminals.

CLASSIFICATION OF MEMORIES

6. Discuss the classification of ROM and RAM memories.

 Amemoryunitisadevicetowhichbinary

informationistransferredforstorageandfromwhich

informationisretrievedwhenneededfor processing.

 When data processing takes place, information from memory is transferred to

selected registers in the processing unit.

 Amemoryunitisacollectionof cells capableof storingalargequantityof

binaryinformation.

TWO TYPESOFMEMORIES:

 Therearetwotypes ofmemoriesthatare usedindigitalsystems:

 Random-accessmemory(RAM)and Read-onlymemory(ROM)

(i) Random‐access memory (RAM)

 RAM stores new information for later use.

18

 The process of storing new information into memory is referred to as a

memory “write” operation.

 The process of transferring the stored information out of memory is

referred to as a memory “read” operation.

 RAM can perform both write and read operations.

(ii) Read‐only memory (ROM)

 ROM can perform only the read operation.

 This means that suitable binary information is already stored inside

memory and can be retrieved or read at any time.

 However, that information cannot be altered by writing.

 ROM is a programmable logic device (PLD).

 The binary information that is stored within such a device in some fashion and

then embedded within the hardware in a process is referred to as programming

the device.

7. Explain in detail about read-only memory.

READ-ONLY MEMORY(ROM)

 ROM is a non-volatile memory. It can hold data even if power is turned off.

 A ROM is essentiallyamemorydevicein whichpermanent binaryinformation

is stored.

 It is embedded in the unit and cannot be altered.

 It consists of „k‟ inputs and „n‟ outputs.

Fig: ROMblock

diagram

ROM Organization:

 The inputs provide the address for memory, and the outputs give the data bits of

the stored word that is selected by the address.

 Number of words is get from number of address inputs, here it is „k‟, hence

2kwords of n bits each is present in the memory.

19

Fig: Internal logic ofa32×8 ROM

Example:

 The five inputs are decoded into 32 distinct outputs by means of a 5×32

decoder. Each output of the decoder represents a memory address.

 The 32 outputs of the decoder are connected to each of the eight OR gates.

Each OR gate must be considered as having 32 inputs.

 Each output of the decoder is connected to one of the inputs of each OR gate.

 Since each OR gate has 32 input connections and there are 8 OR gates, the

ROM contains 32 x 8 = 256 internal connections.

 A programmable connection between two lines is logically

equivalenttoaswitchthatcanbealteredto

beeitherclosed(twolinesareconnected)oropen(twolinesare disconnected).

 Theprogrammableintersection between two lines issometimes called across

point.

 For anexample,programmingtheROMaccordingtothetruthtablegivenbytable.

 Every0listedinthe truthtablespecifiestheabsence

ofaconnectionandevery1listedspecifiesapaththatisobtainedby a connection.

20

Fig:ProgrammingtheROMaccording to ROM

truth table

TYPES OF ROM

8. Briefly explain EPROM and EEPROM technology.

The required paths in aROM maybeprogrammedin

fourdifferent ways.

 Maskprogramming

 Donebythesemiconductorcompanyduringthe

lastfabricationprocessoftheunit.

 Thisprocedureiscostly becausethevendorchargesthecustomera special fee

forcustommaskingthe particular ROM.

 Programmable read-onlymemory-PROM.

 Economical for small quantity.

 ThefusesinthePROMareblownbytheapplicationofahigh-voltage

pulsetothedevicethroughaspecialpin.

 Ablownfusedefinesabinary0stateandanintactfusegives abinary1state.

 Theprocedureisirreversibleandonce programmed; the fixed pattern is

permanent and cannot be altered.

 ErasablePROMorEPROM

 This canberestructuredtothe

initialstateeventhoughithasbeenprogrammedpreviously.

 It is erased by placing undera specialultravioletlightfor

agivenlengthoftime.

 ElectricallyerasablePROM(EEPROM)or Electrically Alterable PROM

(EAPROM)

 Electrical signals are used to erase the

previouslyprogrammedconnectionsinsteadof ultravioletlight.

 Theadvantage isthatthe device canbeerasedwithout removingitfrom its

socket.

9. Explain in detail about Random Access Memory.

21

RANDOM ACCESS MEMORY (RAM):

 RAM stores new information for later use.

 The process of storing new information into memory is referred to as a memory

write operation.

 The process of transferring the stored information out of memory is referred to as

a memory read operation.

 RAM can perform both write and read operations.

RAM Organization:

 A block diagram of a memory unit is shown in Fig.

 The n data input lines provide the information to be stored in memory, and the n

data output lines supply the information coming out of memory.

 The k address lines specify the particular word chosen among the many

available.

 The two control inputs specify the direction of transfer desired: Write input and

Read input.

 Amemory unitstoresbinaryinformationingroupsofbitscalledwords.

 Eachwordinmemory

isassignedanidentificationnumbercalledanaddressstartingfrom0up to2k-1.

wherekisthenumberofaddresslines.

 Considerforexample,amemoryunitwithacapacityof1K wordsof16bitseach.Since

 Here 1024 x 16 RAM consists of 10 x 1024 decoder (1K=1024bytes=210), where

the decoder inputs are the 10 address lines .

 The decoder accepts the address lines and provides the path needed to select

the word specified.

22

Fig: Contents of a 1024 × 16 memory

Read andwriteoperations:

 Thetwo operations that RAM can perform arethewriteand read operations.

Stepsto Write operation as follows:

 Applythe binaryaddress of thedesired word to the address lines.

 Applythe data bits that must be stored in memoryto thedatainputlines.

 Activate thewrite input.

Stepsto Read operation as follows:

 Applythe binaryaddressof thedesiredword to the address lines.

 Activate thereadinput.

 Thememoryenableorchipselectisusedtoenabletheparticularmemorychipina

multichipimplementationofalargememory.

 Whenthememory enableisinactive,thememory chipis

notselectedandnooperationisperformed.Whenthememoryenableinputisactive,the

read/write operation to be performed.

TYPES OF RAM

10. Explain the types of RAM with neat diagram.

RAM is classified into two types.

1. Static RAM

2. Dynamic RAM

STATIC RAM (SRAM):

23

 Memories that consist of circuits capable of retaining their state as long as

power is applied are known as static memories.

 Two basic SRAM cell technologies are

 Bipolar and MOS.

 All those types use cross-coupled transistors to make up the basic flip-flop

storage cell.

Bipolar Static RAM cell: (May-18)

 It is implemented using TTL (Transistor-Transistor Logic) multiple emitter

technology.

 It can store either 0 or 1 as long as power is applied.

Operation:

 Row and column select lines select a cell.

 The Q1 and Q2 are cross coupled inverters.

 A “1” is stored in the cell if Q1 is ON and Q2 is OFF.

 A “0” is stored in the cell if Q2 is ON and Q1 is OFF.

 When pulsing HIGH on Q1 emitter (SET), State is changed to „0‟.

 When pulsing HIGH on Q2 emitter (RESET), State is changed to „1‟

MOSFET Static RAM Cell:

Operation:

24

 In the basic NMOS cell, Q1 and Q2 are always biased to act as a Load Resistor

for Q3 and Q4.

 The Data in a cell can be read by setting ROW_SELECT = 1 to turn on Pass

Transistors Q5, Q6.

 The Data from cell is then “passed” to the BIT Line and (BIT)′ Line.

 To store a „0‟, place a 0 on the bit line and set ROW_SELECT = 1. This turns

on the Pass Transistors (Q5, Q6) to place a 0 to Q4 (it is off). Q3 is then ON to

store the 0.

 A „1‟ can be stored in a similar fashion.

11. Write note on dynamic RAM cell.

Dynamic RAM cell:

Dynamic RAM (DRAM) stores data as a charge on capacitors.

 The stored charge on the capacitors tends to discharge with time, and the

capacitors must be periodically recharged by refreshing the dynamic memory.

 Refreshing is done by cycling through the words every few milliseconds to

restore the decaying charge.

 DRAM offers reduced power consumption and larger storage capacity in a

single memory chip.

 Memory units that lose stored information when power is turned off are said

to be volatile.

Comparison of Static and Dynamic RAMS.

S.No Static RAM Dynamic RAM

1 Static RAM contains less

memory cells per unit area

Dynamic RAM contains more memory

cells as compared to static RAM per

unit area.

2 It has less access time hence

faster memories.

Its access time is greater than static

RAMs.

3 Static RAM consists of number

of flip flops. Each flip flop stores

one bit.

Dynamic RAMs store the data as a

charge on the capacitor. It consists of

MOSFET and the capacitor.

4. Refreshing circuitry is not

required.

Refreshing circuitry is required to

maintain the charge on the capacitors

after every few milliseconds

5 Cost is more Cost is less

PROGRAMMABLE LOGIC DEVICES (PLDs)

25

12. Write brief notes on combinational programmable logic device PLD.

Combinational PLDs

 The PROMisa combinationalprogrammable logicdevice (PLD)-

anintegratedcircuitwith

programmablegatesdividedintoanANDarrayandanORarray toprovideanAND-

ORsumof- product implementation.

 Thereare threemajortypesofcombinational PLDs,differing

intheplacementoftheprogrammable connections in the AND-OR array.

1. PROM- FixedANDarray andaprogrammableORarray.

2. PAL - ProgrammableAND arrayand a fixed OR array.

3. PLA - ProgrammableAND arrayand a programmable OR array.

13. Write short notes on PLA.

PROGRAMMABLE LOGIC ARRAY (PLA) (Dec-08, 12, 17, May-10, 11)

 Programmablelogicarrays(PLAs) is a type of fixed architecture logic devices with

programmable AND gates followed by programmable OR array.

 PLA is used to implement a complex combinational circuit.

 The AND and OR gates inside the PLA are initially fabricated with fuses among

them.

 The specific Boolean functions are implemented in sum of products (SOP) form

by blowing appropriate fuses and leaving the desired connections.

26

 Fig: Block diagram of a PLA

Input Buffer:

 Input buffers are provided in the PLA to limit loading of the sources that drive

the inputs. They also provide inverted and non-inverted form of inputs at its

output.

Output Buffer:

 The driving capacity of PLA is increased by providing buffers at the output. They

are usually TTL compatible. The output buffer may provide totem-pole, open

collector or tri-state output.

Output through Flip-flops:

 For the implementation of sequential circuits we need memory elements, flip-

flops and combinational circuitry for deriving the flip-flop inputs. To satisfy

both the needs some PLAs are provided with flip-flop at each output.

27

For an example, the Boolean expressions are,

Fig:PLA with threeinputs, fourproduct termsandtwo outputs

 ThefusemapofaPLAcanbespecifiedinatabularform.

Thefirstsectionliststheproductterms numerically.

 The secondsectionspecifies the requiredpathsbetweeninputsandANDgates.

 The third

sectionspecifiesthepathsbetweentheANDandORgates.Foreachoutputvariable,we

may havea T'(fortrue) orC (for complement) forprogrammingthe XOR gate.

 For eachproductterm,the inputsare markedwith1,0,or- (dash).If avariable inthe

productterm appearsintheforminwhichitistrue,thecorresponding

inputvariableismarkedwitha1.

 Ifitappears complemented,thecorresponding

28

inputvariableismarkedwitha0.Ifthevariableisabsentfromthe product term, it is

marked with a dash.

14. Implement the following two Boolean functions with a PLA: (Dec-13)

Solution:

Kmap

Boolean Expressions:

PLA Diagram:

29

Problems using PROM:

30

15. Write short notes on PAL.

PROGRAMMABLE ARRAY LOGIC (PAL): (Dec-05, 17, May-12)

 ThePAL

isaprogrammablelogicdevicewithafixedORarrayandaprogrammableANDarray.

 BecauseonlytheANDgatesareprogrammable,thePALiseasiertoprogramthanbutisn

otasflexible as the PLA.

 The PAL is a programmable logic device with a fixed OR array and a

programmable AND array.

 Below figure shows the logic configuration of a typical PAL with four inputs and

four outputs.

 Each input has a buffer–inverter gate, and each output is generated by a fixed

OR gate.

 There are four sections in the unit, each composed of an AND–OR array that is

three wide.

 Each AND gate has 10 programmable input connections, shown in the diagram

by 10 vertical lines intersecting each horizontal line.

 The horizontal line symbolizes the multiple‐input configuration of the AND gate.

 One of the outputs is connected to a buffer–inverter gate and then fed back into

two inputs of the AND gates.

Example:

Implement the followingBoolean functions, using PAL.

 (May 2013)

31

Sol:

Simplify the functions using K Map:

PAL Programming Table:

32

PAL Logic Diagram:

33

Problem 1: (Dec-11)

34

PLA Logic Diagram:

35

16. Write a short note on PROM.

Programmable Read Only Memory (PROM): (May-10, 11, 18)

 It consists of n-input lines and m-output lines. Each bit combination of the input

variables is called an address. Each bit combination that comes out of the

output lines is called word.

 The word available on the output lines at any given time depends on the address

value applied to the input lines.

Fig: Block diagram of PROM

36

Fig: Logic construction of 64 X 4 PROM

Fig: 4 X 2 PROM with AND-OR gates

AND Matrix:

 It is used to form product terms. It has m AND gates with 2n-inputs and m-

outputs, one for each AND gate.

37

OR Matrix:

 The OR matrix is provided to produce the logical sum of the product term

outputs of the AND matrix.

Invert/Non-invert Matrix:

 Invert/Non-invert matrix provides output in the complement or uncomplemented

form. The user can program the output in either complement or uncomplement

form as per design requirements.

17. Write short notes on FPGA.

Field-Programmable Gate Array (FPGA)

 Afield programmablegatearray(FPGA)isaVLSIcircuitthatcanbeprogrammed

attheuser‟slocation.

 AtypicalFPGAconsistsofanarray ofmillionsoflogicblocks,

surroundedbyprogrammableinputandoutputblocksandconnectedtogethervi

aprogrammableinterconnections.

 There isawidevarietyofinternalconfigurationswithin thisgroup ofdevices.

 Theperformanceofeachtypeofdevicedependsonthecircuit

containedinitslogicblocksandtheefficiencyofitsprogrammed interconnections.

Fig: Largeprogrammable-logic-devicescaling approaches: (a)CPLD;(b) FPGA.

38

 AtypicalFPGAlogicblock consists oflookuptables, multiplexers,gates,and flip-

flops.

 Alookuptableis atruth tablestored inanSRAM andprovides thecombinational

circuitfunctions forthelogicblock.

 The

combinationallogicsection,alongwithanumberofprogrammablemultiplexers,

is usedtoconfigurethe input equationsforthe flip‐flopand the outputofthe

logic block.

 Theadvantageof usingRAMinsteadof ROMtostorethetruthtableisthatthetable

canbeprogrammedbywritingintomemory.

 Thedisadvantageisthat thememory is

volatileandpresentstheneedforthelookuptable‟scontenttobereloadedintheevent

thatpowerisdisrupted.

 Theprogramcanbedownloadedeither fromahostcomputer

orfromanonboardPROM.

 TheprogramremainsinSRAM

untiltheFPGAisreprogrammedorthepoweristurnedoff.

Thedevicemustbereprogrammedeverytime poweristurnedon.

Basic Xilinx Architecture:

 The basic architecture of Spartan and earlier device families consists of an array

of configurable logic blocks (CLBs), a variety of local and global routing

resources, and input–output (I/O) blocks (IOBs), programmable I/O buffers, and

an SRAM based configuration memory, as shown in Fig.

39

18. Write a short note on CPLD?

Complex Programming Logic Devices (CPLD):

 PLA and PAL are useful for implementing a wide variety of small digital circuits

like MUX, encoders, counters etc.

 These devices have a very low number of inputs and outputs at the range of 32

as a maximum value.

 For digital circuits with more number of inputs, (Example: ALU,

Microprocessor), a complex programmable logic device (CPLD), can be used.

 A CPLD contains multiple circuit blocks on a single chip with internal wiring

resources connected to the circuit blocks. Each circuit block is similar to PLA

or PAL in their function.

 All the PAL like blocks are connected using inter connection wires.

 Each block has a subcircuit called as I/O block which is connected to the chips

input and output pins.

Fig: Structure of a CPLD

 There are several PAL like block in the CPLD. Each PAL like block consists of

some macro cells (about 16), each macro cell consisting of a four input OR gate

from programmable AND gates.

 The inputs of programmable AND gates are connected to I/O blocks through

interconnection wires.

 The macro cell consists of some more gates, flip-flops and multiplexers.

 EE8351 DIGITAL LOGIC CIRCUITS

1

UNIT V – VHDL

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to

Packages – Subprograms – Test bench. (Simulation /Tutorial Examples: adders,

counters, flip flops, Multiplexers & De multiplexers).

TWO MARKS

1. What is a HDL?

Computer Aided Design (CAD) tools are used in the design of digital systems.

One such tool is a Hardware Description Language (HDL).

2. What are the main components of a VHDL description?

 The main components of a VHDL description are:

 Package (optional)

 Entity

 Architecture

 Configuration (optional)

3. What is entity?

 Entity gives the specification of input/output signals to external circuitry. It

gives interfacing between device and the other peripherals. An entity usually has

one or more ports, which are analogous to the pins on a schematic symbol. All

information must flow into and out of the entity through the ports. Each port

must contain name, data flow direction and type.

4. Give the syntax for VHDL entity declaration.(April/May 2017)

The syntax of a VHDL entity declaration is as shown below:

 Entity entity_ name is

 Port (signal_ names: mode signal_ type;

 Signal_ name: mode signal_ type;

 :

 :

 Signal_ names: mode signal_ type);

 end entity_ name;

5. What is architecture?

 Architecture specifies behavior, functionality, interconnections or

relationship between inputs and outputs. It is the actual description of the

design. Architecture consists of two portions: architecture declaration and

architecture body.

6. List the internal details of an entity specified by architecture body.

An architecture body specifies the following internal details of an entity:

 As a set of concurrent assignment statements (to represent dataflow)

 EE8351 DIGITAL LOGIC CIRCUITS

2

 As a set of interconnected components (to represent structure)

 As a set of sequential assignment statement (to represent behavior)

 As any combination of above three.

7. Give the syntax for VHDL architecture declaration. (April/May 2017)

The syntax for architecture is given below:

 Architecture architecture _ name of entity_ name is

 Declarations

 Begin

 Concurrent statement;

 Sequential statement;

 end architecture_ name;

8. What is the use of configuration declaration?

 Configuration declarations may be used to associate particular design

entities to component instances (unique reference to lower-level components) in

a hierarchical design, or to associate a particular architecture to an entity.

9. What is the need of package declaration? (April/May 2015)

 There are some declarations which are common across many design units.

A package is a convenient mechanism to store and share such declarations. A

set of declarations contained in a package declaration may be shared by many

design units. It defines items that can be made visible to other design units.

10. How is package represented?

A package is represented by:

 Package declaration

 Package body (optional)

11. What are the various modeling techniques in HDL? (May-10, Dec.-12)

There are three modelling techniques in HDL for describing a module:

 Gate-level modeling/structural modeling

 Dataflow modeling

 Behavioral modeling

12. What is behavioral modeling?

 The modeling style which directly describes the behavior or the

functionality of a circuit is called behavioral modeling. It is very similar in syntax

and semantics to that of a high-level programming language (for example: C,

Pascal). A behavioral description models the system as to how the outputs

behave with the inputs.

13. Write HDL behavioral model of D flip flop.

In the previous code, we have used IF-THEN statement. The similar code can be

writing using WAIT-UNTIL statement. This statement has the same effect as IF-

THEN statement. In this case, the sensitively list is omitted. The VHDL code for a

 EE8351 DIGITAL LOGIC CIRCUITS

3

positive-edge triggered D flip-flop using a WAIT-UNTIL statement is given below.

The WAIT-UNTIL construct implies that the sensitivity list includes only the clock

signal.

14. What is data flow modeling?

 Data flow describes how the circuit signal flow from the input to the

outputs. There are some concurrent statement which allows describing the

circuit in terms of operations on signals and flow of signals in the circuit. When

such concurrent statement is used in a program, the style is called a dataflow

modeling.

15. What is structural modeling?

 The modeling style which uses components or gates to model the system is

called structural modeling.

16. List the data objects supported by VHDL.

The data objects supported by VHDL are:

 Signals

 Variables

 Constants

 File

17. Give the comparison between concurrent and sequential statement.

S.NO CONCURRENT STATEMENT SEQUENTIAL STATEMENT

1.

Concurrent statement in VHDL

can refer only to signals.

Therefore, the order of the

execution of concurrent

statements is not important.

Sequential statement is executed in

the order in which they appear

within the process. Thus, the order

of the execution of sequential

statements.

2.

A process block is considered

to be a single concurrent

statement.

Sequential statements can only

appear inside of a process block.

3.
It can be anywhere in the

architecture body.
It should be in the process.

4.

Examples for concurrent

statements are: process,

component signal assignment.

Examples of sequential statement

are: if, for, case, sequential signal

assignment statement.

18. States the use of generate statement in VHDL.

A generate statement in VHDL is used to create repetitive structure for repetitive

sub circuits. This concept is similar to use a FOR loop. When generate statement

is used, it is not necessary to write out all of the component instantiations

individually.

 EE8351 DIGITAL LOGIC CIRCUITS

4

19. What is subprogram?

 A subprogram defines a sequential algorithm that performs particular task.

Two types of subprograms are used in VHDL: Procedures and functions.

Procedures and functions in VHDL, are directly analogous to functions and

procedures in a high-level programming language such as C or Pascal.

20. How procedure differs from function?

 A procedure differs from a function in that there is no return value, and the

arguments of the procedure have modes (in, out, or inout).

21. What do you mean by subprogram overloading?

 It is possible to define two or more different subprograms having the same

name but differing in number or type of parameters. The function is said to be

overloaded in this case. The simulator or synthesizer automatically selects the

correct subprogram by looking at the parameters in the call statement.

Overloading is a very convenient mechanism for defining a set of function that

perform the same operation on different data types.

22. Write HDL for half adder. (May-10, 12)

Module half_ adder (A, B, Sum, C out);

 Input A;

 Input B;

 Output Sum;

 Output C out;

 reg Sum, C out;

 always @(A, B)

 begin

 #10 Sum = a b;

 #10 Cout = a & b;

 End

23. When can RTL be used to represent digital systems?

 When digital systems are composed of registers and combinational

function locks, the RTL can be used to represent digital systems.

24. What is test bench?

 Before processing a design by synthesis tool, the designer usually wants to

verify that the design performs according to the specification. This is almost

always done by running a simulation. Simulating a design requires generation of

test data and observation of simulation results. This process is done by used of a

VHDL module that is referred to as test bench.

25. List the different types of test benches?

The different types of test benches are:

 Stimulus only

 Full test bench

 EE8351 DIGITAL LOGIC CIRCUITS

5

 Simulator specific

 Hybrid test-bench

 Fast test bench

26. What is the meaning of the following RTL statement?

T1: ACC<- ACC and MDR.

The contents of register ACC are bit wised ANDed with the contents of MDR

register and the result is stored in the ACC register when control signal T1 is

activated.

27. What is Verilog?

Verilog is a general purpose hardware descriptor language. It is similar in syntax

to the C programming language. It can be used to model a digital system at

many levels of abstraction ranging from the algorithmic level to the switch level.

28. What are the various modeling used in Verilog?

1. Gate-level modeling

2. Data-flow modeling

3. Switch-level modeling

4. Behavioral modeling

29. What is the structural gate-level modeling?

Structural modeling describes a digital logic networks in terms of the

components that make up the system. Gate-level modeling is based on using

primitive logic gates and specifying how they are wired together.

30. What is Switch-level modeling? (May-18)

Verilog allows switch-level modeling that is based on the behavior of MOSFETs.

Digital circuits at the MOS-transistor level are described using the MOSFET

switches.

31. What are identifiers?

Identifiers are names of modules, variables and other objects that we can

reference in the design. Identifiers consists of upper and lower case letters, digits

0 through 9, the underscore character(_) and the dollar sign($). It must be a

single group of characters.

Examples: A014, a, b, in_o, s_out

32. What are the value sets in Verilog?

Verilog supports four levels for the values needed to describe hardware referred

to as value sets.

Value levels Condition in hardware circuits

0 Logic zero, false condition

1 Logic one, true condition

X Unknown logic value

Z High impedance, floating state

 EE8351 DIGITAL LOGIC CIRCUITS

6

33. What are the types of gate arrays in ASIC?

1) Channeled gate arrays

2) Channel less gate arrays

3) Structured gate arrays

34. Give the classifications of timing control

Methods of timing control:

1. Delay-based timing control

2. Event-based timing control

3. Level-sensitive timing control

Types of delay-based timing control:

1. Regular delay control

2. Intra-assignment delay control

3. Zero delay control

Types of event-based timing control:

1. Regular event control

2. Named event control

3. Event OR control

4. Level-sensitive timing control.

35. What are the advantages of Hardware Description Languages?

 Boolean expressions, logic diagrams and digital circuits can be represented.

 Simulation, modeling, testing, design and documentation of digital circuit can

be easily done by using Hardware Description Languages.

36. Give the different arithmetic operators?

Operator symbol Operation performed Number of operands

 * Multiply Two

 / Divide Two

 + Add Two

 - Subtract Two

 % Modulus Two

 ** Power (exponent) Two

37. Give the different bitwise operators.

Operator symbol Operation performed Number of operands

 ~ Bitwise negation One

 & Bitwise and Two

 | Bitwise or Two

 ^ Bitwise xor Two

 ^~ or ~^ Bitwise xnor Two

~& Bitwise nand Two

~| Bitwise nor Two

 EE8351 DIGITAL LOGIC CIRCUITS

7

38. What is the meaning of the following RTL statement? (Nov/Dec 2011)

T1 : ACC ---- ACC and MDR

 T1 represents control function,

 Colon(:) separates the control function from accumulator (ACC),

 Reverse arrow (--) indicates transfer of information.

 MDR (Memory Data Register) -- Holds contents of memory word.

 The information present in Accumulator and Data Register are added and

then stored in the accumulator.

39. Write HDL for Half adder. (May/June 2012)

module half_adder (a, b, sum, cout);

input a;

input b;

output sum;

output cout;

reg sum,cout;

always @ (a,b)

begin

#10 sum = a ^ b;

10 cout = a & b ;

end

endmodule

40. Write HDL behavioural model of D flip-flop. (May/June 2013) (Nov/Dec

2015,2016) (May/June 2015)

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY DFF IS

 PORT (D, Clock : IN STD_LOGIC;

 Q : OUT STD_LOGIC);

END DFF;

ARCHITECTURE Behaviour OF DFF IS

BEGIN

 IF Clock‟ EVENT AND Clock = „1‟ THEN

 Q< = D;

 END IF;

 END PROCESS;

 END Behaviour;

41. What are gate primitives?

Verilog supports basic logic gates as predefined primitives. Primitive logic

function keyword provides the basics for structural modeling at gate level. These

primitives are instantiated like modules except that they are predefined in verilog

 EE8351 DIGITAL LOGIC CIRCUITS

8

and do not need a module definition. The important operations are and, nand,

or, xor, xnor, and buf (non-inverting drive buffer).

42. Give the two blocks in behavioral modeling.

1. An initial block executes once in the simulation and is used to set up initial

conditions

and step-by-step data flow.

2. An always block executes in a loop and repeats during the simulation.

43. What are the types of conditional statements?

1. No else statement

Syntax: if ([expression]) true – statement;

2. One else statement

Syntax: if ([expression]) true – statement;

else false-statement;

3. Nested if-else-if

Syntax : if ([expression1]) true statement 1;

 else if ([expression2]) true-statement 2;

 else if ([expression3]) true-statement 3;

 else default-statement;

The [expression] is evaluated. If it is true (1 or a non-zero value) true-statement

is executed. If it is false (zero) or ambiguous (x), the false-statement is executed.

44. Name the types of ports in Verilog

Types of port Keyword

 Input port Input

 Output port Output

 Bidirectional port inout

45. What is the need for VHDL? (May/June 2013)

 HDL describes the hardware of digital systems. This description is in textual

form. The Boolean expressions, logic diagrams and digital circuits can be

represented using HDL. The most prominent modern HDLs in industry are

Verilog and VHDL. It is one of the two major Hardware Description Languages

(HDLs) used by hardware designers in industry and academia.

46. What are the operators present in VHDL? (Nov/Dec 2011) (Nov/Dec 2015)

VHDL includes the following kinds of operators:

 Logical

 Relational

 Arithmetic

 Shift and Rotate.

47. What are the types of procedural assignments?

 Blocking assignment

 Non-blocking assignment

 EE8351 DIGITAL LOGIC CIRCUITS

9

PART-B -16marks

RTL Design

Explain in detail about principle of operation of RTL Design.
 (Dec-15, May -18)

Register Transfer Level, or RTL design lies between a purely behavioral description of

the desired circuit and a purely structural one. An RTL description de- scribes a

circuit‟s registers and the sequence of transfers between these registers but does not
describe the hardware used to carry out these operations.

As a simple example, consider a device that needs to add four numbers. In VHDL,

given signals of the correct type, we can simply write:

s <= a + b + c + d;

This particular description is simple enough that it can be synthesized. However,

the resulting circuit will be a fairly large combinational circuit comprising three

adder circuits as follows:

A behavioral description, not being concerned with implementation details would

be complete at this point.

However, if we were concerned about the cost of the implementation we might

decide to break down the computation into a sequence of steps, each one involving
only a single addition:

s = 0

s = s + a

s = s + b

s = s + c

s = s + d

Where, each operation is executed sequentially. The logic required is now one
adder, a register to hold the value of s in-between operations, a multiplexer to

select the input to be added on, and a circuit to clear s at the start of the

computation.

Although this approach only needs one adder, the process requires more steps and

 EE8351 DIGITAL LOGIC CIRCUITS

10

will take longer. Circuits that divide up a computation into a sequence of

arithmetic and logic operations are quite common and this type of design is called

Register Transfer Level (RTL) or “dataflow” design.

An RTL design is composed of (1) registers and combinational function blocks (e.g.

adders and multiplexers) called the data path and (2) a finite state machine, called

the controller that controls the transfer of data through the function blocks and

between the registers.

In VHDL RTL design the gate-level design and optimization of the data path

(registers, multiplexers, and combinational functions) is done by the synthesizer.

However, the designer must design the state machine and decide which register

transfers are per- formed in which state.

The RTL designer can trade off data path complexity (e.g. using more adders and

thus using more chip area) against speed (e.g. having more adders means fewer

steps are required to obtain the result).

RTL design is well suited for the design of micro- processors and special-purpose

processors such as disk drive controllers, video display cards, network adapter

cards, etc. It gives the designer great flexibility in choosing between processing

speed and circuit complexity.

The diagram below shows a generic component in the data path. Each RTL design

will be composed of from controller clock one of the following building blocks for

each register. The structure allows the contents of each register to be updated at

the end of each clock period with a value selected by the controller.

The widths of the registers, the types of combinational functions and their inputs

will be determined by the application. A typical design will include many of these

components.

 EE8351 DIGITAL LOGIC CIRCUITS

11

RTL Design Example

To show how an RTL design is described in VHDL and to clarify the concepts

involved, we will design a four-input adder. This design will also demonstrate how to
create packages of components that can be re-used.

The data path shown below can load the register at the start of each clock cycle
with zero, the current value of the register, or the sum of the register and one of

the four inputs.

It includes one 8-bit register, an 8-bit adder and a multiplexer that selects one of

the four inputs as the value to be added to the current value of the register.

Exercise: Other data paths could compute the same result. Draw the block

diagram of a data path capable of computing the sum of the four numbers in

three clock cycles.

The first design unit is a package that defines a new type, num, for eight-bit
unsigned numbers and an enumerated type, states, with six possible values.

Nums are defined as a subtype of the unsigned type.

-- subtype used in design

library ieee ;

use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

package averager_types is
subtype num is unsigned (7 downto 0) ;

type states is (clr, add_a, add_b, add_c, add_d, hold) ;
end averager_types ;

The first entity defines the data path. In this case the four numbers to be added

are available as inputs to the entity and there is one output for the current sum.
Data path

library ieee ;

 EE8351 DIGITAL LOGIC CIRCUITS

12

use ieee.std_logic_1164.all ;

use ieee.std_logic_arith.all ;

use work.averager_types.all ;

entity datapath is port (

a, b, c, d : in num ; sum : out num ;

sel : in std_logic_vector (1 downto 0) ;

load, clear, clk : in std_logic) ;

end datapath ;

architecture rtl of datapath is

signal mux_out, sum_reg, next_sum_reg : num ;

constant sum_zero : num :=

conv_unsigned(0,next_sum_reg’length) ;

begin

-- mux to select input to add with sel select mux_out <=

a when "00", b when "01", c when "10",

d when others ;

-- mux to select register input next_sum_reg <=

sum_reg + mux_out when load = ’1’ else

sum_zero when clear = ’1’ else

sum_reg ;

-- register sum

process(clk) begin

if clk’event and clk = ’1’ then

sum_reg <= next_sum_reg ;

end if ;

end process ;

-- entity output is register output

sum <= sum_reg ;

end rtl ;

Program for AND gate(*)

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\and\is

Port(

a:in STD_LOGIC;

b:inSTD_LOGIC;

 EE8351 DIGITAL LOGIC CIRCUITS

13

c:outSTD_LOGIC;

);

End\and\;

Architecture\and\of\and\is

Being

 C<=a and b;

End\and\;

Program for OR gate

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\or\is

Port(

a:in STD_LOGIC;

b:inSTD_LOGIC;

c:outSTD_LOGIC;

);

End\or\;

Architecture\or\of\or\is

Being

 C<=a or b;

End\or\;

Program for NOT

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\NOT\is

Port(

a:in STD_LOGIC;

b:OUTSTD_LOGIC;

);

End\NOT\;

Architecture\NOT\of\NOT\is

Being

 b<=not a;

End\not\;

Program for NAND gate

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\nand\is

Port(

a:in STD_LOGIC;

b:inSTD_LOGIC;

 EE8351 DIGITAL LOGIC CIRCUITS

14

c:outSTD_LOGIC;

);

End\nand\;

Architecture\nand\of\nand\is

Being

 C<=a nand b;

End\nand\;

Program for NOR gate

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\nor\is

Port(

a:in STD_LOGIC;

b:inSTD_LOGIC;

c:outSTD_LOGIC;

);

End\nor\;

Architecture\nor\of\nor\is

Being

 C<=a nor b;

End\nor\;

Program for XOR gate

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\xor\is

Port(

a:in STD_LOGIC;

b:inSTD_LOGIC;

c:outSTD_LOGIC;

);

End\xor\;

Architecture\xor\of\xor\is

Being

 C<=a xor b;

End\xor\;

Program for XNOR gate

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\xnor\is

Port(

a:in STD_LOGIC;

 EE8351 DIGITAL LOGIC CIRCUITS

15

b:inSTD_LOGIC;

c:out STD_LOGIC;

);

End\xnor\;

Architecture\xnor\of\xnor\is

Being

 C<=a xnor b;

End\xnor\;

Program for HALF ADDER (**)

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity\half_adder\is

Port(

a:in STD_LOGIC;

b :in STD_LOGIC;

sum: out STD_LOGIC;

carry: out STD_LOGIC;

);

End\HALF ADDER\;

Architecture\halfadder\of\half adder\is

Being

 Sum<=a xor b;

Carry<=a and b;

End\half adder\;

Program for FULL ADDER (May-15, Dec-15, 16)

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity fulladder is

Port(

a:in STD_LOGIC;

b :in STD_LOGIC;

sum: out STD_LOGIC;

carry: out STD_LOGIC;

);

End full ADDER ;

Architecture fulladder of fulladder is

Being

 Sum<=a xor b xor c;

Carry<=(a and b)or(a and c)or(b and c);

End fulladder;

Program for HALF SUBTRACTER

 EE8351 DIGITAL LOGIC CIRCUITS

16

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity half subtractors is

Port(

a:in STD_LOGIC;

b :in STD_LOGIC;

borrow: out STD_LOGIC;

difference: out STD_LOGIC;

);

End half subtractors ;

Architecture half subtractors of half subtractors is

Being

 difference<=a xor b ;

borrow<=(not a) and b;

End half subtractors;

Program for full SUBTRACTORS

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity full subtractors is

Port(

a:in STD_LOGIC;

b :in STD_LOGIC;

difference: out STD_LOGIC;

borrow: out STD_LOGIC;

);

End full subtractors ;

Architecture full subtractors of full subtractors is

Being

 difference<=a xor b xor c;

borrow<=(((not a)and b)or((not a)and c)or(b and c));

End fullsubtractors;

Program for MULTIPLEXER (***) (May-17, Dec-16)

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity multi is

Port(

D:in STD_LOGIC_vector(o to3);

S:in STD_LOGICvector(0 to1);

z:out STD_LOGIC;

);

End multi;

 EE8351 DIGITAL LOGIC CIRCUITS

17

Architecture multi of multi is

Being

Process(d,s)

Begin

Case s is

 When ‘’00’’=>

 Z<=d(0);

 When’’01’’=>

 Z<=d(1);

 When’’10’’=>

 Z<=d(2);

 When’’11’’=>

 Z<=d(3);

 When other=>

 Z<=’0’;

End case;

End process;

End multi;

Program for DEMULTIPLEXER (***) (Dec-2015)

Library ieee;

use ieee.std_logic_1164.all;

entity Demux_4_to_1 is

port (

E:in std_logic;

S0,S1 : in std_logic;

D0,D1,D2,D3 : out std_logic);

End Demux_4_to_1;

--

Architecture Func of Demux_4_to_1 is component and Gate is import AND gate entity

Port(A,B,C : in std_logic;

 F : out std_logic);

End component;

Component not Gate is --import NOT Gate entity

 port(inPort : in std_logic;

 outPort : out std_logic);

end component;

signal invOut0, invOut1: std_logic;

begin

 --Just like the real circuit, there are

 --four components : G1 to G4

 EE8351 DIGITAL LOGIC CIRCUITS

18

GI1: notGate port map(S0, invOut0);

GI2: notGate port map(S1, invOut1);

GA1: andGate port map(E, invOut1, invOut0, D0); -- D0

GA2: andGate port map(E, S0, invOut1, D1); -- D1

GA3: andGate port map(E, invOut0, S1, D2); -- D2

GA4: andGate port map(E, S0, S1, D3); -- D3

End Func;

---------------END

Program for T flip Flop

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity tflipflop is

Port(

Qn: in STD_LOGIC;

Clk:IN std_logic;

T:in STD_LOGIC;

Qn1: out STD_LOGIC

);

End tflipflop;

Architecture flipflop1 of tflipflop is

Begin

Process

Begin

Wait until clk=’1’;

Qn1<=qn xor t;

End process;

End flipflop1;

VHDL description of a D Flip Flop

library ieee;

use ieee.std_logic_1164.all;

entity D_FF is

Port(D,CP:in std.logic;

 Q,Qbar:buffer std_logic);

end D_FF;

architecture FF of D_FF is

--here Q and Qbar singal are declared as buffer ; however these signals are mapped with in and out

signals. Some simulators may not allow such mapping. In this case, change ll in and out buffer.

Component nand2

port (i1,i2:in std_logic;

o1:out std_logic);

 EE8351 DIGITAL LOGIC CIRCUITS

19

end component;

for all:NAND2 use entity work.two_input(nand2_7);

signal S1,R,R1:std_logic;

begin

NA1:NAND2 port map (D, CP, S1);

NA2:NAND2 port map (R, CP, R1);

NA3:NAND2 port map (D, D, R); --NAND gate used as inverter

NA4:NAND2 port map (s1, Qbar,Q);

NA5:NAND2 port map(Q,R1,Qbar);

VHDL description of a JK Flip Flop

library ieee;

use ieee.std_logic_1164.all;

entity JK_FF is

Port(J,K,CP:in std.logic;

 Q,Qbar:buffer std_logic);

end JK_FF;

architecture FF of JK_FF is

--here Q and Qbar singal are declared as buffer ; however these signals are mapped with in and out

signals. Some simulators may not allow such mapping. In this case, change ll in and out buffer.

Component NOR2

port (i1,i2:in std_logic;

o1:out std_logic);

end component;

component and3

port (i1,i2,i3:in std_logic;

o1:out std_logic);

end component;

for all:NOR2 use entity work.two_input(nor2_7);

for all:NOR3 use entity work.three_input(nor3_7);

signal S,R

begin

NA1:NOR2 port map (S,Q,Qbar);

NA2:NOR2 port map (R,Qbar,Q);

A1:and3 port map (Q,K,CP,R);

A2:and3 port map (Qbar,J,CP,S);

end FF;

VHDL description of a SR Flip Flop

library ieee;

use ieee.std_logic_1164.all;

entity SR_FF is

Port(S,R,CP:in std.logic;

 Q,Qbar:buffer std_logic);

 EE8351 DIGITAL LOGIC CIRCUITS

20

end SR_FF;

architecture FF of SR_FF is

--here Q and Qbar singal are declared as buffer ; however these signals are mapped with in and out

signals. Some simulators may not allow such mapping. In this case, change ll in and out buffer.

Component nand2

port (i1,i2:in std_logic;

o1:out std_logic);

end component;

for all:nand2 use entity work.two_input(nand2_7);

signal S1,R1:std_logic;

begin

NA1:nand2 port map (S1,Qbar,Q);

NA2:nand2 port map (Q,R1,Qbar);

NA3:nand2 port map (S,CP,S11);

NA4:nand2 port map (R,CP,R1);

end latch;

VHDL code for a 4-bit down Counter (*)

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY downctr IS

 GENERIC (MOD: INTEGER: =8;

 PORT (clock,load,EN :IN STD_LOGIC;

 Q: OUT INTEGER RANGE 0 TO MOD-1);

END downctr;

ARCHITECTURE behavior OF downctr IS

 SIGNAL count: INTEGER RANGE 0 TO MOD-1;

BEGIN

 PROCESS

 BEGIN

 WAIT UNTIL (clock’EVENT AND clock=’1’);

 IF EN =’1’THEN

 IF LOAD =’1’ THEN

 Count<=MOD-1;

ELSE

 Count<=count-1

 END IF;

 END IF;

END PROCESS;

Q<=count;

END behavior;

VHDL code for a Four-Bit Up Counter

LIBRARY IEEE;

 EE8351 DIGITAL LOGIC CIRCUITS

21

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_unsigned.all;

ENTITY upctr IS

 PORT (clock,resetn,EN: IN STD_LOGIC;

 Q :OUT STD_LOGIC_VECTOR (3 DOWNTO));

END upctr;

ARCHITECTURE behavior OF upctr IS

 SIGNAL count : STD_LOGIC_VECTOR(3 DOWNTO);

BEGIN

 PROCESS (clock, Resetn)

 BEGIN

 IF Resetn=’0’ THEN

 Count<=’’0000’’;

ELSIF(clock’EVENT AND clock =’1’)THEN

 IF EN =’1’ THEN

 Count<=count+1;

ELSE

 Count<=count;

END IF;

END IF;

 END PROCESS;

Q<=count;

END Behavior;

VHDL code for synchronous mod-6 counter(******) (May-15, Dec-16)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_unsigned.ALL;

ENTITY counter3 IS

PORT(

 CLK : IN STD_LOGIC;

 Resetn : IN STD_LOGIC;

 Setn : IN STD_LOGIC;

 Q : IN0UT STD_LOGIC_VECTOR (2 DOWNTO 0)

);

END counter3;

ARCHITECTURE Synch_Cntr of Counter3 IS

BEGIN

PROCESS(CLK,Resetn,Sten)

VARIABLE Qtemp: STD_LOGIC_VECTOR (2 DOWNTO 0);

BEGIN

IF Resetn =’0’ THEN

Qtemp:=”000”;

ELSIF Setn=’0’ THEN

 EE8351 DIGITAL LOGIC CIRCUITS

22

Qtemp:=”111”;

ELSIF CLK=’1’ AND CLK’EVENT THEN

IF Qtemp<5 THEN

Qtemp:Qtemp +1;

ELSE

Qtemp:=’’000’’;

END IF;

END IF;

Q<=Qtemp;

END PROCESS;

END Synch _Cntr;

VHDL description of n-bit magnitude comparator using generate statement

Library ieee;

Use ieee.std_logic_1164.all;

Entity comp_gen is

Generic (N : integer :=3);

Port(A,B :in std_logic_vector(N downto 0);

 AgtB,AltB,AeqB : buffer std_lodic);

end comp_gen;

Architecture compare of comp_gen is

Component full_adder

Port(I1,I2,I3:in std_logic;O1,O2:out std_logic);

end component;

Component inv

Port(I1:in std_logic;O1:out std_logic);

end component;

component nor2

port(I1,I2:in std_logic;O1:out std_logic);

end component;

component and2

port(I1,I2:in std_logic;O1:out std_logic);

end component;

signal Sum,Bbar:std_logic_vector(N downto 0);

signsal C,eq:std_logic_vector(N+1 downto);

for all:full_adder use entity work.bind32(full_add);

for all:inv use entity work.bind1(inv_0);

for all:nor2 use entity work.bind(nor2_7);

for all:and2 use entity work.bind(and2_7);

begin

 C(0)<=’0’;

 Eq(0)<=’1’;

G1:for I in 0 to N generate

 V1:inv port map (B(i),Bbar(i));

 EE8351 DIGITAL LOGIC CIRCUITS

23

 FA:full_adder port map (A(i),Bbar(i),C(i),Sum(i),C(I+1));

 A1:and2 port map (eq(i),Sum(i),eq(i+1));

end generate G1;

 AgtB<=C(N+1);

 AeqB<=eq(N+1);

 n1:nor2 port map (AeqB,AgtB,AltB);

end compare;

Construct a VHDL module listing for a 16:1 MUX that is based on the assignment statement.

Use a 4-bit select word S3,S2,S1,S0 to map the selected input Pi(i = 0,15) to the

output.(Multiplexer)(******)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

entity Mux8_1 is

Port(SEL:in STD_LOGIC_VECTOR(3 downto 0):

P0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15:in STD_LOGIC;

MUX_OUT:out STD_LOGIC);

end Mux8_1;

architecture BEHAVIORAL of Mux16_1 is

begin

 process(SEL,P0,P1,P2,P3,P4,P5,P6,

P7,P8,P9,P10,P11,P12,P13,P14,P15)

 begin

case SEL is

 when”0000”=>MUX_OUT<=P0;

when”0001”=>MUX_OUT<=P1;

when”0010”=>MUX_OUT<=P2;

when”0011”=>MUX_OUT<=P3;

when”0100”=>MUX_OUT<=P4;

when”0101”=>MUX_OUT<=P5;

when”0110”=>MUX_OUT<=P6;

when”0111”=>MUX_OUT<=P7;

when”1000”=>MUX_OUT<=P8;

when”1001”=>MUX_OUT<=P9;

when”1010”=>MUX_OUT<=P10;

when”1011”=>MUX_OUT<=P11;

when”1100”=>MUX_OUT<=P12;

when”1101”=>MUX_OUT<=P13;

when”1110”=>MUX_OUT<=P14;

when”1111”=>MUX_OUT<=P15;

when others =>null;

end case;

end process;

end BEHAVIORAL

