UNIT I
NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code)
— Digital Logic Families -comparison of RTL, DTL, TTL, ECL and MOS families -operation,
characteristics of digital logic family.

Introduction

Basically there are two types of signals in electronics,

i) Analog
i) Digital

Digital systems

Advantages:

The usual advantages of digital circuits when compared to analog circuits are:Digital systems
interface well with computers and are easy to control with software. New features can often be added
to a digital system without changing hardware.

Often this can be done outside of the factory by updating the product's software. So, the product's
design errors can be corrected after the product is in a customer's hands.

Information storage can be easier in digital systems than in analog ones. The noise-immunity of
digital systems permits data to be stored and retrieved without degradation.

Inan analog system, noise from aging and wear degrade the information stored.

In a digital system, as long as the total noise is below a certain level, the information can be recovered

perfectly.

Disadvantages:

X/

X/
°

X/
°

X/
°

In some cases, digital circuits use more energy than analog circuits to accomplish the same tasks, thus
producing more heat as well. In portable or battery-powered systems this can limit use of digital
systems.

Digital circuits are sometimes more expensive, especially in small quantities.The sensed world is
analog, and signals from this world are analog quantities.

Digital circuits are sometimes more expensive, especially in small quantities. The sensed world is
analog, and signals from this world are analog quantities.

For example, light, temperature, sound, electrical conductivity, electric and magnetic fields are

analog.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 1

REVIEW OFNUMBER SYSTEMS

Many number systems are in use in digital technology. The most common are the decimal, binary,
octal, and hexadecimal systems. The decimal system is clearly the most familiar to us because it is tools

that we use every day.

Types of Number Systems are
¢ Decimal Number system
¢ Binary Number system
¢ Octal Number system

% Hexadecimal Number system

Table: Types of Number Systems

DECIMAL BINARY OCTAL HEXADECIMAL
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Table: Numbersystemandtheir Base value
Number Systems
System Base Digits
Binary 2 01
Octal 8 01234567
Decimal 10 0123456789
Hexadecimal 16 0123456789ABCDEF

B.ARUNKUMAR, Asst. Prof.,/ECE Page 2

Code Conversion:

%+ Convertingfromonecodeformtoanothercodeformiscalledcodeconversion, likeconvertingfrom binaryto
decimal orconverting from hexadecimal to decimal.

Binary-To-DecimalConversion:
Anybinarynumbercanbeconvertedtoitsdecimalequivalent simplybysummingtogether
theweights of the variouspositions in the binarynumber whichcontainal.

Binary Decimal
11011,

—o4193,01491,00 =16+8+0+2+1
Result 27,

Decimal to binary Conversion:

Division Remainder Binary
25/2 =12+remainder ofl 1 (LeastSignificantBit)
12/2 =6 +remainder of0 0
6/2 =3 +remainder of0 0
312 =1 +remainder ofl 1
Ya =0 +remainder ofl 1 (MostSignificantBit)
Result 2549 =11001,

Binary to octal:
Example: 100 111010,=(100)(111)(010),=4 7 24

Octal to Binary:

372 QOctgl
TN
3 7 2
4 4 4
011 111 010

1 11 1 1 0 1 O Binary

7 & B 4 3 Z] 0

Decimal to octal:

Division Result Binary
177/8 =22+remainder ofl 1 (LeastSignificantBit)
22/ 8 =2 +remainder of6 6
2/8 =0 +remainder of2 2 (Most Significant Bit)
Result 1774, =261,
Binary =010110001,

B.ARUNKUMAR, Asst. Prof.,/ECE Page 3

Octal to Decimal:

Example:
|
7 | 1 | > ‘ G ‘ 3
g* o @o° 8t @’ fecimal
| . §h= 3
6 x 8 18
- »2x 8 - 128
1 x8 = 512
7 x 8 = 28672
293613
Decimal to Hexadecimal:
Division Result Hexadecimal
378/16 =23+remainder of10 A(LeastSignificantBit)23
23/16 =1 +remainder of7 7
1/16 =0 +remainder ofl 1 (Most Significant Bit)
Result 37810 =17A
Binary =00010111 1010,

Binary-To-Hexadecimal:
Example: 1011 0010 1111,=(1011) (0010) (1111),=B2F ¢

Hexadecimal to binary:

E6 Hexidecimal

Octal-To-Hexadecimal / Hexadecimal-To-Octal Conversion:
%+ Convert Octal (Hexadecimal) to Binary first.
¢ Regroup the binary number by three bits per group starting from LSB if Octal is required.
“* Regroup the binary number by four bits per group starting from LSB if Hexadecimal is required.

Octal to Hexadecimal: (May 2014)
Octal Hexadecimal
=2650
= 010110101000 =0101 1010 1000(Binary)
Result =(5A8)16

B.ARUNKUMAR, Asst. Prof.,/ECE Page 4

Hexadecimal to octal:

Hexadecimal Octal
(5A8)16 =0101 1010 1000(Binary)
=010 110101000(Binary)
Result =2 6 5 0(Octal)

1’s and2’s complement:

s Complements are used in digital computers to simplify the subtraction operation and for logical
manipulation.

¢ Thereare TWOtypesofcomplementsforeachbase-rsystem: theradixcomplementand the diminished
radix complement.

«The first is referred to as there’s complement and the second as the (r-
1)'scomplement,whenthevalueofthebaserissubstitutedinthename. Thetwo typesarereferredtoasthe
2's complement and 1's complement for binary numbers and the 10’s complement and 9's
complement for decimal numbers.

Note:
" Thel’scomplementofabinarynumberisthenumberthatresultswhenwechangealll
’sto zeros and the zeros to ones.
" The2’s complement is the binary number that results whenweaddl to thel’s
complement.
» It is used to represent negativenumbers.

2’s comple ment=1’scomple ment+1
Example 1) :Find 1’s complement of (1101),

Sol: 1101 <— Number
0010 «— 1’scomplement

Example 2) :Find 2’s complement of (1001),

Sol: 1001 number
0110 <«— 1’scomplement
+ 1
0111

Diminished Radix Complement:
Givena number N in base r having n digits, the (r-1)’s complement of N, i.e., its diminished

radix complement, is defined as (r"- 1) - N.
The9's comple mentof546700 is 999999-546700= 453299.

The9's comple mentof012398 is 999999-012398= 987601.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 5

Radix Complement:

The r’s complement ofan n-digit number N in base r is definedas r"- N for

forN=0.

For examples:
ThelO’scomplementof 012398 is 987602
Thel0’scomp lementof246700 is 753300

Model 1:
Using10’scomple ment, subtract72532-3250.
M= 72532
10’scomplement o fN = +96750
Sum= 169282
Discard endcarry10° = -100000
Answer = 69282
Model 2:
Using10’scomple ment, subtract3250-72532.
M= 03250
10’>s complementofN = +27468
Sum= 30718

Model 3:

(Dec 2009)

Given the two binary numbers X=1010100andY= 1000011, performthesubtraction

(@)X-Y and (b) Y -Xbyusing2’scomple ments. [NOV —2019]

(@ X= 1010100
2'scomplementofy=+ 0111101
Sum= 10010001
Discard endcarry27 = -10000000
Answer:X-Y= 0010001

(b) Y= 1000011

2'scomplement of X=0101100
Sum= 1101111

There is no end carry. Therefore, the answer isY- X=-(2’s complementofl1101111) =

-0010001.

N#0 andasO

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 6

Model 4:

Given the two binary numbers X=1010100 and Y= 1000011, perform the subtraction (a) X-Y and
(b) Y-X by using 1°s complements. (Dec 2009)

(a)X-Y=1010100-1000011

X= 1010100
1’scomplementofY=+0111100
Sum= 10010000
End around carry=+1
Answer:X-Y= 0010001
(b)Y-X=1000011-1010100
Y= 1000011
1’scomplement of X=+0101011
Sum= 1101110

There is no end carry. Therefore ,the answer is Y- X=-(1s complementofl101110)=
-0010001.

*hhhhkhkhkhkhkkhkhhihhhkhkhkhkkhiirrhhhhhkhkhrrhhihkhkhhiiiiix

ARITHMETIC OPERATIONS
Binary Addition:

Rules of Binary Addition
e 0+0=0
0+1=1
1+0=1
e 1+1=0,and carryltothe next most significant bit

Example:

Add: 00011010+00001100=00100110

11
00 011010
+0 0 00 1 1 0 O
00 100110

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 7

mailto:End@around

Binary Subtraction:
Rules of Binary Subtraction

¢0-0=0

¢(0 -1 =1,and borrow 1fromthe nextmoresignificantbit

e1-0=1

e1-1=0

Example:

Sub: 00100101-00010001= 00010100

00 100101
-0 0 01 0001

00 01 01OCO00

Binary Multiplication:
RulesofBinaryMultiplication

. 0x0=0
. 0x1=0
° 1x0=0
. 1 x1 =1,andnocarryorborrowbits

Example:Multiply the following binary numbers:

(@) 0111 and 1101 (b) 1.011 and 10.01.
(a) 0111 x 1101
0 1 1 Multiplicand
x 1 1 0 1 Multiplier
0 1 1
0 0 0 0 Partial
0 1 1 1 Products
1 1 1
0 1 1 0 1 1 Final Product

() 1.011 x 10.01

1. 0 1 Multiplicand
x 1 0. 0 1 Multiplier
1 0 1 1
0 0 0 0 Partial
0 0 0 Products
1 1 1
1 1 0 0 0 1 1 Final Product

B.ARUNKUMAR, Asst. Prof.,/ECE

Binary Division:
Binarydivisionisthe repeatedprocess ofsubtraction,justasindecimaldivision.
Example: Divide the following

(@) 11001 + 101
10 1
10 111 1 0o o 1
10 1
o 0 1 0o 1
1 0 1
0 0 0
(b) 11110 = 1001
t L 0 1 0
10 0 111 1 1 1 0
10 0 1
0 1 1 0 0
0 0 1
1 0 0 0
0 0 1
1 1 0
1 0 0 1
1 0 1

*hhkhkkhkhkhkkhkhkhkkhhkkhhhkhkhhkhkhhhhhhiihkiihhkihhkihhihikkiiikiik

BINARYCODES
Explain the various codes used in digital systems with an example.(or)Explain in detail about Binary
codes with an example
> Indigital systems a variety of codes are used to serve different purposes, such as data entry, arithmetic

operation, error detection and correction, etc.
> Selection of a particular codedepends on the requirement.
> Binarycodesarecodeswhicharerepresentedinbinarysystemwithmodification from the original ones.
» Codes can be broadly classified into five groups.
(1) Weighted Binary Codes
(11) Non-weighted Codes
(iii) Error-detection Codes
(iv) Error-correcting Codes
(v) Alphanumeric Codes
Weighted Binary Codes
» Ifeach position of a number represents a specific weight then the coding scheme is called weighted
binary code.
BCD Code or 8421 Code:
» The full form of BCD is ‘Binary-Coded Decimal’. Since this is a coding scheme relating decimal and
binary numbers, four bits are required to code each decimal number.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 9

» A decimal number in BCD (8421) is the same as its equivalent binary number only when the number
is between 0 and 9. A BCD number greater than 10 looks different from its equivalent binary number,
even though both contain 1°s and 0’s. Moreover,the binary combinations 1010 through 1111 are not
used and have no meaning in BCD.

» Consider decimal 185 and its corresponding value in BCD and binary:

(185)10= (0001 1000 0101)scp = (10111001),

» Forexample, (35)10 is represented as 0011 0101 using BCD code, rather than (100011),
» Example: Give the BCD equivalent for the decimal number 589.
The decimal number is 5 8 9
BCD code is 0101 1000 1001
Hence, (589)10 =(010110001001)gcp
2421 Code:
» Another weighted code is 2421 code. The weights assigned to the four digits are 2, 4,2, and 1.
» The 2421 code is the same as that in BCD from 0 to 4. Howeer, it varies from5 to 9.
> Forexample, in this case the bit combination 0100 represents decimal 4; whereas the bit combination
1101 is interpreted as the decimal 7, as obtained from2 x1+1x4+0x2+1x1=7.
» This is also a self-complementary code.

BCD Addition:
Examples:
«» Consider the additionof 184 +576 =760 in BCD:

BCD] l
0001 100D 0100 154
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Addb oL 0110
BCD sum 0111 o110 0000 Tal

¢+ Add the following BCD numbers: (a) 1001 and 0100, (b) 00011001 and 00010100

Solution

() I 0 0 1
-0 1 0 o
P10 1 — Invalid BCD number 4
_:w({__} O — Adde =}
S0 0 0 1T 0 Ti_ni > Valid BCD number ”! ":,
i A
(h) g 0 0 1 O 0 1
+0 0 0 1 O 1 0 0
O 0o t+ 0 I 10 1 — Right group is invalid 19
+0 immi 0 > Add o 14
0 O 1 1 0 0 1 1 > Valid BCID number - 7% .

B.ARUNKUMAR, Asst. Prof.,/ECE Page 10

Four Different Binary Codes for the Decimal Digits

Decimal BCD
Digit 8421 2421 Excess-3 84 -2 -1

0 0000 0000 0011 0000

| 0001 0001 0100 0111

2 0010 0010 0101 0110

3 0011 0011 0110 0101

- 0100 0100 0111 0100

5 0101 1011 1000 1011

] 0110 1100 1001 1010

7 0111 1101 1010 1001

8 1000 1110 1011 1000

9 1001 1111 1100 1111
1010 0101 0000 0001

Unused 1011 0110 0001 0010
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1100
nations 1110 1001 1110 1101
1111 1010 1111 1110

Non-weighted Codes
> It basically means that each position ofthe binary number is not assigned a fixed value.
> Excess-3 codes and Gray codes are such non-weighted codes.

Excess-3 code:

%+ Excess-3isanon- weightedcodeusedtoexpressdecimalnumbers. Thecodederivesitsnamefrom
thefactthateachbinarycodeisthecorresponding8421codeplus0011(3).

Example:10000f8421 (BCD)=1011in Excess-3

% Convert (367)y into its Excess-3 code.

Solution. The decimal number is 3 6 7
Add 3 to each bit +3 +3 +3
Sum 6 9 10

Converting the above sum into 4-bit binary equivalent, we have a
4-bit binary equivalent of 0110 1001 1010
Hence, the Excess-3 code for (367),, = 0110 1001 1010

B.ARUNKUMAR, Asst. Prof.,/ECE Page 11

Graycode:
s Thegraycodebelongstoaclassofcodescalledminimumchangecodes, inwhichonlyonebitin
thecodechangeswhenmovingfrom onecodetothenext.
% TheGraycodeisnon-weightedcode,asthe positionofbitdoesnotcontainanyweight.In
digitalGraycodehasgot a specialplace.

Decimal BinaryCode GrayCode

Number
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

% Thegraycodeisareflective digitalcodewhichhas the special propertythat

anytwosubsequentnumberscodes differ byonlyonebit. This is also calledaunit-distance code.

7

between two successiveintegers whicharebeing coded.

Example:
Binary toGray CodeConversion:
Any binary number can be converted into equivalent Gray code by the following steps:

i) the MSB of the Gray code is the same as the MSB of the binary number;

% Importantwhenananalogquantity mustbeconvertedtoadigitalrepresentation.Onlyonebitchanges

ii)the second bit next to the MSB of the Gray code equals the Ex-OR of the MSB and second bit of
the binary number; it will be 0 if there are same binary bits or it will be 1 for different binary

bits;

iii) the third bit for Gray code equals the exclusive-OR of the second and third bits of the binary

number, and similarly all the next lower order bits follow the same mechanism.

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 12

b1y b2 b3) bid) bE)

1@ 1 a*1 g0 & ™1 binary
1 0 0 1 1 qray
a(1) af2) a(3) a(4) a()

o) o1y xor B{2y B2 xorbi{3) b{3yxor(4} o{4)xor b5

GrayCode to Binary Code Conversion:
Any Gray code can be converted into an equivalent binary number by the following steps:

I. The MSB ofthe binary number is the same as the MSB of the Gray code.

il. the second bit next to the MSB of the binary number equals the Ex-OR of the MSB of the binary
number and second bit of the Gray code; it will be O if there are samebinary bits or it will be 1
for different binary bits;

iii. the third bit for the binary number equals the exclusive-OR of the second bit of the binary number
and third bit of the Gray code, and similarly all the next lower orderbits follow the same
mechanism.

() 9@ 9@ g g

1l

b(1) b{2) b3 b{4) b

g1y b1y xor g(2) b2)=or gi3) B(3pxorgid} b{&)xorgls)

Errordetectingcodes
» Whendataistransmitted fromonepointtoanother, likeinwirelesstransmission, or itisjuststored,
likeinharddisksand memories,therearechancesthatdata maygetcorrupted.
» Todetectthesedata errors,weusespecialcodes,whichareerrordetection codes.

Twotypes ofparity

» Evenparity:Checksifthereisanevennumberofones;ifso,paritybitiszero. Whenthenumberof
one’sisoddthenparitybitissetto 1.

» OddParity:Checksifthereisanodd numberofones;ifso,paritybitiszero. Whenthenumberof
one’siseventhenparitybitis set to 1.

Errorcorrectingcode

» Error-correctingcodesnotonlydetecterrors,butalsocorrectthem.
» Thisisused normallyinSatellite communication,whereturn-aroundde layisveryhighasisthe

B.ARUNKUMAR, Asst. Prof.,/ECE Page 13

probabilityofdata gettingcorrupt.

Hamming codes

» Hammingcodeaddsaminimumnumberofbitstothedatatransmitted inanoisychannel,tobeableto
correct everypossible one-bit error.
> It candetect(not correct)two-biterrorsandcannotdistinguish betweenl-bitand2-bits

inconsistencies. ltcan't-ingeneral-detect 3(ormore)-bits errors.
Alphanumeric Codes

> An alphanumeric code is a binary code of a group of elements consisting of ten decimal digits, the
26 letters of the alphabet (both in uppercase and lowercase), and a certain number of special
symbols suchas #, /, &, %, etc.

ASCII(AmericanStandardCode for Informationinterchange)
> It is actually a 7-bit code, where a character is represented with seven bits.

» The character is stored as one byte with one bit remainingunused.
> But often the extra bit is used to extend the ASCII to represent an additionall28 characters.

EBCDIC codes
> EBCDICstandsforExtendedBinary CodedDecimallnterchange.
» It is also an alphanumeric code generally used in IBM equipment and in large computersfor
communicating alphanumeric data.
> For the different alphanumeric characters the code grouping in this code is different from the
ASCII code. It is actually an 8-bit code and a ninth bit is added as the parity bit.

Fhkhhhhkhkhkkkhkhkhhhhhkhkhkhkkkhkhkhirrhkhhhkhiirrhhhkhhhkhiiriiiiixhiix

B.ARUNKUMAR, Asst. Prof.,/ECE Page 14

Boolean Algebra and Theorems

Explain various theorems of Boolean algebra. (Nov — 2018)

Definition:

Boolean algebra is an algebraic structure defined by a set of elements B, together with two binary
operators. +’ and *-°, provided that the following (Huntington) postulates are satisfied,

Theorems of Boolean algebra:

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and also
to transform the given expression into a more useful and meaningful equivalent expression.

T1: Commutative Law
(a) A+B=B+A
(b) AB=EBA

T2: Associative Law
()(A+B)+C=A+(B+C)

T6: Redundancy
{a) A+AB=4
(b) A(A+B)=A

T7: Operations with “0* & 1°
(a) O+A=4

(by(AB)C=A(BC) (b) TA=A
(c) I+A=1

T3: Distributive Law (d) 0A =0
(@WAB+C)=AB+AC T8 : Complement laws
b)A+(BC)=(A+B)(A+C) mA+A4A=1

. (byA.A =0
T4: Identity Law
(a) A+A=A T9: (a)A+AB=A+B
(b) AA=A (b)A.(A+B)=A.B

T5: Negation Law
(A)=A and (4)=4

Postulates of Boolean algebra:

The postulates of a mathematical system form the basic assumptions from which itis possible to
deduce the rules, theorems, and properties of the system. The following are the important postulates of
Boolean algebra:
1.1.1=1,0+0=0.
2.1.0=01=0,0+1=1+0=1.
3.00=0,1+1=1
4.1’=0and 0’ = 1.

Many theorems of Boolean algebra are based on these postulates, which can be used to
simplifyBoolean expressions.

The operators and postulates have the following meanings:
The binary operator + defines addition.

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator .(dot) defines multiplication.

The multiplicative identity is 1.

The only distributive law applicable is that of .(dot) over +:

AN NN A

B.ARUNKUMAR, Asst. Prof.,/ECE Page 15

a.b+c)=(@.b)+(@.c)

Two-Valued Boolean Algebra:
A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with
rulesfor the two binary operators + and .(dot) as shown in the following operator tables.

X ¥y Xy LI Xty X x'

0 1]] o0)] 1
0 1] 01 1 0
1 1]] 10
1 1 1 1 1

—

[E

Duality Principle:

The duality principle states that every algebraic expression deducible from the postulates of
Boolean algebra remains valid if the operators and identity elements are interchanged. If the dual of an

algebraic expression is desired, we simply interchange OR and AND operators and replace 1’s by 0’s and
0’s by 1’s.

DeMorgan’s theorem:
1. The complement of product is equal to the sum of their complements. (X.Y)'=X"+Y’
2. The complement of sum is equal to the product of their complements. (X+Y) = XY’

Basic Theorems:
State and prove postulates and theorems of Boolean algebra.
Postulates and Theorems of Boolean Algebra

Postulate 2 (a) 1+0=x (b) r-1=x

Postulate 5 (a) x+x' =1 (b) x-x'=10

Theorem 1 (a) X+x=x (b) X'x=x

Theorem 2 (a) 1+1=1 (b) 1-0=

Theorem 3, involution (x')' =x

Postulate 3, commutative (a) IT+y=y+x (b) Xy =yx

Theorem 4, associative (a) x+(p+z)=(x+y+z (b) x(vz)=(xy)z
Postulate 4, distributive ~ (a) x(y+z)=xy + 1z b) x+yr=(x+yx+2)
Theorem 5, DeMorgan~ (a) (x +y)=xy (b) (xy) =x"+y
Theorem 6, absorption (a) Y+xy=x (b) x(x+y)=x

B.ARUNKUMAR, Asst. Prof.,/ECE Page 16

THEOREM 1(a): x +x = x.

Statement Justification
r+xr=(x+x)-1 postulate 2(b)
={x+x)}{x +x) 5(a)
=X+ xx' 4(b)
=x+10 5(b)
=4 2(a)

THEOREM 1(b): x-x=1x.

Statement Justification
x-x=xx+10 postulate 2(a)
= xx + xx' 5(b)
= x(x + x) 4(a)
=x-1 5(a)
=X 2(b)

THEOREM 2(a): x+1=1.

Statement Justification
x+1=1-(x+1) postulate 2(b)
=X+ x")x +1) 5(a)
=x+x-1 4(b)
=x+x' 2(b)
=1 S(a)

THEOREM 2(b): x-0 = 0 by duality.

THEOREM 3: (x’)’ = x. From postulate 5,we havex + x" = land x-x" = 0, which
together define the complement of x. The complement of x’ is x and is also (x")".

THEOREM 6(a): x + xy = x.

Statement Justification
X+xy=x-1+uxy postulate 2(b)
=x(1 + y) 4(a)
=x(y + 1) 3(a)
=x-1 2(a)
=X 2(b)

THEOREM 6(b): x(x + y) = x by duality.

*hkhkkhkhkhkkhkhkhkkhkhkhkhhkhkhhhkhhhkhkhhkkhkhhkkhkhhkkhkhhkhiikik

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 17

Boolean Functions

% Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and 1, and
the logic operation symbols.

%+ Foragiven value of the binary variables, the function can be equal to either 1 or 0.

Example, consider the Boolean functionF1 = x +y’z

The function F1 isequal to 1 if x isequal to 1 or if both y* and z are equal to 1. F1 is equalto 0 otherwise.
The complement operation dictates that wheny’ =1, y =0. Therefore,F1 =1 ifx =1 orify=0and z = 1.
A Boolean function expresses the logical relationshipbetween binary variables and is evaluated by
determining the binary value ofthe expression for all possible values of the variables. The gate
implementation of F1 is shown below.

; P—) —

Example: Consensus Law: (function 4)
Simplify the following Boolean functions to a minimum number of literals.

L x(x'+y)=xx"+xy =0+ xy = xy.
Zox+xy=x+xNax+y)y=lix+y)=x+y
L x+yix+y)=x+xy+xy + ' =x(l+y+y)=nx
4 Xy + X7 +yI=xy + X7+ yi(x +x7)
=Xy +x'Z +2xyr +x'yz
=xy(1 +z) +x'z(1 +¥)
=Xy + x'L.
(X + YT+ 2y + 2) = (x + y)x' + z), by duality from function 4.

n

Complement of a function:

The complement ofa function F is obtained from an interchange of 0’s for 1’sand 1’s for 0’s in the value
of F.

Example:

1.
(A+B+C) =(A+x) IletB+C=x

= A'x’ by theorem 5(a) (DeMorgan)
=A'(B + ()’ substitute B + ¢ =x

= A'(B'C") Dby theorem 5(a) (DeMorgan)
=A'B'C" by theorem 4(b) (associative)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 18

2. Find the complement of the functions F1 = x’yz’ + xX’y’z and F2 = x(y’z’ + yz).
By applying DeMorgan’s theorems as many times as necessary, the complements arecobtained as
follows:
Fl=(@x'yr'+xy2) =xyVxy)y =x+y +2)x+y+2z1"
Fi=[xyz' +yn)] =x"+@7 +y) =x" +0Q2)Y0z)
=x"+{y+)y +2"
=x"+yz' +y'z

3. Find the comple ment of the functions F1 = x’yz’ + x’y’z and F2 = x(y’z’ + yz) by taking their
duals and comple menting each literals.
Solution:
1. Fi=x"yz' +x'y'L.
The dualof Fyis(x" + y + 2)(x" + ¥" + 7).
Complement each literal: (x + ¥" + Z)(x + y + ") = Fl.

2

F,=x(y'z" + yz).
The dualof Fsisx + (' + 27)(y + 2).
Complement each literal: x* + (v + 2)(v" + z') = Fi.

Fhhhhhkhkkkhkhkhkhirhhhkhkkhkhkhrrrhhhhkhhkhkhirrhihhhhhiiiriiixixdx

Canonical and Standard forms:
Explain canonical SOP & POS form with suitable example.

» Binary logic values obtained by the logical functions and logic variables are inbinary form. An
arbitrary logic function can beexpressed in the following forms.
(1) Sumof the Products (SOP)
(i) Product of the Sums (POS)
> Boolean functions expressed as a sum of minterms or product of maxterms are said to be in
canonical form.

Product term:

The AND function is referred to as a product. The variable in a product term can appear either in
complementary or uncomplimentary form. Example: ABC’
Sumterm:

The OR function is referred to as a Sum. The variable in a sum term can appear either in
complementary or uncomplimentary form. Example: A+B+C’
Sum of Product (SOP):

The logical sum of two or more logical product terms is called sum of product expression. It is
basically an OR operation of AND operated variables. Example: Y=AB+BC+CA
Product of Sum (POS):

The logical product of two or more logical sum terms is called product of sum expression. It is
basically an AND operation of OR operated variables. Example: Y=(A+B).(B+C).(C+A)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 19

Minterm:
A product term containing all the K variables of the function in either complementary or
uncomplimentary form is called Minterm or standard product.

Maxterm:
A sum term containing all the K variables of the function in either complementary or

uncomplimentary form is called Maxterm or standard sum.

Minterms and Maxterms for Three Binary Variables

Minterms Maxterms
X ¥y z Term Designation Term Designation
0 0 0 x'y'z’' rriy, x+y+z M
0 0 1 x'y'z i x+y+z My
0 1 0 x'vz’ L x+y +z M-
0 1 1 x'yz "y x+y +z' M,
1 0 0 xy'z’ ny x+y+z My
1 0 1 xy'z rris x'+y+z M,
1 1 0 xyz' g, x+y +z M,
1 1 1 xyz My xX+y +z M-

Canonical SOP Expression:
The minterms whosesum defines the Boolean function are those which give the 1’s of the
function in a truth table.
Procedure for obtaining Canonical SOP expression:
v' Examine each term in a given logic function. Retain if it is a minterm, continue to examine the
next term in the same manner.
v' Check for the variables that are missing in each product which is not minterm. Multiply the
product by (X+X), for each variable X that is missing.
v Multiply all the products and omit the redundant terms.
Example:
Express the Boolean function F = A + B’C as a sum of minterms. (May -10)(Nov — 2018)
Solution:
The function hasthree variables: A, B, and C.
The first term A is missing two variables; therefore,
A=A(B+ B’)=AB+AB’
This function is still missing one variable, so
A=AB(C+C)+AB’(C+C)
= ABC + ABC’ + AB’C + AB’C’
The second term B’C is missing one variable; hence,
BC=B'C(A+A’)=AB'C+A’BC

B.ARUNKUMAR, Asst. Prof.,/ECE Page 20

Combining all terms, we have
F=A+BC=ABC + ABC’+ AB’C + AB’C’+ A’B’C

But AB’C appears twice, and according to theorem 1 (X + x = X), it is possible toremove one of

those occurrences. Rearranging the minterms in ascending order, wefinally obtain
F=AB’C+AB’C+AB’C + ABC’ + ABC=m1+ m4 +m5+m6 +m7
F(A,B,C)=>(1,4,5,6,7)

Example:Obtain the canonical sum of product form of the following function. (May 2014)
F(A B, C)=A+BC
=AB+B)(C+C)+BC(A+A)
= (AB + AB’) (C + C’) + ABC + A'BC
= ABC + AB'C + ABC' + AB'C’ + ABC + A'BC
= ABC + AB'C + ABC' + AB’C’ + A'BC (as ABC + ABC = ABC)
Hence the canonical sum of the product expression of the given function is

F (A, B) = ABC + AB'C + ABC’ + AB'C’ + A'BC.

Canonical POS Expression:
The Maxterms whose product defines the Boolean function are those which give the 1’s of the
function in a truth table.
Procedure for obtaining Canonical POS expression:
v' Examine each term in a given logic function. Retain if it is a maxterm, continue to e xamine the
next term in the same manner.
v Check for the variables that are missing in each sum which is not maxterm. Add (X.X’), for each
variable X that is missing.
v Expand the expression using distributive property eliminate the redundant terms.
Example:
Express the Boolean function F = xy + x'z as a product of maxterms. First, convert
the function into OR terms by using the distributive law:
F=xy+xz={xy + x)xy + z2)
= (r +)y + 2)x +)y + 2)
= (x' + ¥)x +)y + 2)
The function has three variables: x. v, and z. Each OR term is missing one variable;
therefore,
Mt y=xt+tyv+zz ="yt +v+z0)
x+z=x+z+w =x+y+)x+y +2)
y+z=y+z+xx’=(x+y+x +y+3)
Combining all the terms and removing those which appear more than once, we finally
obtain
F=r+y+z)ix+y +2)x" +v+z)x +yv+2)
= MyM-MMs;
A convenient way to express this function is as follows:
Flx, v, z) = (0. 2,4, 5)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 21

Example:
Obtain the canonical product of the sum form of the following function.
F(A,B,C)=(A+B)B+C)(A+C" (Dec 2012)

Solution:

F (A, B, C)

(A+B) (B +C)A+C)
=A+B" +0)(B+C+0(A+C +0)
=A+B " +CCH (B +C+AA) A+ C +BB)
=A+B +CA+B +CHA+B+C)(AA+B+C)(A+B+ (C)
(A+B +0C"
[using the distributive property, as X + YZ = (X + Y)X + Z)]
=A+B +CA+B +C)A+B+C)(A+B+C)(A+ B+ (C)
[as A+B +CHYA+B +C)=A+B + C']
Hence the canonical product of the sum expression for the given function is
FALB,C) =A+B +C0A+B +CHA+B+C)A+B+C)A+B+C)

kkhkhkhkhkhkkhkhkhkhihhhhhhkhkhiihhikhhhihiix

Karnaugh Map (K-map):

%+ Using Boolean algebra to simplify Boolean expressions can be difficult. The Karnaugh map provides
a simple and straight-forward method of minimizing Boolean expressions which represent
combinational logic circuits.

s A Karnaugh map is a pictorial method of grouping together expressions with common factors and
then eliminating unwanted variables.

% A Karnaugh map is a two-dimensional truth-table. Note that the squares are numbered so that the
binary representations for the numbers of two adjacent squares differ in exactly one position.

Rules for Grouping together adjacent cells containing 1's:
« Groups must contain1, 2, 4, 8, 16 (2") cells.
e Groups must containonly 1 (and X if don't care is allowed).
o Groups may be horizontal or vertical, but not diagonal.
e Groups should be as large as possible.
o Eachcell containing a 1 must be in at least one group.
e Groups may overlap.
e Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost
celland the top cell in a column may be grouped with the bottom cell.
e There should be as few groups as possible.

Obtaining Product Terms

o If Ais avariable that has value 0 in all of the squares in the grouping, then the complemented
form A'is in the product term.
o If Aisa variable that has value 1 in all of the squares in the grouping, then the true form A is in

the product term.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 22

http://electronics-course.com/combinational-logic

is not in the product term
The Format of K-Maps:

K-Maps of 2 Variables:

If A is a variable that has value O for some squares in the grouping and value 1 for others, then it

y v
y P, v PR
£ 0 1 N 0 1
iy T I, iy ¥y
0 0 1 ..-a-*"""fp
iz iy fi']'z HI_\
X4l 1 SR 1 1
e
X <
(a) xy (b)yx +y
K-Maps of 3 Variables:
< Simplify the boolean function F(x,y z)= £(2.3.4.3)
J:z '—J:_- “..f}J
* 00 01 11 10
iy nry ny my
0 1 1
i, Hlg iy [
x4 1 1 1
/
__'
ay’ £
F(x,y, 2) = Z(2, 3, 4, 5) = x'y + xy'
< Simplify the boolean function F(x,y,2)= £3.46,7
}F
¥z _ e
-‘f 00 01 11 10
"y ny ms iy | _— ¥2
0 1+ |
my s m; [
vel 1 1 1
-
X'z ‘ e

Note:xy'z! + xyz' =xz’

F(x, y,2)=2(3,4,6,7)=yz + xz'

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 23

K-Maps of 4 Variables:

¥
N —_——
W 0o m 11 10
Ay My L] i)
my m, My M1, 00 (wix'y'z" | wix'yz | wix'vz | wix'yz’
iy i, iy ,
iy M m1; mIg M [w'xy'z | wixy'z | wixyz | whaps'
iz My My iy [
miz mys M5 "y 11| wxy'z" | wxy'z | wxyz | wrxyz'
"1 g Mg My My
g "y my, My, 10 [wx'y'z" | wx'y'z | wa'vz | wx'yz'
PR
(a) (b)
< Simplify the boolean function F(w,xy,z)= £(0.1,.2,4,5,6,8,9,12,13,14)
WX % '
’ 00 01 11 10
w'y'z' ~—_ iy n 1y Ny
0T=1 | 1 .
}i'J'_| J‘i'l'5 PJJ'-I. J‘i'J"'.,| W '}JZ
01 1 1 1
X
1”13 J‘i'l'l_.l 1‘:|J'|5 J‘””
1] 1 1 1 — prt
'z xvz
w
JJJ’S niy f”“ .FJJ'“I
10 1 1
/’
/
y' ¢
Note:w'y'z" + w'yz' = w'g’
xy'z' +ayz =xz’
Flw,x,y,z) = 2(0,1,2,4,5,6,8,9,12,13,14) = y' + w2z + xz

Simplify the Boolean function
F(w,x,y,z) = 2(1,3,7,11, 15)
which has the don’t-care conditions

d(w,x,y,z) = 2(0,2,5)

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 24

¥z _— ¥z —_
wx 00 01 11 10 wx 00 01 11 10
my my iy my iy iy My i1,
00| X 1 1 X o X | 1 1 X
Wwx — u:l"z _._._._______,_._.—-"'"_'_
M, Hig iy ", iy s iz g,
01 0 X 1 1] 01 0 X 1 0
X X
my, My s myy s i3 Mys iy
11 0 0 1 0 11 0 0 1 0
W g Hig T "y, W iy iy iy [
| 0 0 1 0 | 0 0 1 0
™~ ~]
\-_‘,.—'
; \ . \
}'2 }rz
(a) F=yz +w'x' (b)F=yz +w'z

Note:
Karnaugh Maps - Rules of Simplification

The Karnaugh map uses the following rules for the simplification of expressions by grouping
together adjacent cells containing ones

e Groups may not include any cell containing a zero
A

5 0 1 5 0 1

o 10 of o

1 N s
WRONG X RIGHT -/

o Groups may be horizontal or ve rtical, but not diagonal.

B 0 1 B 0 1

al o L al o

[A [|

B.ARUNKUMAR, Asst. Prof.,/ECE Page 25

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj

« Groups must containl, 2, 4, 8, or ingeneral 2" cells. That is if n=1, a group will contain
two 1's since 2! = 2. If n= 2, a group will contain four 1's since 2% = 4.

B
5 0 1 00 ol 11 10
ol 1T [Tje—lGrawpof2 o o |7 [T [Tk Cronpof3
— % B E— I ¢
- 0 1| o o | ol o
RIGHT -~ WRONG
B
3 0 1 00 ol 11 10
ol 1 ol T 1| 1 | 1id—Creupof 5
| et Growpof 4 | ! N
tlir |1 i o] o 4 A
RIGHT -~ WRONG %

e Eachgroupshould be as large as possible.
B B

o0 ol 11 10 o0 o1 11 10
of 11| 1 | U1 o t1_| 1l [1]
E :\/ S hd
oo of | 1] oo | oftt | 1
RICHT .~ WRONG X

(I ote that no Bocolean laws broken,
but not sufficiently minimal)

o Eachcell containing a one must be in at least one group.

5
anoooal 11 10

o o 0 1'1‘I roup I

S | present in at least ene group.

Il n 0 o |17 [roup (1

B.ARUNKUMAR, Asst. Prof.,/ECE Page 26

« Groups may overlap.
B

0 'll _ I | | 1 }--c—Gmups overlapping,

i O] o v
RIGHT "~
E
o0 o1 11 10
0 {1"""11I {1"""11I
R e Y, (3roups not overlapping.
1 ':' ':' Ill_____l_r1|

WRONG

e There should be as few groups as possible, as long as this does not contradict any of the
previous rules.

B B
oo ol 11 10 oo 01 11 10
N ol 11| ti| |1
: :\/ S =y
oo 0| 11| 1, Il g o [11 | 1
RIGHT - WRONG X
Summmary:

No zeros allowed.

No diagonals.

Only power of 2 numbers of cells in each group.
Groups should be as large as possible.

Everyone must be in at least one group.
Overlapping allowed.

Worap around allowed.

Fewest numbers of groups possible.

©ONo O~ wDd R

Don’t care combination:

In certain digital systems, some input combinations never occur during the process of normal
operation because those input conditions are guaranteed never to occur. Such input combinations are
don’t care conditions.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 27

Completely specified functions:

If a function is completely specified, it assumes the value 1 for some input combinations and the
value O for others.

Incompletely specified functions:

There are functions which assume the value 1 for some combinations and O for some other and
either 0 or 1 for the remaining combinations. Such a functions are called incompletely specified .

Prime Implicants:

A primeimplicant is a product term obtained by combining the maximum possible number
ofadjacent squares in the map. If a minterm in a square is covered by only one primeimplicant, that prime
implicant is said to be essential.

*hhhhkhkkkkhkhkhkhhhhhkhkhkhhkhkhkirrhikhhhhihiiiiix

Quine-McCluskey (or) Tabulation Method

Minimization of Logic functions:

Steps:
v' Asetofall prime implicants of the function must be obtained.
v" Fromthe set of prime implicants, a set of essential implicants must be determined by
preparing a prime implicant chart.
v The minterm which are not covered by the essential implicants are taken into
consideration and a minimum cover is obtained from the remaining prime implicants.
Example: (Nov-06,07,10,May- 10,08)
Simplify the boolean function F(A,B,C,D)=>m (1,3,6,7,8,9,10,12,14,15) + > d (11,13) using Quine
McClusky method. (Apr 2017)
Step:1

B.ARUNKUMAR, Asst. Prof.,/ECE Page 28

Minterms Binary representation | Minterms Binary representation
my 0001 m, 0001 ¥
m; 0011 mg 1000
mg 0110 m; 0011 v
m- 0111 mg 0110 ¥
mg 1000 mg 1001
mg 1001 myq 1010 ¥
my, 1010 my, 1100 v
m,, 1100 m 0111 ¥
m;y 1110 myy 1110 ¥
mys 1111 dmy, 1011 v
dm, 1011 dm, 1101
dm,; 1101 m;s 1111 v

Step:2

Minterms Binary representation Minterms Binary representation
1,3 00-1 v 1,39 11 -0-1
1,9 -001 ¥ 8,910,111 v 10--

8,9 100- v 8,10, 12, 14 1--0
8,10 10-0 v
8, 12 1-00 v 67,14, 15 v =1l=
3,7 0-11 v
3,11 -011 v 12, 13, 14, 15 11-—
6, 7 011- ¥
6, 14 -110 ¥
9,11 10-1 ¥
9,13 1-01 ¥

10, 14 1-10 v

10, 11 101- v

12, 14 11=0 ¥

12,13 110- v

7,15 -111 ¥

14, 15 111- v

B.ARUNKUMAR, Asst. Prof.,/ECE Page 29

Step:3

Prime implicants Binary representation
1, 3,9 11 (BD) -0-1
8,9, 10, 11, 12, 13, 14, 15 (A) 1 ===
6, 7, 14, 15 (BC) -11-
Step:4
Prime

. Mq | M | Mg | My | Mg | Mg [Mag | Mys | Mgy | My |[dmaqldm
lmpllcants 1 3 6 T 8 9 10 12 14 15 11 13

1,3,9,11(ED) ©O1[O) ® ®
8,9, 10, 11, 12, 13, 14, 15 OIOIOIOIOIOIOIG
6,7, 14, 15 (BC) OlG OO

.~ F(A,B,C,D) = BD+A+BC

khkhkkhkhhhkhkhkhkkkhkhkhhhrhkhkhkhhkhhihirrhhkhhhkhriirhhhdihhihiiix

Logic gates

Explain about different types of logic gates. (OR) What are Universal gates? Construct any four basic
gates using only NOR gates and using only NAND gates. (May 2011)[NOV - 2019]

o,

% Alogic gate is an idealized or physical device implementing a Boolean function; that is, it performs a
logical operation on one or more logical inputs, and produces a single logical output.

Positive and Negative Logic

X/

« The binary variables two states, ie. the logic ‘0’ state or the logic ‘1’ state. These logic states in
digital systems such as computers.

«» These are represented by two different voltage levels or two different current levels.

+« Ifthe more positive of the two voltage or current levels represents a logic ‘1’ and the less positive of
the two levels represents a logic ‘0°, then the logic system is referred to as a positive logic system.

¢ If the more positive of the two voltage or current levels represents a logic ‘0’ and the less positive of

the two levels represents a logic ‘1°, then the logic system is referred to as a negative logic system.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 30

https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Logical_operation

Truth Table
A truth table lists all possible combinations of input binary variables and the corresponding
outputs ofa logic system.

Graphic Alpehraic Truth
Mame symhal fianction tahle
r y| F
AND — F—F Fozeyp A
I af o
I 1] 1
x y§| F
e e L
I o 1
I 1] 1
x| F
[nverter r—{:}o—]‘- =1 T_]
110
x| F
Buflzr r—t}—]‘- F=x T_EI
111
x y§| F
NAND i F o F=ig) bool
’ ¥ — roL 1
I o 1
1l 1| 0
r y| F
\ T i oo 1
NOR ri}_‘P Fuix+)) b 1| o
I @ o0
1 1| 0
r §| F
Exclusive OR x g Few oy b oo
(XOR) ¥ =xehy (L |
I o 1
I 1| o
r §| F
E'p:r_'lusi::-FDR x e Feyp+x'y o ool
equivalence ¥ —)j j: = fxedy) T [l:- g
I 1] 1

Universal Gates

s The OR, AND and NOT gates are the three basic logic gates as they together can be used to
construct the logic circuit for any given Boolean expression.

% The NOR and NAND gates have the property that they individually can be used to hardware-
implement a logic circuit corresponding to any given Boolean expression.

% That is, it is possible to use either only NAND gates or only NOR gates to implement any
Boolean expression. This is so because a combination of NAND gates or a combination of NOR
gates can be used to perform functions of any of the basic logic gates. It is for this reason that
NAND and NOR gates are universal gates.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 31

1. What is digital logic family? Give the classification of digital logic family.

DIGITAL LOGIC FAMILIES:

e A digital family is a group of compatible devices with the same logic levels and
supply voltages.

e According to components used in the logic family, digital logic families are
classified into

Classification of logic families

Unipolar
Bipolar |
PMOS NMOS CMOS
p-channel MOSFET n-channel ~ complementary
Saturated Unsaturated MOSFET MOSFET
|
| |
Schattkey TTL ECL
Emitter Coupled Logic

s« RTL : Resistor Transistor Logic
= DTL : Diode Transistor Logic
s DCTL : Direct Coupled Transistor Logic

« "L : Integrated Injection Logic
» HTL : High Threshold Logic
« TTL : Transistor Transistor Logic

Figure 1.1 : classification of logic families

2. What are the characteristics of digital logic family? Explain its
characteristics. (Dec-06,08; May-08,11,14,18)

Characteristics of digital logic families:

Propagation delay:
e The propagation delay of a gate is basically the time interval between the
application of the input pulse and the occurrence of the resulting output pulse.
e The propagation delay is very important characteristic of logic circuits because it
limits the speed at which they can operate.
e The shorter the propagation delay, higher the speed of the circuit and vice-versa.
e The propagation delay is determined using two basic time intervals:
1. teLu : It is the delay time measured when output is changing from logic O to
logic 1 state (LOW to HIGH)
2. tpuL : It is the delay time measured when output is changing from logic 1 to
logic O state (HIGH to LOW).
When the teuL and tein are not equal, the larger value is considered as a

propagation delay time for that logic gate, i.e.
tp = max (tpLu, tPHL)

43

Power dissipation:

e The amount of power that an IC dissipates is determined by the average supply
current, Icc that it draws from the Vcce supply. It is the product of Icc and Vce.

e For ICs, the value of Icc for a LOW gate output (Iccy) is different from a HIGH
output (Icch).

e Therefore, average Icc is determined based on the 50% duty cycle operation of
the gate (LOW half of the time and HIGH half of the time).

Ieen +lecL
2
This can be used to calculate average power dissipation as,

ICC(an) =

Pp(avg) = IccavgX Ve
Current and voltage parameter:

Vimin) — High-Level input voltage: It is the minimum voltage level required for a
logic 1 at an input. Any voltage below this level will not be accepted as a HIGH by
the logic circuit.

Vimax) — Low-Level input voltage: It is the maximum voltage level required for a
logic O at an input. Any voltage above this level will not be accepted as a LOW by the

logic circuit.

Vonmin) — High-level output voltage: It is the minimum voltage level at the logic
circuit output in the logical 1 state under defined load conditions.

VoL(max) — Low-level output voltage: It is the maximum voltage level at the logic
circuit output in the logical O state under defined load conditions.

Im - High-level input current: It is current that flows into an input when a
specified high-level voltage is applied to that input.

In. — Low-level input current: It is current that flows into an input when a specified
low-level voltage is applied to that input.

Low Isi hip

_LOW OH
1 i)
HIGH lor he
) LOW o D

HIGH

=1 ¢
|

(b)

Figure 1.2 : currents and voltages in the two logic states

44

Ion — High-level output current: It is the current that flows from an output in the
logical 1 state under specified load conditions.

IoL — Low-level output current: It is the current that flows from an output in the
logical O state under specified load conditions.

Noise margin and logical voltages levels:

In digital circuits, the binary O and 1 are represented by a pair of voltage levels.
Each logic family has a different standard which is shown in the table

Family Logic O Logic 1
TTL oV +5V
ECL -1.7V -0.9v

CMOS oV 3-15V

e The unwanted signals are called noise and can sometimes cause the voltage at
the input to logic circuit to drop below Vigmin) or rise above ViLmax), which could
produce unpredictable operation.

e The noise immunity at the logic circuit refers to the circuit’s ability to tolerate the
noise without causing spurious changes in the output voltage.

e To avoid this problem due to noise, voltage level Vigmin) is kept at a few fraction of

volts below Vonmin) and voltage level Virmax) is kept above VoLmax), at the design
time.

Logic 1
2 Vormn__ ¥ __ Logic 1
VNH
o T " Vi (min)
Q
(@]
8
S] ViL (max)_
Vv
N Logic 0
Vi
f 0 | o™ !

Figure 1.3 : Noise margins

e Vnu is the difference between the lowest possible HIGH output, Voumin) and the
minimum voltage, ViHmin) required for a HIGH input.

e This voltage difference, Vnu is called high-state noise margin. Similarly, we have
low-state noise margin.

e It is the woltage difference between the largest possible low output, Vormax) and
the maximum voltage, ViLmax) required for a Low input.

45

In short we can write as,

VNH = VOH(minj— VIH(min) and

VNH = ViLmax) — VOL(max)

The noise margin allows the digital circuit to function properly if noise voltages
are within the limits of Vnu and VnL for a particular logic family.

Fan-in and fan-out:

The maximum number of inputs of several gates that can be driven by the
output of a logic gate is decided by the parameter called fan-out.

For example, a logic gate with fan-out 10 can drive maximum 10 logic inputs
from the same family.

The fan-in of a digital logic gate refers to the number of inputs. For example, an
inverter has a fan-in of 1, a 2-input NOR gate has a fan-in of 2, a 4-input NAND
gate has a fan-in of 4 and so-on.

Current sinking:

A device output is said to sink current when current flows from the power
supply, through the load and through the device output to ground.

Current sourcing:

A device output is said to source current when the current from the power
supply, out of the device output and through the load to ground.

+ \/ s VC(;
cC o

T Driving gate /

s e K
E Device

(output

B Load gate

Figure 1.4(a) :Current sinking

+ Ve
) T Load gate
0 — >
o] — Wl

Figure 1.4(b) :Current sourcing

Speed power product:

In general, for any digital IC, it is desirable to have shorter propagation delays
(higher speed) and lower values of power dissipation.
There is usually a trade-off between switching speed and power dissipation in

the design of logic circuit i.e. speed is gained at the expense of increased power
dissipation.

46

e Therefore, a common means of measuring and comparing the overall
performance of an IC family is the speed-power product (SPP). It is also called

Figure of Merit.

3. Write a note on RTL family? Explain the operation of 2-input RTL NOR

gate.

Resistor - Transistor Logic (RTL):
RTL circuit:

(Dec-17)

e RTL circuits consist of resistors and transistors. The figure 1.5 shows the 2-

input RTL NOR gate.

e In this circuit, emitters of both the transistors are connected to a common
ground and collectors of both transistors are tied through a common collector

resistor Rcto a supply voltage Vcc.
e The resistor Rc is commonly known as passive pull-up resistor.

Figure 1.5: 2-input RTL NOR gate

Circuit operation:

e Inputs representing logic levels are applied at A and B terminals.

e When both the inputs are low, transistors Q1 and Q2 are cut-off and the output

is HIGH.

e A HIGH level on any input devices the corresponding transistor to saturation
causing the output to go LOW. The below table shows the truth table for 2-input

NOR gate.
INPUT A | INPUTB INPUT C
0 0 1
0] 1 0
1 0 0
1 1 0

Truth table for 2-input NOR gate

47

e RTL gates the LOW level output voltage is 0.2 V. In RTL a HIGH level output
voltage depends on the number of gates connected to the Output.
e As number of gates connected to the output increases, output voltage decreases.

Specifications:
e The RTL gates have poor noise margin, poor fan-out capabilities, low speed and
high power dissipation.

Parameter Value
Propagation Delay 12nsec
Power Dissipation 30-100 mW

Noise Margin 0.2V
Fan-Out 4

4. Write a note on DTL family. Explain the operation of two input DTL NAND
gate. (Dec-17, May-18)

Diode - Transistor Logic (DTL):
e The DTL is more complex than RTL but because of its greater fan-out and
improved noise margins it has replaced RTL.

DTL Circuit:

e Figure 1.6 shows the discrete circuit for DTL NAND gate. It consists of input
diodes and resistor Rp forming an AND gate and following them in transistor

inverter.
v
Voo ct
(+4 V)
Ry ¥ (2kQ) (Ak) > Re
C
A o—d >
B 0—| RQ
(5 k)
2" =
VeR

Figure 1.6: 2-input DTL NAND gate

48

Circuit operation:

When both inputs are LOW, diode Da and D conduct resulting 0.7 volts at point
P. This 0.7 voltage at point is not sufficient to drive transistor Q1.

Therefore, Q1 is cut off giving output voltage Vo = Vcc logic 1. A LOW level on any
input cause corresponding diode to conduct resulting voltage at point P =0.7 V.
This causes transistor to remain in cut-off and the output voltage is equal Vcc =
logic 1.

When both inputs are logic high, diodes Da and Ds are reversed biased. This
causes the base of the Q1 to flow through Rp, D1, D2 and base of transistor Q1.
This drives the transistor Qi1 in saturation giving output voltage Vcgsay = 0.2V =
logic O.

When A and B inputs are HIGH, transistor Q1 is driven to saturation and its base
to emitter junction capacitance is charged.

Now if any of the input goes low, voltage at the point B becomes 0.7V and
transistor Q1 will try to come out of saturation.

To drive transistor from saturation to cut-off region it is necessary to discharge
the stored charge on the internal capacitance.

The resistance, Rp is connected to the -2V supply to increase the rate of
discharge.

INPUT A INPUT B INPUT C
0] 0 1
0 1 1
1 0 1
1 1 0

Truth table of 2-input DTL NAND gate

Specifications:
Parameter Value
Propagation Delay 30nsec
Power Dissipation 60 W
Noise Margin 0.7V
Pan-Out 8

Thus we can say that the DTL has the advantage of greater fan-out and improved
noise margins, but it suffers from somewhat lower speed.

Modified integrated DTL NAND gate:

To increase the fan-out of DTL gate the base current of T1 has to be increased.
This can be done by replacing diode Di1 by the transistor, as shown in the figure
1.7.

49

2 ke

Figure 1.7: modified 3-input DTL NAND gate

5. Write short note on TTL family. Explain concept, operation and
characteristics of TTL family. (Dec-07,10, 17)

Transistor TransistorLogic (TTL):
e TTL is named for its dependence on transistors alone to perform basic logic
operations.

Draw the circuit diagram and explain the working of TTL inverter. (Dec-04)

TTL Inverter:

e We have seen that when input voltage is LOW, the output voltage is HIGH and
vice-versa. Therefore we can make a logic inverter from an npn transistor in the
common emitter configuration as shown in the figure 1.8.

Vec =+5V Vour
A
Re
V
Rg out
Vin
Vg(sat)
% ‘ > ViN
= Low Undefined High
(a) Circuit diagram (b) Transfer characteristics

Figure1.8: TTL inverter

The figures 1.9(a) and 1.9(b)Shows the operation of transistor inverter for both the
inputs (HIGH and LOW) using switching analogy.

50

oV

Figure: 1.9 (a)

VCC=+5V VCC:+5V
R

N .
I
L

Rc 2 1c=0

Switch OFF (open)

Transistor cut-off

Figure: 1.9 (b)

6. Explain the working of 2-input TTL NAND gate. (Dec-05, May-08,17)

2-Input TTL NAND gates:
e The figure 1.10 Shows the circuit diagram of 2-input NAND gate.

e Its input structure consists of multiple-emitter transistor and output structure
consists of totem-pole output.

e Here Q1 is the NPN transistor having two emitters, one for each input to the
gate.

51

Figure 1.10:2-input TTL NAND gate

Although this circuit looks complex, we can simplify its analysis using the diode
equivalent of the multiple-emitter transistor Q1, as shown in figure 1.11.

Diodes D2 and D3 represent the two E-B junction of Q1 and D4 is the collector —
base (C-B) junction.

Figure 1.11: Diode equivalent for Q1.

The input voltages A and B are either LOW (ideally grounded) or HIGH (ideally +5
volts).

If either both A and B are low, the corresponding diode conducts and the base of
Q1 is pulled down to approximately 0.7V.

This reduces the base voltage of Q2 almost to zero. Therefore Q2 cuts off. With
Q2 open, Q4 goes into cut-off and the Q3 base is pulled HIGH.

Since Q3 acts as an emitter follower, the Y output is pulled up to a HIGH voltage.

52

7.

On the other hand, when both A and B are HIGH, the emitter diode of the Q1 are
reversed biased making them off.

This causes the collector diode D4 to go into forward condition. This forces Q2
base to go HIGH.

In turn, Q4 goes into saturation, producing a low output. The following table
summarizes all input and output conditions.

A B C
0 0 1
0 1 1
1 0 1
1 1 0

Truth table for 2-input NAND gate

Without diode D1 in the circuit, Q3 will conduct slightly when the output is low.
To prevent this, the diode is inserted; its voltage drop keeps the base-emitter
diode of Q3 reverse-biased. In this way, only Q4 conducts when the output is
low.

Explain the working of 2-input TTL NAND gate. (Dec-05)

3-input TTL NAND gate:

The figure 1.12 shows the three input TTL NAND gate. It is same as that of two
input TTL NAND gate except that it’s Q1 (NPN) transistor has three emitters
instead of two. Rest of the circuit is same.

1.6 kQ

Figure 1.12: Three input TTL NAND gate

53

e For three input NAND gate if all the input are logic 1 then and then only output
is logic 0; otherwise output is logic 1.

e The operation is similar to the 2-input NAND gate. The table below shows the
truth table for 3-input NAND gate.

R~ O|O0|O|0| »
==lOolo|—|—lo|lol T
O~~~ O
O |||~ -] <

Truth table of 3-input NAND gate

8. Explain the totem-pole output stage in TTL with circuit diagram. (Dec-
2018)

Totem-pole output:

e Transistor Q3 and Q4 form a totem-pole. Such a configuration is known as active
pull-up or totem pole output.

e Totem-pole transistors are used because they produce LOW output impedance.

e Either way, the output impedance is low. This means that the output voltage can
be change quickly from one state to the other because any stray output
capacitance is rapidly charged or discharged through the low output impedance.

e Thus the propagation delay is low in totem-pole TTL logic.

—— — p— o w—

o+5V

o Output

—_ L—Totem—pole outu
-

Figurel.13: Two input NAND gate with totem-pole output.

e One problem with totem pole output is that two outputs cannot be tied together.
The figure 1.14Shows this problem.

54

5V +5V

R

|

I

e O I

b o s 8 i)
!
1
1
I
I
1
]
:

—_———————

| o) I

&

I

I

[D

Totem pole

X = u ‘l
I o T
| & I |
Qyal I |
! : IIQAB | Totem pole
output stage —» I ? — output stage
of Gate A | I | | ofGate B

Figure 1.14: Totem-pole outputs tied together can produce harmful current

Open-collector output:
e Some TTL devices provide another type of output called open collector output.

e The output of two different gates with open collector output can be tied together.
This is known as wired logic.

e Figure 1.15 shows a 2-input NAND gate with an open-collector output eliminates
the pull-up transistor Q3, D1 and R4.

e The output is taken from the open collector terminal of transistor Q4.

O +5V

Output

Figure 1.15: Open collector 2-input TTL NAND gate

Because the collector of Q4 is open, a gate like this will not work properly until
you connect an external pull-up resistor, as shown in figure 1.16.

When Q4 is ON, output is low and when Q4 is OFF output is tied to Vcc through
an external pull up resistor.

55

Pull down /:/

transistor I

»— External pull up
resistor
L

Output

Figure 1.16: Open collector output with pull-up resistor

As mentioned earlier, the open collector outputs of two or more gates can be

connected together, as shown in the figure 1.17 (a).

The connection is called a wired-AND and represented schematically by the

special AND gate symbol as shown in figure 1.17 (b).

@I
S T

o

* o Qutput

(a) Open collector outputs
connected together

(b) Wired-AND output with special

AND gate symbol

Figure 1.17

9. Give the difference between Totem-Pole and Open-Collector outputs.

(May-15,17)

Comparison between Totem-Pole and Open-Collector outputs:

S.NO Totem-pole

Open collector

Output stage consists of pull-up
1. | Transistor(Q3),diode resistor and
pull down transistor(Q4).

Output stage consists of only pull down
transistor.

External Pull-Up Resistor is not

External Pull-Up Resistor is Required

Required. for proper operation of gate.
3 Output of two gates cannot be tied | Output of two gate can be tied together
© | together. using wired AND technique.

4. | Operating speed is high.

Operating speed is Low.

56

10. Explain the working of TTL inverter with tristate output. (May-09)

Tri-State TTL Inverter:

e The tristate configuration is a third type of TTL output configuration.

e It utilizes the high-speed operation of the totem-pole arrangement while
permitting outputs to be wired-ANDed (connected together).

e It is called tristate TTL because it allows three possible output stages : HIGH,
LOW and high-impedance.

e We know that transistor Q3 is ON when output is HIGH and Q4 is ON when
output is LOW.

e In the high impedance state both transistors, transistors Q3 and Q4 in the
totem-pole arrangement are turned OFF.

e As aresult, the output is open or floating, it is neither LOW nor HIGH.

. ’ —0 +5V
L

Output

= ¥ D, —
Enable(E) e - .

Figure 1.18: Tristate TTL inverter

e A is the normal logic input whereas E is an ENABLE input. When ENABLE input
is HIGH, the circuit works as a normal inverter.

e When ENABLE input is LOW, both transistors are OFF and output is at high
impedance state.

e When ENABLE input is HIGH, ENABLE input is active high. In some circuits
ENABLE input can be active LOW, i.e. circuit operates when ENABLE input
LOW.

Tristate outputs can be connected together as shown in the figure 1.19.

57

A__A

e
W

11.

|
B . 2
E
CONTROL +—OOutD;‘_
C_
D— _ C-D
E

Figure 1.19: Tristate outputs connected together.

Name and explain the characteristics of TTL family.(Dec-04, 10) (M ay-06)

Characteristics of TTL Family:

There are several series/ subfamilies in the TTL family of logic devices. Let us see
the characteristics of standard TTL family.

Supply voltage and temperature range:

Both the 74 series and 54 series operate on supply voltage of SV.

The 74 series works reliably over the range 4.75V to 5.25V, while the 54 series
can tolerate a supply variation of 4.5 to 5.5 V.

The 74 series devices are guaranteed to work reliably over a temperature range of
Oto 70°C where as 54 series devices can handle temperature variations fromm-
55 to +125°C.

From the above values we can say that 54 series devices have greater tolerance
of voltage and temperature variations.

Hence, these devices are used where it is necessary to maintain reliable
operation over an extreme range of conditions.

For example, in military and space application. The only disadvantage of these
devices is that they are expensive.

Voltage levels and noise margin:

Table below shows the input and output logic voltage levels for the standard 74
series.

The minimum and maximum values shown in the table are for worst case
conditions of power supply, temperature and loading conditions.

Voltages Minimum Typical Maximum
VoL - 0.2 0.4
Vou 2.4 3.4 -

ViL - - 0.8
Vin 2.0 - -

58

Looking at the Table. We can say that, in the worst case, there is difference of
0.4V between the driver output voltages and the required load input voltages. For
instance, the worst-case low values are

VoLmax) = 0.4 V driver output
ViLmax) = 0.8 V load input

Similarly, the worst-case high values are

VOH(min) = 2.4 V driver output
ViHmax) = 2 V load input

In either case, the difference is 0.4 V. This difference is called noise margin. For
TTL, low state noise margin, VnL and high state noise margin, Vnu both are equal
and 0.4 V. This is illustrated in figure 1.20.

It provides built-in protection against noise. It ensures reliable operation of the
device for induced noise voltages less than 0.4 V.

5V ‘ : 5V
Logic 1 Logic 1
Vor min | ___L_-_ ViK(min) Vi = Vorming ~ VIHMIN)
4v " Noise margin(Vyg) 2V =024-2 =04V
‘V VlL(max)
l 0.8V VL = Vimax) ~ VoLmax)
Vou(max Noise marginlVyy) | -oe-04 =04V
og\\; s { ovi= :
Output voltage lnpg r:/oétsge
ranges g

Figure 1.20: TTL logic levels and noise margin

Power dissipation and propagation delay:

A standard TTL gate has an average power dissipation of about 10 mW. It may
vary from this value because of signal levels, tolerances etc.

We know that, the propagation delay time is the time it takes for the output of a
gate to change after the inputs have changed.

The propagation delay time of a TTL gate is approximately 10 nanoseconds.

Fan-out:

A standard TTL output can typically drive 10 standard TTL inputs. Therefore,
standard TTL has fan-out 10.

59

S.NO| Characteristics Values
e e
2. | Temperature For 74 ser?es—(O to 70°C) units.
For 54 series-(-55 to 125°C)units
VoL(max) — 0.4V

3. | Voltage Level xs{}iinm;};)__oéé?/
Via(max) — 2.0V

4. | Noise Margin 0.4

S. | Power Dissipation 10mW per gate

6. | Propagation Delay | Typically 10 ns

7. | Fan-out 10

Standard TTL characteristics

12. Draw and explain the NOR gate using TTL logic.

TTL NOR GATE:

e The figure 1.21 Shows the circuit diagram for an LS-TTL two-input NOR gate

(Dec-11)

(74LS02). The circuit is basically divided into three functional parts.

» Input circuits.
» Phase splitter.
» Output stage.

e [tis almost identical to those of an LS-TTL NAND gate.

e The difference is that an LS-TTL NAND gate uses diode to perform the AND
function, while an LS-TTL NOR gate uses parallel transistors in the phase

splitter to perform the OR function.

e If either input A and B is HIGH, the corresponding phase splitter transistor Q2a
or Q2B is turned on, which turns off Q3 and Q4 while turning on Qs and Qe and

the output is LOW.

e If both the inputs are LOW, then both phase-splitter transistors are OFF and the
output is forced HIGH. This functional operation is summarized in functional

table.

60

Rz
R1A 8k %
20k

N /o
D1A Ran
Rig % 10k

D1B

D2A D2B

Qg

Diode inputs and J_— OR function and Output stage
- splitter

input protection

Figure 1.21: Circuit diagram of a two-input LS-TTL NOR gate

A B [Q2A[Q2B| Q3 | Q4 | Q5 Q6 Y
0] O |OFF|OFF| ON | ON | OFF | OFF | 1
0 1 |OFF| ON | OFF | OFF | ON ON 0]
1 0 ON | OFF | OFF | OFF | ON ON 0
1 0]

ON | ON | OFF | OFF | ON ON

(a) Functional table

—l—|Oolo]| »
~|lOo|lr|O| @

oO|lo|O|]|

(b) Truth table

Advantages of TTL:
» High speed operation. Fastest among the saturated logic families. The
propagation delay time is about 10ns.
» Moderated power dissipation.
» Available in commercial and military versions.
» Available for wide range of functions..

61

» Low cost.
» Moderate packaging density.

Disadvantages of TTL:
» Higher power dissipation than CMOS.
» Lower noise immunity than CMOS.
» Less fan-out than CMOS.

MOS Families:(Dec 07,10)
Digital circuits with MOSFETs can be grouped into three categories:
e PMOS - uses only P-channel enhancement MOSFETs,
e NMOS - uses only N-channel enhancement MOSFETs and
e CMOS (complementary MOS) — uses both P and N-channel devices.

13. Explain the CMOS inverter.

NMOS Inverter:

e Figure 1.22 shows the basic NMOS inverter circuit. It consist two N-channel
MOSFETs. Q2 is a switching MOSFET and Q1 is a load MOSFET.

e Q1 acts as load resistance (Rd) for Q2. As gate of Q1 is permanently connected to
the Vpp, it is always ON, and hence the load resistance is equal to the Ron of the
MOSFET.

e Particularly, Q1 is designed to have greater Ron than the Ron of Q2. To achieve
this channel of Q1 is made much narrower than channel of Q2. Typically Ron of
Q1 is 100 K whereas Ronof Q2 is 1 K.

e Know that MOS devices are voltage controlled devices. When positive voltage
(HIGH input) is applied between gate and source, Q2 is switched ON and it
makes the output low.

e On the other hand, when input is LOW Q2 is switched OFF and therefore, output
is high.

Vpp(+5 V)
D +Vpp(+d V)
a P Q1
I R(Cy)
S =

Output

—
Input G \|— Q2
S =
i .

Figure 1.22: NMOS inverter circuit and its equivalent circuit

62

VIN (VGS) Q2 Vo = Vy

0 V (logic 0) OFF + 5 V (logic 1)
SV (logic 1) ON 0V (logic 0)

Operation of NMOS inverter

14. Explain the operation of NMOS NAND Gate.

NM OS NAND Gate:

e Figure 1.23 shows 2-input NMOS NAND gate. Q1 acts as a load resistor and Q2
and Q3 are the switching MOSFETs controlled by the inputs A and B.

e The equivalent switching circuit consist of resistor and two switches in series. If
either A and B or both inputs are low, the corresponding MOSFETs are OFF i.e,
the corresponding switches are open and the output is high.

e If A and B both inputs are high, the corresponding MOSFETs are ON i.e, the
corresponding switches Are closed and the output is low.

o +VDD

Vb

Q‘I
.]
' L R(Q,)

= Output
= Output
A-——--3.Q

— QZ 1

I

A i
= B ——— QQ

Q3
B
(a) Schematic diagram (b) Equivalent switching circuit
Figure 1.23: 2-input NMOS NAND gate

A B Q2 Q3 Vo = AB
0 0 OFF OFF 1

0 1 OFF ON 1

1 0 ON OFF 1

1 1 ON ON 0

Operation of NMOS NAND gate

63

15. Explain the operation of NMOS NOR Gate.

NM OS NOR Gate:

e Figure 1.24 shows 2-input NMOS NOR gate. Q1 acts as a load resistor and Q2
and Q3 are the switching MOSFETs controlled by the inputs A and B.
e The equivalent switching circuit consist of a resistor and two switches connected

in parallel.

e When either or both input are high, the corresponding MOSFETs are ON i.e,
corresponding switches are closed making the output low.
e If both inputs are low, both MOSFETs are OFF i.e, both switches are open and

the output is high.

+Vpp

T

+Vpp

R(Q;)

Q4
|_ =
— _Output

I__.
i Q, Qs 1 =
A B)
(a) (b)
Figure 1.24:2-input NMOS NOR gate
A B Q2 Q3 Vo=A+B
0 0 OFF OFF 1
0 1 OFF ON 0
1 0 ON OFF 0
1 1 ON ON 0

Operation of NMOS NOR gate

Characteristics of NMOS:

Operating speed:

e Low operating speed with propagation delay time around 50 ns.

e This is because it has high output resistance, very high input resistance and
reasonably high input capacitance.

Noise margin: Typically 1.5 V.

Fan out: Typically 30.

Power drain: less, around 0.1 mW per gate.

64

16.

PMOS Logic:

Write short note on PMOS logic.

e The figure 1.25 Shows PMOS inverter, NAND gate and NOR gate.
e For p-channel, enhancement-type MOSFET a negative voltage is needed at the
gate terminal to form a channel.
e According to the positive logic, logic O is approximately —Vpp<-Vr, which is the
low-voltage signal value, which logic 1 is approximately ground, which is the
high voltage signal value.

=~ Vop

~Vpp

— oY =AB
A
y
B 4

5

¢—oY=A+B

1
(a) NOT gate _ (b) NAND gate (c) NOR gate
Figure 1.25: PMOS logic gates
VIN (VGS) Q2 Vo =V
0 V (logic 0) OFF + 5 V (logic 1)
SV (logic 1) ON 0V (logic 0)
Operation of PMOS inverter

A B Q2 Q3 Vo = AB

0 0 OFF OFF 1

0 1 OFF ON 1

1 0 ON OFF

1 1 ON ON 0

Operation of PMOS NAND gate

65

17.

A B Q2 Q3 Vo=A+B
0 0 OFF OFF 1
0 1 OFF ON 0
1 0 ON OFF 0
1 1 ON ON 0

Operation of PMOS NOR gate

Explain the operation of CMOS Inverter. (May-04)

CMOS Inverter:

Figure 1.26 shows the basic CMOS inverter circuit.

It consist of two MOSFETs in series in such a way that the p-channel device has
its source connected to +Vpp (a positive voltage) and the n-channel device has its
source connected to ground.

The gates of the two devices are connected together as the common input and
the drains are connected together as the common output.

+Vpp = +5 V

p-channel(Q,)

Input o—¢ Output

n-channel(Q,)

Figure 1.26: CMOS inverter circuit

When input is HIGH, the gate of Q1 (p-channel) is at OV relative to the source of
Q1 i.e Vgs1 = OV. Thus, Q1 is OFF. On the other hand, the gate of Q2 (n-channel)
is at +Vpp. Thus, Q2 is ON. This will produce Vour = 0OV, a shown in figure 1.27

()
When input is LOW, the gate of Q1(p-channel) is at a negative potential relative

to its source while Q2 is ON and Q2 is OFF. This produces output voltage
approximately +VDD, as shown in the figure1.27 (b).

66

. e ¥
v
i
- Out = !

Input = 1 t>—+: utput =0 Input=0 O_Jl’ Output =1 (+Vyp)

| 1

---1 @ LR Q,

(a) Input = 1 (b) Input =0

Figure 1.27: Operation of CMOS inverter for both input conditions

A Q1 Q2 Output
0 ON OFF 1
1 OFF ON 0

Operation of CMOS inverter circuit
18. Explain the operation of CMOS NAND Gate. (Dec-03, June-08)

CMOS NAND Gate:

e Figure 1.28 shows CMOS 2-input NAND gate.

e [t consists of two p-channel MOSFETSs, Q1 and Q2, connected in parallel and two
n-channel MOSFETSs, Q3 and Q4 connected in series.

e The equivalent switching circuit has both inputs are low. Here, the gates of both
p-channel MOSFETs are negative with respect to their sources, since the sources
are connected to +Vpp. Thus, Q1 and Q2 are both ON.

Vbp
p-channel Q, Q, p-channel
-0 Qutput
|

Ao—¢ ! Qs n-channel

A=B=0V
Bo— I Q4 n-channel Ves1=Vaes2= Voo
Gs3 = Vosa =

(a) Schematic (b)

67

A=0V--+-[Q; :--\q, A= Vo331 1o\
| i : |
3 ; ! ' Output
! utput | .
| i (high) : ': (Low)
: 1
bomm-- X mmemme- e o
1 1
] |
I 1
I I
] I
B=+Vpg=====--- &--—1Q, B=+Vpp———------ e--1Q,
A=0 V, B=+V — —
7 B VDD A=B=+Vpp
vest S7Vbo_ .\, Ves1 = Ves2 =0V
Gof cs3 = Vesa = *Vop
Gsa= *Vpp
(c) (d)

Figure 1.28: CMOS NAND gate

Since the gate-to-source woltages of Q3 and Q4 (n-channel MOSFETSs) are both
0V, those MOSFETs are Off. The output is therefore connected to +Vpp (HIGH)
through Q1 and Q2 and is disconnected from ground, as shown in the figure
1.28 (b).

And figurel.28(c) shows the equivalent switching circuit when A = 0 and B =
+Vpp. In this case, Q1 is on because Vgs: = - Vpp and Q4 is ON because Vgss =
+VDp.

MOSFETs Q2 and Q3 are off because their gate-to-source voltages are OV. Since
Q1 is ON and Q3 is OFF, the output is connected to +Vpp and it is disconnected
from ground.

When A = +Vpp and B = 0V, the situation is similar (not shown); the output is
connected to +Vpp through Q2 and it is disconnected from ground because Q4 is
OFF.

Finally, when both the inputs are high(A= B = +Vpp), MOSFETs Q1 and Q2 are
both OFF and Q3 and Q4 are both ON.

Thus, the output is connected to the ground through Q3 and Q4 and it is
disconnected from +Vpp. The table summarizes the operation of 2-input CMOs
NAND gate.

A B Ql | Q2 | Q3 | Q4 | Output
0 0 ON | ON | OFF | OFF 1
0 1 ON | OFF | OFF | ON 1
1 0 OFF | ON | ON | OFF 1
1 1 OFF | OFF | ON | ON 0

Truth table of NAND gate

68

#Vpp

. o Output (Z)

Q,

Co————-J

Figure 1..29: CMOS 3-input NAND gate

A B c Q1 Q2 Q3 Q4 Q5 Q6 zZ
0 0 0 ON | OFF | OFF | OFF | ON ON 1
0 0 1 ON | OFF | OFF | ON ON | OFF 1
0 1 0 ON | OFF | ON | OFF | OFF | ON 1
0 1 1 ON | OFF | ON ON | OFF | OFF 1
1 0 0 OFF | ON | OFF | OFF | ON ON 1
1 0 1 OFF | ON | OFF | ON ON | OFF 1
1 1 0 OFF | ON ON | OFF | OFF | ON 1
1 1 1 OFF | ON ON ON | OFF | OFF 0

Truth table of three input NAND gate

19. Explain the operation of CMOS NOR Gate. (Dec-15)

CMOS NOR Gate:

e Figure 1.30 shows 2-input CMOS NOR gate. Here, p-channel MOSFETs Q1 and
Q2 are connected in series and n-channel MOSFETs Q3 and Q4 are connected in
parallel.

e Like NAND circuit, this circuit can be analyzed by realizing that a LOW at any
input turns ON its corresponding p-channel MOSFET and turns OFF its
corresponding n-channel MOSFET, and vice-versa for high input.

e This is illustrated in figure 1.30. The table summarizes the operation of two
input NOR gate.

69

Aw‘r

Bo—

Q;

(a) Schematic

Q4
+Vpp
A=+Vpp -
Bi=+¥Npp -
Output
(low)

Vest = Ves2 = Vop
6s3= Vasa =0 \P

(b)

Vgss = Vaesa = *Vob
(c) e
Figure 1.30: CMOS NOR gate

Q1 Q2 Q3 Q4 | Output
ON ON OFF | OFF 1
ON OFF | OFF ON 0
OFF ON ON | OFF 0
OFF | OFF ON ON 0

Truth table for NOR gate

70

20. Explain the characteristics of CMOS family. (May-04, 07; Dec-06, 11)

Characteristics of CMOS Family:

Operating speed:

e Slower than TTL series. Approximately 25 to 100 ns depending on the subfamily
of CMOS. It also depends on the power supply voltage.

Voltage levels and Noise Margins:
e The voltage level for CMOS varies according to their subfamilies. These are listed

in table.
CMOS series
Parameter 4000 B 74 HC 74 HCT 74 AC 74 ACT
VIH(min) 3.5 3.5 2.0 3.5 2.0
VIL(max) 1.5 1.0 0.8 1.5 0.8
VOH(min) 4.95 4.9 4.9 4.9 4.9
VoL (max) 0..5 0.1 0.1 0.1 0.1
VnH 1.45 1.4 2.9 1.4 2.9
VnNL 1.45 0.9 0.7 1.4 0.7

e Noise margins in table are calculated as follows.
VNH = VOHmin) — VIH(min)
VNL = VIL(max) — VOL(max)

Fan-out:

e The CMOS inputs have an extremely large resistance (1012) that draws
essentially no current from signal source, each CMOS input, however, typically
presents a 5 pF load to ground as shown in figure 1.31

e This input capacitance limits the number of CMOS inputs that one CMOS output
can drive.

==t i

—_—

Fa

IH_QW

—

Figure 1.31: One CMOS output driving several CMOS inputs

71

e The fan-out for CMOS depends on the permissible maximum propagation delay.

o Typically, CMOS outputs are limited to a fan-out of 50 for low-frequency
operation (£ 1MHz). Of course, for high-frequency operation the fan-out would
have to be less.

Power Dissipation (Pp):

e The power dissipation of a CMOS IC is very low as long as it is in a d.c.
condition. Unfortunately, power dissipation of CMOS IC increases in proportion
to the frequency at which the circuits are switching states.

e When CMOS output switches from LOW to HIGH, a transient charging current
has to be supplied to the load capacitance.

e Therefore, as the switching frequency increases, the average current drawn from
VDD also increases, resulting increase in power dissipation.

Propagation Delay:

e The propagation delay in CMOS is the sum of delay due to internal capacitance
and due to load capacitance.

e The delay due to internal capacitance is called the intrinsic propagation delay.
The delay due to load capacitance can be approximated as follows,

tp(CL) = 0.5 Ro CL seconds

wheretp(CL) is either tpLH Or tpHL.
Ro is the output resistance of the gate and CL is the total load capacitance.
The Ro depends on the supply voltage and it can be approximated as
R, =~ &
° IOS

Where Ios is the short circuit output current.

Unused inputs:

e CMOS inputs should never be left disconnected. All CMOS inputs have to be tied
either to a fixed voltage level (O V or Vpp) or to another input.

e This rule applies even to the inputs of extra unused logic gates on a chip.

e An unused CMOS input is susceptible to noise and static charges that could
easily bias both the P and N-channel MOSFETs in the conductive state, resulting
in increased power dissipation and possible overheating.

Static-charge susceptibility (CMOS Hazards):

e The primary source of charge is “static” electricity, usually produced by handling
and the motion of various kinds of plastics and textiles.

e The CMOS devices are protected against this static charge by on-chip diode-
resistor network, as shown in figure 1.32

e These diodes are designed to turn ON and limit the size of the input voltage to
well below any damaging value.

72

Input terminal To gate input

Figure 1.32: Typical network used to product CMOS from static charges.

Latch-up:

e CMOS integrated circuits contain parasitic PNP and NPN transistors.

e Their existence is not intentional but is unavoidable.

e Because of conducting paths between a pair of such transistors, a device can be
triggered into a heavy conduction mode, known as latch-up.

Advantages of CM OS Family:
» Consumes less power.
» Can be operated at high voltages, resulting in improved noise immunity.
» Fan-out is more.
» Better noise margin.

Disadvantages of CM OS Family:
» Susceptible to static charge.
» Switching speed low.
» Greater propagation delay.

21. Write a short notes on ECL family. (May-08) (Dec-17)

ECL Family:

e Another logic family has been developed that prevents transistor saturation,
thereby increasing overall switching speed by using a radically different circuit’s
structure, called Current Mode Logic (CML). This logic family is also called
Emitter-Coupled Logic (ECL).

e Unlike TTL and CMOS families, ECL does not produce a large voltage swing
between the LOW and HIGH levels.

e It has a small woltage swing, less than wolt, and it internally switches current
between two possible paths, depending on the output state.

Explain the characteristics of ECL family. (Dec-06)
Characteristics of ECL Family:

e It is the fastest of logic families. The popular 10K and 100K ECL families offer
propagation delays as short as 1ns. The latest ECL family, ECL in PS (ECL in
picoseconds), offers maximum delays under 0.5 ns (500 ps).

73

Transistors are not allowed to go into complete saturation and thus eliminating
storage delays.

To prevent transistors from going into complete saturation, logic levels are kept
close to each other. Due to this transistor is not driven into saturation when its
input switches from low to high.

As logic levels are kept close to each other, noise margin is reduced and it is
difficult to achieve good noise immunity.

Another disadvantage of this approach is that power consumption is more
because transistors are not completely saturated.

Switching transients are less because power supply current is more stable than
in TTL and CMOS circuits.

Basic ECL circuit:

The figure 1.33shows the basic inverter/buffer circuit in ECL family.

It consists of two transistors connected in differential single ended input mode
with a common emitter resistance.

The circuit has two outputs: inverting output (OUT1) and non-inverting output
(OUT2). For this circuit, the input LOW and HIGH woltage levels are defined as
3.6V and 4.4V, and it produces output LOW and HIGH levels as 4.2V and 5.0V.

VCC =5V
Ri Ra % 4.2 V (LOW)
300 300 Vouti = 5.0 V(HIGH)
—o OUT1
y 5.0 V (HIGH)
outz T 45 V(LOW)
o OUT2
ON OFF
4.4 V (HIGH)
Vine Q Q Vgg =4V
3.6 V (LOW) ! ‘ &8
OFF ON
Re
Veg =0V

Figure 1.33: Basic ECL invertor/buffer circuit

When Vi is HIGH (4.4 V), transistor Q1 is ON, but not saturated and transistor
Q2 is OFF. Thus, Vourz is pulled to 5.0 V (HIGH) through R2 and drop across R1
is 0.8 V so that Vour: Is 4.2 V(LOW).
When Vv is LOW (3.6V), transistor Q2 is ON, but not saturated and transistor
Q1 is OFF. Thus, Vour: is pulled to 5.0 V (HIGH) through R1 and drop across R2
is 0.8 V so that Vour2is 4.2 V (LOW).

74

22. Explain ECL OR/NOR gate.

ECL OR / NOR Gate:
e Figure 1.34 shows, 2-input ECL OR/NOR gate and it logic symbol. There has an
additional transistor in parallel with Q1 as compared to ECL inverter.

e If any input is HIGH corresponding transistor is active, and Vour: is LOW (NOR
output). At the same time Q3 is OFF producing Vour2 HIGH (OR output).

V=5V
Ry Ry
300 300 VouTt
o OUT1 (NOR
-
A l Vour2
0 QUT2 (OR
5 Q, Q, Q Vgg =4V
Re
Vee =0V

Figure 1.34: 2-input ECL OR/NOR gate

We can observe that the input and output LOW and HIGH voltage levels for basic
ECL family are not same, it has 0.6V difference.

This is a problem. This problem cannot be solved by connecting diode in series
with output to lower its voltage by 0.6 volt because if we do this, it results poor
fan-out.

Another problem occurs when output is HIGH and it drives another ECL input.
This HIGH output has to drive base current of another ECL input, resulting drop
across R1 or R2, reducing the output voltage.

These problem of basic ECL are solved by 10 K ECL family.

Advantages of ECL Family:
» It is a fastest logic family. Offers propagation delay about 1 ns.
» Transistors are not allowed to go into complete saturation and thus
eliminating storage delays.
» Less switching transients since power supply current is more stable.
» Large fan-out.

Disadvantages of ECL Family:
» Low noise immunity.
» High power dissipation.

75

23. Compare the characteristics of TTL, ECL and CMOS logic families.
(Dec-12)
Comparison between TTL, CMOS and ECL Families:
S.NO Parameter CMOS TTL ECL
n-channel and | Bipolar Bipolar
1. Device used p-channel junction junction
MOSFET transistor transistor
2. VIH(min) 3.5V 2V -1.2V
3. VIL(max) 1.5V 0.8V -14V
4. VoH(min) 495V 2.7V -09V
S. VoL (max) 0.005V 0.4V -1.7V
6. High level | VNne=1.45V |04V 0.3V
noise margin
7. Lowlevel noise | _145v |04V 0.3V
margin
] Noise Better than Less than yucl);eerable to
’ immunity TTL CMOS)
noise
9. Propagation 70 ns 10 ns 500 ps
delay
Switching Faster than
10. speed Less than TTL CMOS Fastest
Power
11. dissipation per | 0.1 mW 10 mW 25 mW
gate
Speed power
12. product 0.7 pd 100 pJd 0.5 pd
13. Fan-out S50 10 25
14. Power supply | 3 15y Fixed 5 V 4.5-52V
voltage
15 Power Increase with Increase with Constant with
' dissipation frequency frequency frequency
Portable
. instrument Laboratory High speed
16. Application where battery | instruments. instruments.
supply is used.
24. Compare the various digital logic families. (Dec-08)
Comparison between various digital logic families:
Parameter RTL DTL TTL ECL CMOS
Resistors Resistor, Resistor, Resistor N-channel
Components . . and P-
and diode and diode and and
used ¢ st ¢ ot ¢ st ¢ ot channel
ransistor ransistor ransistor ransistor MOSFET

76

Circuits Simple Moderate Complex Complex Moderate
Noise margin
[Noise Nominal Good Very good Good Very good
immunity]
Low Medium More High
Fan-out (4) (8) (10) (25) 50
Power
dissipation 12 8-12 10 40 - 55 0.1
in mW per
gate
Basic gate NOR NAND NAND OR-NOR NAND/NOR
Propagation 2(ECL 10 K)
delay in ns 12 30 10 0.75(ECL 70
100 K)
100 (ECL 10
Speed power K)
product (PJ) 144 300 100 40 (ECL 0.7
100K)
Due to low
power
Due to low | consumption
propagation they are
Laboratory delay the used in
Applications | Absolute Absolute . are used in portable
mmstruments . .
high speed | instrument
switching where
applications battery
supply is
used.
Number of High | Fairly high | Very high High L
functions y hig vy g & ow
Clock rate 8 12 - 30 15 - 60 60 - 400 5
MHz

77

UNIT I
COMBINATIONAL LOGIC

Combinational logic - representation of logic functions-SOP and POS forms, K-map
representations - minimization using K maps - simplification and implementation of
combinational logic — multiplexers and de multiplexers - code converters, adders,
subtractors, Encoders and Decoders.

*
L X4

X/
o

>

o
2

X/
o

¢

o
%

COMBINATIONAL CIRCUITS
A combinational circuit consists of logic gates whose outputs at any time are determined from only the
present combination of inputs.
A combinational circuit performs an operation that can be specified logically by a set of Boolean
functions.

—_— - . [——
N Combinational
n inputs —— circuit —* m outputs

—_— =

Sequential circuits:

Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of
the inputs and the state of the storage elements.

Because the state of the storage elements is a function of previous inputs, the outputs of a sequential
circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior must
be specified by a time sequence of inputs and internal states.

ANALYSIS PROCEDURE

Explain the analysis procedure. Analyze the combinational circuit the following logic diagram.
(May 2015)

The analysis of a combinational circuit requires that we determine the function that
the circuit implements.
The analysis can be performed manually by finding the Boolean functions or truth
table or by using a computer simulation program.
The first step in the analysis is to make that the given circuit is combinational or
sequential.
Once the logic diagram is verified to be combinational, one can proceed to obtain the
output Boolean functions or the truth table.
To obtain the output Boolean functions froma logic diagram,
v’ Label all gate outputs that are a function of input variables with arbitrary symbols or names.
Determine the Boolean functions for each gate output.
v' Label the gates that are a function of input variables and previously labeled gates with other
arbitrary symbols or names. Find the Boolean functions for these gates.
v" Repeat the process in step 2 until the outputs of the circuit are obtained.
v' By repeated substitution of previously defined functions, obtain the output Boolean functions in
terms of input variables.

Page 1

Logic diagram for analysis example

The Boolean functions for the above outputs are,
F, = AB + AC + BC
T\,=A+B+C
T, = ABC
Next, we consider outputs of gates that are a function of already defined symbols:
5= FyTh
Fi=T;+T,
To obtain F; as a function of A, B, and C, we form a series of substitutions as follows:
Fi=T;+ T, =F,)T) + ABC= (AB + AC+ BC)'(A+ B+ C) + ABC
=(A"+B")(A"+C) (B +C)(A+ B+ C)+ ABC
= (A" + B'C")(AB' + AC’' + BC' + B'C) + ABC
= A'BC’ + A'B'C + AB'C’ + ABC
Proceed to obtain the truth table for the outputs of those gates which are a function of previously
defined values until the columns for all outputs are determined.

Truth Table for the Logic Diagram

A B (o F> F5 T: T Ts F
0 0 0 0 ! 0 0 0 0
0 0 | 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 1 0 1

Page 2

DESIGNPROCEDURE
Explain the procedure involved in designing combinational circuits.

The design of combinational circuits starts from the specification of the design objective and culminates
in a logic circuit diagram or a set of Boolean functions from which the logic diagram can be obtained.
The procedure involved involves the following steps,

From the specifications of the circuit, determine the required number of inputs and outputs and assign a
symbol to each.

Derive the truth table that defines the required relationship between inputs and outputs.

Obtain the simplified Boolean functions for each output as a function of the input variables.

Draw the logic diagram and verify the correctness of the design.

X/
o

e

*

<

A NERNERN

*hkhkkhkkkhkkhkkhkkhkhkkhikhkihkhhkkhihkhhkkihkhihkihhihhihkihhkihkkhihkiixk

CIRCUITS FOR ARITHMETIC OPERATIONS

Half adder:
Construct a half adder with necessary diagrams. (Nov-06,May- 07)

% A half-adder is an arithmetic circuit block that can be used to add two bits and produce two outputs
SUM and CARRY.

% The Boolean expressions for the SUM and CARRY outputs are given by the equations

SUMS=AB+AB

o
25

Truth Table: CARRY C=A.B
A B 5 c
0 0 0 0 .
A Half S
0 ! ! 0 B Adder c
1 0 1 0 " —
1 1 0 1
Logic Diagram: Half adder using NAND gate:
A

}C=A.B _E

*hkkkhkkhkhkkkhkhkkkhkhkkkhhkhkihkhkihiiik

Page 3

Full adder:
Design a full adder using NAND and NOR gates respectively. (Nov -10)

¢ A Full-adder is an arithmetic circuit block that can be used to add three bits and produce two outputs
SUM and CARRY.
%+ The Boolean expressions for the SUM and CARRY outputs are given by the equations

§=AB.C,+AB.C,+AB.C, +AB.C,
Cou = B.Cy +AB+A.C

Truth table:
Input variables Outputs
X A B S C
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
Karnaugh map:
AB AB AB AP AB AB AB AP
X’ 1 1 X’ 1
X 1 1 X 1 1 1
K-Map for Sum K-Map for Carry

s The simplified Boolean expressions of the outputs are
S=X'A'B+ X'AB’'+ XA'B'+ XAB
C=AB+ BX+ AX

Logic diagram:

Page 4

o0 =
0 >
I)

»]
|

’}

— = [T
E— —e
———»

®]

:
I
Y

% The Boolean expressions of S and C are modified as follows

S = X'A'B + X’AB’ + XA'B’ + XAB
=X (A'B + AB’) + X (A’'B’ + AB)

=X (A®B)+X(A®BY
=X®A®B

C=AB+BX+AX =AB+X(A+B)

=AB + X (AB + AB’ + AB + A'B)

= AB + X (AB + AB" + A'B)

= AB + XAB + X (AB’ + A'B)

=AB + X (A®B)

Full adder using Two half adder:

®,

+ Logic diagram according to the modified expression is shown Figure.

A o

B

3 l J

X

*hhkkkhkhkkkhkkhkkkhkkhkkhkkikkhkkhkkhkikkhkikkiik

Page 5

Half subtractor:
Design a half subtractor circuit. (Nov-2009)

¢ A half-subtractor is a combinational circuit that can be used to subtract one binary digit from anotherto

produce a DIFFERENCE output and a BORROW output.
% The BORROW output here specifies whether a ‘1’ has been borrowed to perform the subtraction. The

Boolean expression for difference and borrow is:

D=AB+AB
B,=AB
A B D By
A— ——=D=A-B 0 0 0 0
Half
Subtractor 0 1 ! !
BE— B, 1 4] 1 0
1 1 0 0

Logic diagram:

; :D—- D=A-B
)

kkhkhkkhkhkhkhkhkhkhkhkhiirrhkhkhhkhkhiiriiikhhhihiiikx

Full subtractor:

Design a full subtractor. (Nov-2009,07)
¢+ A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also takes

into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower minuend bit

or not.
% As a result, there are three bits to be handled at the input of a full subtractor, namely the two bits to be

subtracted and a borrow bit designated as Bin .
% There are two outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

BORROW output bit tells whether the minuend bit needs to borrow a ‘1’ from the next possible higher

minuend bit. The Boolean expression for difference and barrow is:

D=ARB,+ABB,+ABB, +ABBE,

B,=AB+ARB,+B.B,

Page 6

Mirnuend | Subtrahend Borrow Difference Borrow
(A (B) In {Bin) (D) Out (Bg)
0] 0 0 0
0 0 1 1 1
A ——=0 0 1 0 1 1
Full
B — 0 1 1 0 1
2 i
Bin Sulbtractar 5o 1 0) 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
K-Map:
Bin Bin
AB = Bin AB Bin Bin
AB 1 AB 1
A | 1 AB || 1 1]
AB 1 AB 1
AB 1 AB
(&)
(b)
Difference Barrow

Full subtractor using two half subtractor:

HS

Bi"u

A———— D o A
HS

E—l B =

kkhkhkhhhhkhkhkkhkkhkhihrhkhkhkhhhhiiiihhkhkhhhiiikx

Page 7

Parallel Binary Adder: (Ripple Carry Adder):

Explain about four bit adder. (or) Design of 4 bit binary adder — subtractor circuit. (Apr — 2019)

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be
constructed with full adders connected in cascade, with the output carry from each full adder connected
to the input carry of the next full adder in the chain.

Addition of n-bit numbers requires a chain of n- full adders or a chain of one-half adder and n-1 full
adders. In the former case, the input carry to the least significant position is fixed at 0.

Figure shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry
adder.

The carries are connected in a chain through the full adders. The input carry to the adder is CO, and it
ripples through the full adders to the output carry C4. The S outputs generate the required sum bits.

Example: Consider the two binary numbers A = 1011and B = 0011. Their sum S = 1110 is formed with
the four-bit adder as follows:

Subscript i 3 2 1 0
Input carry 0 1 1 0 C;
Augend 1 0 1 1 A,
Addend 0 0 1 1 B;
Sum 1 1 1 0 S,
Output carry 0 0 1 1 Citi
R 1 B, A, B, A B, A
C [0 [
FA -— FA -— FA -—— FA -—
Cy & 5 5 5

The carry output of lower order stage is connected to the carry input of the next higher order stage.
Hence this type of adder is called ripple carry adder.

In a 4-bit binary adder, where each full adder has a propagation delay of tp ns, the output in the fourth
stage will be generated only after 4tp ns.

The magnitude of such delay is prohibitive for high speed computers.

One method of speeding up this process is look-ahead carry addition which eliminates ripple carry
delay.

*khkhhhkhkhkkkhkhkhkhhhhhhhkhkhkhkhiiiihiihhhiix

Complement of a number:
1’s comple ment:
The 1°s complement of a binary number is formed bychanging 1 to 0 and O to 1.
Example:
1. The I’s complement of 1011000 is 0100111.
2. The 1’s complement 0f0101101 is 1010010.

Page 8

2’s comple ment:
The 2’s complement of a binary number is formed by adding 1 with 1’s complement of a binary
number.
Example:
1. The2’s complement of 1101100 is 0010100
2. The 2’s complement of 0110111 is 1001001

Subtraction using 2’s complement addition:

v The subtraction of unsigned binary number can be done by means of complements.

v’ Subtraction of A-B can be done by taking 2’°s complement of B and adding it to A.

v Check the resulting number. If carry present, the number is positive and remove the carry.

v' Ifno carry present, the resulting number is negative, take the 2’s complement of result and put
negative sign.

Example:

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction

(@) X-Yand (b) Y- X by using 2’s complements.

Solution:

(@) X =1010100

2’scomplement of Y = + 0111101

Sum= 10010001

Discard end carry. Answer: X - Y = 0010001

(b) Y=1000011

2’s complement of X=+ 0101100

Sum= 1101111

There is no end carry. Therefore, the answer is Y - X =-(2’s complement 0f 1101111) =-0010001.

*hkhkkkhkhkkkhkkhkkkhkhkkhkhkkhkhkkhkikkiihkkiik

Parallel Binary Subtractor:

Hia Aa B I B I‘i L5 I-
Con | pun (O C| pan [€n O gy |G Com| pun -
* Adder [¥ Adder Adder Adder
S ot 51 B

v The subtraction of unsigned binary numbers can be done most conveniently by meansof compleme nts.
The subtraction A - B canbe done by taking the 2’s complement of B and adding it to A . The 2’s
complement canbe obtained by taking the 1’s complement and adding 1 to the least significant pair

Page 9

ofbits. The 1’s complement can be implemented with inverters, and a 1 can be added tothe sum through
the input carry.

The circuit for subtracting A - B consists of an adder with inverters placed betweeneach data input B and
the corresponding input of the full adder. The input carry Cin mustbe equal to 1 when subtraction is
performed. The operation thus performed becomes A,plus the 1’s complement of B , plus 1. This is equal
to Aplus the 2’s complement of B.

For unsigned numbers, that gives A-B if A>=B or the 2’s complement of B - Aif A <B. For signed
numbers, the result is A - B, provided that there is no overflow.

*hkhkkkhkkhkkkhkhkkkhkhkkhkhkhkkhhkhkkhkihkkhkihkiik

Fast adder (or) Carry Look Ahead adder:

Design a carry look ahead adder circuit. (Nov-2010)
The carry look ahead adder is based on the principle of looking at the lower order bits of the augend
and addend to see if a higher order carry is to be generated.

It uses two functions carry generate and carry propagate.

Half adder Half adder

Consider the circuit of the full adder shown in Fig. If we define two new binaryvariables
P,= A ®B;
G, = AB,
the output sumand carry can respectively be expressed as
5.=P&C,
Ciy1 = G; + PC;
Gi is called a carry generate, and it produces a carry of 1 when both Aiand Biare 1,regardless of

the input carry Ci. Pi is called a carry propagate, because it determines whether a carry into stage i will
propagate into stage i+ 1 (i.e., whether an assertion of Ci will propagate to an assertion of Ci+1).

We now write the Boolean functions for the carry outputs of each stage and substitutethe value
ofeach Ci from the previous equations:

Page 10

X3

2

e

%

3

S

L X4

X3

25

X3

25

Cy = input carry

C, = Gy + PGy

C; =Gy + PICy = Gy + Py(Gy + PGy) = Gy + PGy + PiPyGy
Ci = Gy + P,Cy = Gy + PsGy + PsP,Gy = P,P\PyCy

?{,
TD

P-_u

{7z

J U HJL,LH

E;U

Logic diagram of carry lookahead generator

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig.

Each sum output requires two exclusive-OR gates.

The output of the first exclusive-OR gate generates the Pi variable, and the AND gate generates the Gi
variable.

The carries are propagated through the carry look ahead generator and applied as inputs to the second
exclusive-OR gate.

Alloutput carries are generated after a delay through two levels of gates.

Thus, outputs S1 through S3 have equal propagation delay times. The two-level circuit for the output
carry C4 is not shown. This circuit can easily be derived by the equation-substitution method.

Page 11

e

%

By —

A,

'P‘.‘- IJ

G,

B,—

[

Carry
Lookahead
Generator

By —

"pl. _II'?

By ——

T

Gy &

By Py

vAsIlvAsivAsly

I

—

Fhhhhkhkkkkhkhkhkhrhhkhkhkhkhhkhiirhikiiikd

4 bit-Parallel adder/subtractor:
Explain about binary parallel / adder subtractor. [NOV — 2019]

The addition and subtraction operations can be combined into one circuit with one common binary adder
by including an exclusive-OR gate with each full adder. A four-bit adder—subtractor circuit is shown in

Fig.

The mode input M controls the operation. When M = 0, the circuit is an adder, and when M = 1, the

circuit becomes a subtractor.

Page 12

*
°e

X3

A

e

*

*
°e

e

%

7/
o

By A,

M

C,

C C, C,
< FA |—1 F4 |=
55 5, 5

It performs the operations of both addition and subtraction.
It has two 4bit inputs AsA2A1A¢ and B3B,B1By.
The mode input M controls the operation when M=0 the circuit is an adder and when M=1 the circuits

become subtractor.

Each exclusive-OR gate receives input M and one ofthe inputs of B .

When M = 0, we have B xor0 = B. The full adders receive the value of B, the input carry is 0, and the
circuit performs A plus B . This results in sum S3S,S;Spand carry C,.

When M = 1, we have B xor 1 = B> and Cp = 1. The B inputs are all complemented and a 1 is added
through the input carry thus producing 2’s complement of B.

Now the data AzA2A1Agwill be added with 2’s complement of B3B,B;1Bpto produce the sum i.e., A-B if

A>B or the 2’s complement of B-A if A<B.

kkhkhkhkhhhkhkhkhhkhkhkikiiiihihhhii

Comparators
Design a 2 bit magnitude comparator.

(May 2006)

It is a combinational circuit that compares two numbers and determines their relative magnitude. The
output of comparator is usually 3 binary variables indicating:
A<B, A=B, A>B

A——

B—

Magnitude
Comparator

———= A=-DB

— A=E

L » A=E

1-bitcomparator: Let’s begin with 1bit comparator and from the name we can easily make out that this
circuit would be used to compare 1bit binary numbers.

Page 13

A B A>B =B | A<B
0 0 0 1 0
1 0 1 0 0
0 1 0 0 1
1 1 0 1 0

For a 2-bit comparator we have four inputs A1 A0 and B1 BO and three output E (is 1 if two numbers are
equal) G (is 1 when A>B) and L (is 1 when A<B) If we use truth table and K-map the result is

A 0 1
010 0 Equation is A>B = AB
1 1 0
B A<B

A 0 1
0| g 1 T —

EquationisA<B = AB

1 a 0

The equation isf(A=B) = AB + AB
=AXNORB

Design of 2 — bit Magnitude Comparator.

The truth table of 2-bit comparator is given in table below

Page 14

Truth table:

Inputs Outputs
Az A Ay Ay A=B A=B A<B
0 0 0 1] 0 1 0
0 0 0 1 0 0 1
0 a 1 0 0 0 1
0] 1 1 0 0 1
0 1 0 1] 1 0 0
0 1 0 1 0 1]
0 1 1 1] 0 0 1
0 1 1 1 0 0 1
1 0 0 1] 1 0 0
1 a 0 1 1 0 a
1] 1 1] 0 1]
1 0 1 1 0 0 1
1 1 0 1] 1 0]
1 1 0 1 1 0]
1 1 1 1] 1 0 0
1 1 1 1 0 1 0

A>B = A¢B1'Bo"+ A1B1'+ AsAoBo” A=B = A1'A¢’B1'Bo’+ A1’AoB1'Bo+
A1A9B1Bo+ A1A0'B1Bo’

= A1'B1" (Ao’Bo’+ AoBo) + A1B1 (AoBo+ Ao'Bo’)
= (Ao © Bo) (A1 © Bq)

B, B
_z':'ﬂ.z':"x{\

00

01

11

10

A<B = A1"An"Bo+ An"B1Bo+ A1"Ba

Page 15

Logic Diagram:
Aq Ap B1

v[v[y

Bao

A>B = ApB1'Bo'+ A1B1'+

é?

AgAgBy’

)— A=B = (Ao © Bo) (A1 © B1)

VY

A<B = A1"Ay'Bo+ Ao'B1Bo+

A1'B1

4 bit magnitude comparator:

4

*hkkkhkhkkkhkhkkkhkhkkkihkkkiiikkik

Design a 4 bit magnitude comparators. (Apr — 2019)

Input

A = A_'.; ..42 AJ A.”

B = E]BEBlB”

Page 16

Function Equation

{A = B:] = X3X7X1X,

I::A - B:I = A}BL + .1'3.433& + I?IJA[BE + 1'31'31']:‘4[:,B|r|
(.4. == B:I = A:'E"., T Ij‘AiB] + .1113.4135 + I_}IQI]A"H[:.B{;

As

B
— D

Bs

A:X }
B *—}
P DfLD -
=)
2ol
__D (A=B)

Four-bit magnitude comparator

kkhkhkhkhhhkhkhkhhkhkhkikiiiihihhhii

Page 17

BCD Adder:

Design to perform BCD addition.(or) What is BCD adder? Design an adder to perform arithmetic
addition of two decimal bits in BCD. (May -08)(Apr 2017,2018)[Nov — 2019]
Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from a

previous stage. Since each input digit does not exceed 9, the output sum cannot be greaterthan9+9 +1
=19, the 1 in the sumbeing an input carry.

Suppose we apply two BCD digits to a four-bit binary adder. The adder will form the sum in binary and
produce a result that ranges from 0 through 19. These binary numbers are listed in Table and are labeled
by symbols K, Z8, Z4, Z2, and Z1. K is the carry, and the subscripts under the letter Z represent the
weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code.

Nerivertin ~Ff B A Ao
Derivation of BCD Adder

Binary Sum BCD Sum Decimal
K Z, Z, I, I, C 5 5 5 5
0 0] 0 0 0] 0 0 0 0
0 0] 0 1 0] 0 0 1 1
0 0] 1 0 0] 0 1 0 2
0 0] 1 1 0] 0 1 1 3
0 0 1 0 0 0] 1 0 0 4
0 0 1 0 1 0] 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1] 0 1 1 13
0 1 1 1 0 1] 1 0 0 14
0 1 1 1 1 1] 1 0 1 15
1 0] 0 0 1] 1 1 0 16
1 0 0 0 1 1] 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19
Addend Augend
Carry K T e -« Carry

out n

Z, Z, 7, Z,

Output

carry

——th | |

4-bit binary adder

Page 18

*
L X4

7
L X4

R/
L X4

A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. The two
decimal digits, together with the input carry, are first added in the top four-bit adder to produce the
binary sum.
When the output carry is equal to 0, nothing is added to the binary sum. When it is equal to 1, binary
0110 is added to the binary sum through the bottom four-bit adder.
The condition for a correction and an output carry can be expressed by the Boolean function

C=K+ 27824+ Z822
The output carry generated from the bottom adder can be ignored, since it supplies information already
available at the output carry terminal.
A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from
one stage must be connected to the input carry of the next higher order stage.

*hkhkkkhkhkkkhkhkkkhkkhkkkhkhkkihkkhhkkhkikkhiikkik

Binary Multiplier:
Explain about binary Multiplier.

Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers.
The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit. Each
such multiplication forms a partial product.

Successive partial products are shifted one position to the left. The final product is obtained from the
sum of the partial products.

B, B, A

A A
ApBy ApBy

B,
ABy AB, J LJ
G G C Cy Ay

|
?

A combinational circuit binary multiplier with more bits can be constructed ina similar fashion.

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are bits in
the multiplier.

The binary output in each level of AND gates is added with the partial product of the previous level to
forma new partial product. The last level produces the product.

HA

r‘:-‘—
S

Page 19

A 1

B B, B By
B B, B, By LJ
0
Addend Augend
4-bit adder
Sum and output carry
B B, B B,
A
Addend Augend
4-bit adder
Sum and output carry
T l J l l Y
Cq Cs Cy G G G G

B R R R R R R R R R R R S R R S S R S R R S R R S R R S e R S e e S

Page 20

CODE CONVERSION
Design a binary to gray converter.
Binary to Grayconverter

Gray code is unit distance code.
Input code: Binary [Bs B, Bi Byl
output code: Gray [Gs G, G1 Go]

(Nov-2009)(Nov 2017)

Truth Table
B3 B2 Bl BO G3 G2 G1 GO
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 b(1) b(2) b(3) b(4) b(5)
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0 1{1&1 %\ 1 BINARY
0 1 0 0 0 1 1 0 l l i l
0 1 0 1 0 1 1 1 l
0 1 1 0 0 1 0 1 1 0 0 1 1
0 |11 11 |1 J0 J1 10 10 £ €@ £ €@ £6) GREY
1 0 0 0 1 1 0 0 b(1) bl1) xorb(2) b(2) xorb(3) b(3)xorblg) blg)xorbis)
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0
K-MAP FORGS3: K-MAP FORG2:
~J1B0 o 01 11 10 ~J180 g 01 11 10

B382 6382

oo 0 0 0 0 ao 0 0 1] 0

01 0 0 0 0 01 1 1 1 1

| |
THEE 1 1 1 T o 0 0
0] | 1 1 1 10|] 1 1 1
G3=B3 G2=B3’B2+B3B2’=B3 #B2

Page 21

K-MAP FORGL1: K-MAP FORGO:

\B1E0 oo 01 11 10 B1B0 o 01 11 10
B3R B3E2

m| o 0 1 1 o | o 1 .]
0 [1 D 0 0| o i 0 1

|
!
11 1 D 0 ol 1 . 1
1wl o 0 1 1
0] o ! 0 il

G1=B1’B2+B1B2’=B1 B2 G0=B1’ B0+B1B0’=B1 #B0

Logic diagram:

Binary to Gray Converter

5 @ 'D @ co
LY

51 @ ®]B ®

52 @ D @ «

B3 @ ® «:

Gray to Binary converter:

Design a gray to binary converter.(OR) Design a combinational circuit that converts a four bit gray
code to a four bit binary number using exclusive — OR gates. (Nov-2009) [NOV - 2019]
Gray code is unit distance code.

Input code: Gray [G3 G, G1 Go]

output code: Binary [Bs B, B; Bg]

g(3) g(2) g(1) g(o)
1 o 1 0 GREY Le b3) =2(3)
LAY A b(2) - b(3) @2(3)
/‘1B /&a ‘ /EB ‘ b(1) = b(z) Dg1)
b(3) b'(-l) b(1) bio) b(o} = b(1) ® g(o)
1 1 (1] 0 EBINARY

Page 22

Truth Table:

Matural-binary code

]
]

RirrRrRrR R oloo o ololoo

K-Map:

51 Go
Gzl 00

H RO oo R RR=R=O 00O

For B3

RO O(RRR OO RO OO O

00| O

G1 Go
GG\ 00

Bi=Gs

For B1

)
[=]

H O RO/ OROROROKRORD

=
3%}

B2 Bl

[=-]
=

[H U I U I e e I = == =1 ===
olololgrkr rkrrre~ooloo
Rlrlaloaoorkrlalokr e rrloo
olrrlorookrrlooraolkr~ao

B:=G3i'G:+G3G:"
=Gs @Gz

For Bo

G1Go
GalGz

00

01

Page 23

7
L X4

7
L X4

From the above K-map,

Bi= Ga3

Ba= G2'Go+ GaGy'

Bx= G32G2

E;= G3‘G1‘G-_+ G;IG:I_G'_I+ G;GJG_'_+ GngGf
= 53 (G G+ G2G1) + Gs (G2G1+ GGy

= 53" (G226 + Gs (G2BG)’ [xBy = x'y+ xy'], [(xBy)’ = xy+ x'y']

Bi= G3% G2E G

Bo= G2'Gy' G1'Got Gi'G_GiGo'+ GalGrGr_Got GaGaGr Go'+ Ga'GolGr'Go' +

G3G2_G1'Go'+ G3'G2GiGot+ GaG2_G1Go.

= G3'Gy (GL'Go+ GiGy") + GaGz (GL'Get+ G1Go') + Gr'Gy’ (G3'Gat+ GalGy) +

GGG Gat GaGa').

= G3'Gr (GoEG1) + GG (GGl + Gi'Gy’ (GrEGs) +G1Go (G EGs).

= GG (GG + GaGa) + GBGs (Gr' Go +G1Ga)

= (GoBG1) (G2BGs)'+ (G2BGs) (GoBG1) [xSy = X'y+ x7']

Bo= (GoEGa) & (G2EG3).
Logic Diagram:

G3

B3

B2

El

BCD to Excess -3 converter:

Design a combinational circuits to convert binary coded decimal number into an excess-3 code.

Excess-3 code is modified form of BCD code.

(Nov-06,09,10, May-08,10)

Excess -3 code is derived from BCD code by adding 3to each coded number.

Page 24

Truth table:

Decimal BCD code Excess-3 code

= Bs B B Bo Es Ex E1 Eo
0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
5 1 0 0 0 1 1] 1 1
G 1 0 0 1 1 1 0 0

K-Map:
For Es3 For E»

Es= B:+ Bz (Bo +B4)
For E1

Ei=B:'Bo"+ B1By
=B1@Bn

E:=B:B1'B:"+ B:" fEl]"' E‘l]
For Eo

01 11

Page 25

Logic Diagram

BCD Code

B3 Bz B1 Bo

i

Eo=Bo’

by
D Ei1= Bo®B1
I/

\‘
./
] E2=B2B1'Bo’

+ B2' (Bo+ B1)

E3= Bi+ Bz (Bo+ B1)

Excess -3 to BCD converter:

Design a combinational circuit to convert Excess-3 to BCD code. (May 2007)
Truth table:
. Excess-3 code BCD code
Decimal 5 1TF, [B2 | B | B: | B | B: | Ba
3 0 0 1 1 0 0 0 0
4 0 1 0 0 0 0 0 1
5 0 1 0 1 0 0 1 0
] 0 1 1 0 0 0 1 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 0 1 0 1
g 1 0 0 1 0 1 1 0
10 1 0 1 0 0 1 1 1
11 1 0 1 1 1 0 0 0
12 1 1 0 0 1 0 0 1

Page 26

K-map simplification

For B, For B,
EiE; 00 01 11 10 EiE, 00 01 11 10

...........

oo xi| x| o [x oo x [{X| o [{X]

ot 1] 0| o1 ot]o |1 o1

ml 1 x| x| x 1nlo |ixi| x|ix

o) 1ifo| ol 1o [(1i] o [i1]

E'IE[I For EE E1ED For 53
EsE>~_ 00 01 11 10 EsEx~_ 00 01 11 10

oof x | x| o] x oo x | x | 0| x

orj o | o0 |1} o pijo |0 | 0|0

1| o | x| xi|/x] || x [Ix]] x]
w7 o | 1] o] o|o [i1)] o

T momoad

B, = E2E1 + BB Ep + E3E1EU B, = E5E; + EjE4E,

Page 27

Logic diagram

Excess -3 code

Page 28

Bo

BCD Code
B2

Ba

For B4

For B;
01

10

11

Page 29

Bs
EA

00
0
0
0

B;=DC'B’

B:=DCB'+D'B

EA

D

Binary Code
C

Design Binary to BCD converter.

Truth table:

Decimal

10
11

14

K-map:

For By
01

BA
DC\ 00

10

11

B.=D'C+CB

For B.

B:=DC+ DB

Logic diagram:
Binary Code
D C B A

SANIE, e

Bi=A

B.=DCB'+D'B

B.=D'C+CB

B;=DC'B’

B:=DC+DB

519

*hhhhkhkkkkhkhkhkhhhhkhkhkkkhkhihirhiikixikdk

Page 30

DECODERS AND ENCODERS
Decoder:
Explain about decoders with necessary diagrams. (Apr 2018)(Nov 2018)

% A decoder is a combinational circuit that converts binary information from n input lines to a maximum
of 2" unique output lines. If the n -bit coded information has unused combinations, the decoder may
have fewer than 2" outputs.

< The purpose ofa decoder is to generate the 2" (or fewer) minterms of n input variables, shown below for
two input variables.

2 to 4 decoder:

B
' E A B D, D, Dy Dy
D
1 X X 11 1 1
4 0o 0 0 0 1 1 1
T [>O 0 0 1 1] 1 1
} I, 0 1 0 1 1 0o 1
B — } o 0 | 1 1 1 1 1
==
E— >0
(a) Logic diagram (b) Truth table
3 to 8 Decoder:
Design 3 to 8 line decoder with necessary diagram. May -10)
Truth table:
Inputs Outputs
X '_F I Du D] ﬂz D3 D,q_ Ds Dﬁ DT
0 0 (0 1 0 0 0 0 0 (0 0
0 0 1] 1 0 0 0 0 0 0
] | 0] 0 1 0] 0 0 0
] 1 1] 0 0 1] 0 0 0
1 0 (0] 0 0 0 1 0 (0 0
1 0 |] 0 0 0 0 | 0 0
1 | 0] 0 0 0] 0 1 0
1 1 1] 0 0 0 0 0 0 1

Page 31

Logic diagram:

Design for 3 to 8 decoder with 2 to 4 decoder:

*,

to eight decoder as follows.

URURURURURE T .

2—to—4
Decodar
] Dy
Pllu Bl 1 .
A, 21 2 0D,
3 EY
A, ’_Dk - |Enable
2-to—4
Decader
0 D.
2'3 1 DS
S P 2 Dg
3 —D?
Enable

=
|
"
#a

Dy =x'y'z

Dy =x'yz'

Dy =x'yz

;)_1 = .\.’_\":r

Dy =xy'z

Dg = xyz’

D; = xyz

% Not that the two to four decoder design shown earlier, with its enable inputs can be used to build a three

Page 32

Implementation of Boolean function using decoder:

% Since the three to eight decoder provides all the minterms of three variables, the realisation of a
function in terms of the sum of products can be achieved using a decoder and OR gates as follows.

Example: Implement full adder using decoder.

Sum is given by Y m(1, 2, 4, 7) while Carry is given by Ym(3, 5, 6, 7) as given by the minterms
each of the OR gates are connected to.

Solution :

Step 1 : Truth table

Inputs Outputs
3108
Decoder A B Ci, Carry Sum
o 0 0 0 0 0
1
7 a0) 0 0 1 0 1
4] 1 1] 8] 1
¥ ol 3 Q 1 | 1 0
4
L, 1 0 0 0 1
X ad ; 1 0 I 1 0
7 1 1 0 1 0
1 1 1 1 1

Design for 4 to 16 decoder using 3 to 8 decoder: Design 5 to 32 decoder using 3 to 8 and 2 to 4 decoder:

i ~ 3-to-8 .
5 & 0 == o7
D8
T 3-to-8 —

; 3x8 | . T.'— DEC B -
t_ decoder Dato Ds I3 2404 ‘_E [D15
: E Moo pec l -

] Pl 308 B= i

" > @ DEC = 3

s N D24
IxB -to-8 /=
decoder — DstoDys] DEC e
E E D31
5-t0-32 line decoder
*hkhkkhkkhkkhkkkkkkkkkkhkhkhkhkhkikkkkkkhkkkkkikkikikikik
BCD to seven segment decoder
Design a BCD to seven segment code converter. (May-06,10, Nov- 09)
a
([
0 123456189
-
{a} Segment designation (b) Murmeric designation for display

Page 33

7-Segment code

For !h!

BCD code

For (a)

Digit

Truth table:
K-Map:

<1
+
C
i
+
= £
- :
e
[y =
+ E &
- [ot
E&l o + =
- = |n =
+ £
= R
as = 1l
Il 0 =
[<= O = — — o
] o =] = ™ ™
£
=
s
+
cg A 2
F g © s
+ - =
c™ B T
b &
ﬂ = I S|~} o | % ||~
" "0 = =)
i (] o o — — (=
= =1 — ™
m jun]
I =4

Page 34

A+ C'D'+ BC'+ BD

f

BTY+ CTY

3]

o= A+ BC'+ B'C+ CD

Logic Diagram:

A

vIv[v|y

B C D

”

r

=

-]

0|00 0000

= =]

i

% The specification above requires that the output be zeroes (none of the segments are lighted up) when
the input is not a BCD digit.

% In practical implementations, this may defer to allow representation of hexadecimal digits using the
seven segments.

*hkkhkhkkhkhkhhkhkhkkhkkhkhhihhhkhkkkkhiikx

Page 35

Encoder:
Explain about encoders. (Nov 2018)
< Anencoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2" (or
fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary code
corresponding to the input value.

*,

Octal to Binary Encoder:

%+ The encoder can be implemented with OR gates whose inputs are determined directly from the truth
table. Output z is equal to 1 when the input octal digitis 1, 3, 5, or 7.

% Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can
be expressed by the following Boolean output functions:

z=Dy+ Dy+ Ds + D
y =Dy + D3+ Dg + Dy
X=Dy+ Ds+ Dg+ Dy
The encoder can be implemented with three OR gates.

Truth table:
Inputs Outputs
D{. ﬂ] DI D; D4 D5 ﬂﬁ D? X ¥ Iz
I (0 () 0 (0 J) 0 (0 0 (0
] | () () 0]] (0 (0 () |

—
fom}

((
. [((
) 0 1 0 0 { 0 0 0 1 0
{ 0 0 0 1 l
{ { 0
(
(

!
1 ' 0

[s

o]

[w—y
o]

=
e

= e e L
-

(
0) 1

% Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is generated when all the
inputs are 0; but this output is the same as when DO is equal to 1. The discrepancy can be resolved by
providing one more output to indicate whether at least one input is equal to 1.

Page 36

Logic Diagram:

DO D1 D2 D3 D4 D5 D6 DY

*hkkkkhkhkkkhkhkkkhkhkkikkikkhkkikkiiikkik

Priority Encoder:

O a0 D000 OO0
™ =]

Design a priority encoder with logic diagram.(or) Explain the logic diagram of a 4 — input priority
encoder. (Apr —2019)

A priority encoder is an encoder circuit that includes the priority function. The operationof the
priority encoder is such that if two or more inputs are equal to 1 at the same time,the input having the
highest priority will take precedence.

Truth table:

Modified Truth table:

Inputs Outputs
Du D] .Dz Dg X ¥ v
0 0 0] X X 0
1 0 1] 0] g 1
X 1 1] 0] 1 1
X X 1] 1 g 1
X X X 1 1 1 1

Inputs

¥

| D2

g

(=T R R

-
IS e E=]1

Sl el el = IR = R =0 o el T Y Wi) S (e
HlIEF O QOO QRO Q= =oS

e e e e e e O oo oD oo o

Page 37

Logic diagram:

D,

W=D+ D+ Do+ Ds
Logic Equations:
x=D0Dy+ Dy
y=D;+ Dy D3
V=D,+ D+ D, + D,

V= D+ DhDe:

D

f.-||

o

Dy

>

T
L

i._.l'

kkhkhkkhhhhkhkhkhkkkhkhrirrrhkhkhhkhkhiirrhhhhhhhiiiiiiixx

Page 38

MULTIPLEXERS AND DEMULTIPLEXERS

Multiplexer: (MUX)
Design a 2:1 and 4:1 multiplexer.

*

s A multiplexer is a combinational circuit that selects binary information from one of many input lines and
directs it to a single output line. The selection of a particular input line is controlled by a set of selection
lines.

< Normally, there are 2" input lines and n selection lines whose bit combinations determine which input is

selected.

2101 MUX:
A 2to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one input ofan

AND gate. Selection lines S are decoded to select a particular AND gate. The truth table for the 2:1 mux
is given in the table below.

B
—>

select

R

%+ To derive the gate level implementation of 2:1 mux we need to have truth table as shown in figure. And
once we have the truth table, we can draw the K-map as shown in figure for all the cases when Y is

equal to 1",
Truth table:
s Y
In
1 L

Logic Diagram:

)7
))

Page 39

4101 MUX:

s A4to 1 line multiplexer is shown in figure below, each of 4 input lines 10 to I3 is applied to one input

ofan AND gate.
%+ Selection lines SO and S1 are decoded to select a particular AND gate.

%+ The truth table for the 4:1 mux is given in the table below.

;u"_\

Inpuls

| Io—p|0 L/
I, —»1

L
I —»3

v
5

-
. t@g

Truth Table:
SELECT OUTPUT
INPUT f

S1 SO Y 5, —

0 0 10 5

0 1 11

1 0 12

1 1 13
Problems :
Example: Implement the Boolean expression using MUX

F(A,B,C,D) = Ym(0,1,5,6,8,10,12,15) (Apr 2017, Nov 2017)

Solution : Implementation table :

Do | D, | D, Dy D, D D] Dy
HIOIOIEAEIERIG] (O] R
a|®]| ¢ |GO] 11 || 13| 14 |G

1 a a 0 a a a a

a
| i
1— Dg
D,
D5
0— D5 8:1 vi—
D, MUX
Ds
Dg
D7
525,15y
B CD

Page 40

Example: Implement the boolean function using Multiplexer. [NOV -2019]
F(x,y,2)=Xm(l,?2,6,7)

Solution:
Implementation table:

(=)

Multiplexer Implementation:

4:1
NMUX

51 5

Example: 32:1 Multiplexer using 8:1 Mux (Nov 2018) (Apr — 2019)

L 1
=== — 1k
[==a]
ced o, 8ol
L ——————— L Ml
|
pes 000 1.
el — 1y
=3m150
- — | |
54
50
[=F5 =
=5 -
o1
=
o Bla=
(=40 :;' ME’: [~] w
o = "
ik r w Boel
5254 50 2. Mux
PSS]
I "
o
53 5450
—
S 4|
e " 53
= =
(=45] T
L 1w B-lo-1 o
=] e
ot L L LTE
sl " L
oa n
53 5158
8] I |
G "
= "
(=3 (13
o w Btod
B3 3 Mux
= [F
o "
GO "
Ei51 50
—— 1]

Page 41

DEMULTIPLEXERS:
Explain about demultiplexers.

¢+ The de-multiplexer performs the inverse function ofa multiplexer, that is it receives information on one

line and transmits its onto one of 2n possible output lines.
% The selection is by n input select lines. Example: 1-to-4 De-multiplexer

Truth table
o 51 S0 F F1 F2 F3
—-g 0 0 D 0 0 0
———— Bl
et
1 input signal —w DEMUX : =
: ‘% 1 1 0 0 0 D
IR,
]
i :
D F,
'n'- Control F,
sianals F,
S1SO
Logic Diagram: Truth Table:
E
INPUT OUTPUT
>3,.. D[!
D E|D|[so| st | YyYo | VYL | Y2]| v3
Sp --——}m 110 o 1 0 0 0
>c "'--'}D 11110 1 0 1 0 0
5, £
1111 0 0 0 1 0
=
1111 1 0 0 0 1

Page 42

1.

2.

Example:
Implement full adder using De-multiplexer.

Solution :

Step 1 : Truth table

Inputs Outputs
A B Cin Carry Sum
0 0 1] 0]
0 0 1 0 1
0 1 0 0 1
0 1 1 1]
1 0] 0 1
1] 1 1]
1 1 0 1]
1 1 1 1 1

Step 2 : For full adder
Carry = C_, :E m (3,5,6,7)
and Sum = §= z m (1,2,4,7)

Step 3 : When D, =1, the demultiplexer gives minterms at the output.

YD—
i
2
1:8 '3 —
0o =1—| : Y
I DEMUX Y4
5 C
] >
v k
SpS152
ABC

Implement the following functions using de-multiplexer.
f1 (A,B,C) = 2m(1,5,7), £2 (A,B,C) = > m(3,6,7)
Solution:

ABC

kkhkhkhhhkhkhkkkhkhkhkhkiiiikhkhhhkhihiikix

Parity Checker/ Generator:

» A parity bit is an extra bit included with a binary message to make the number of 1’s either odd or
even. The message, including the parity bit, is transmitted and then checked at the receiving end for
errors. Anerror is detected if the checked parity does not correspond with the one transmitted.

» The circuit that generates the parity bit in the transmitter is called a parity generator. The circuit that
checks the parity in the receiver is called a parity checker.

» In even parity system, the parity bit is ‘0’ if there are even number of 1s in the data and the parity bit
is ‘1’ if there are odd number of Is in the data.

» Inodd parity system, the parity bit is ‘1’ if there are even number of 1s in the data and the parity bit is
‘0’ if there are odd number of 1s in the data.

3-bit Even Parity generator:

Truth Table:

Three-Bit Message Parity Bit
X ¥ z P
] 0 Q0 0
0 0 1 1
0 1 0 1
] 1 1]
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

P=xdbydz

Logic Diagram:

Page 44

4-bit Even parity checker:

Truth Table:
Four Bits Parity Error
Received Check
X ¥ z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

C=xdydza&P
Logic Diagram:
X

&

EI'J

Page 45

1.

PART-B - 16 MARKS

Define sequential circuits.

Sequential circuits:

Sequential circuits employ storage elements in addition to logic gates. Their
outputs are a function of the inputs and the state of the storage elements.
Because the state of the storage elements is a function of previous inputs.

The outputs of a sequential circuit depend not only on present values of inputs,
but also on past inputs.

The circuit behaviour must be specified by a time sequence of inputs and
internal states.

Inputs ——— o = Outputs
Combinational
circuit
> = Memory
elements

Figure 3.1: Block diagram of sequential circuit/FSM

Types of sequential circuits:

There are two main types of sequential circuits, and their classification is a
function of the timing of their signals.
1. Synchronous sequential circuit:
It is a system whose behaviour can be defined from the knowledge of its
signals at discrete instants of time.
2. Asynchronous sequential circuits:
The behaviour of an asynchronous sequential circuit depends upon the
input signals at any instant of time and the order in which the inputs
change.
The storage elements commonly used in asynchronous sequential circuits
are time-delay devices.

2. Define Flip-Flop.
Flip-Flop:

The storage elements used in clocked sequential circuits are called flip-flops.

A flip-flop is a binary storage device capable of storing one bit of information. In a
stable state, the output of a flip-flop is either O or 1.

A sequential circuit may use many flip-flops to store as many bits as necessary.
The block diagram of a synchronous clocked sequential circuit is shown in Fig.

A storage element in a digital circuit can maintain a binary state indefinitely (as
long as power is delivered to the circuit), until directed by an input signal to
switch states.

The major differences among various types of storage elements are in the
number of inputs they possess and in the manner in which the inputs affect the
binary state.

3. Define Latch.

Latch:

e The storage elements that operate with signal levels (rather than signal
transitions) are referred to as latches those controlled by a clock transition are
flip-flops.

e Latches are said to be level sensitive devices.

e Flip-flops are edge-sensitive devices.

Inputs ———= Outputs
Combinational

circuit

Flip-flops

N JUILILILTL

b) Timing diagram of clock pulses

(2) Block diagram

Synchronous clocked sequential circuit

4. Explain about triggering of flip flops in detail. (Dec-14)

Triggering of Flip Flops:

e The state of a latch or flip-flop is switched by a change in the control input.

e This momentary change is called a trigger, and the transition it causes is said to
trigger the flip-flop.

(a) Response to positive level

(b) Positive-edge response

'1! ¥ L

(c) Negative-edge response
Level Triggering:
e SR, D, JK and T latches are having enable input.
e Latches are controlled by enable signal, and they are level triggered, either
positive level triggered or negative level triggered as shown in figure (a).

e The output is free to change according to the input values, when active level is
maintained at the enable input.

Edge Triggering:

e A clock pulse goes through two transitions: from O to 1 and the return from 1 to
0. As shown in above Fig (b) and (c)., the positive transition is defined as the
positive edge and the negative transition as the negative edge.

2

Excitation table for all flip flops:

o
|

N =1=1le

Mo | = o

o|— |||

Sl

A = o[~
S| =

— D — D
— || —|D

SR latch:lt is also called as RS latch.

S (Set) ..

Q

1
R (Reset) @5\4}_0 Q

5. Realize SR Latch using NOR and NAND gates and explain its operation.
(Dec-2018)

e The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled
NAND gates, and two inputs labelled S for set and R for reset.

e The SR latch constructed with two cross-coupled NOR gate is shown in Fig.

1
R S RO
0 — R (reset)
~ 001 0 ((after§=1,R=10)

——

P) .
1 T — 0 1[0 1
r . 0 0|0 1 (afterS=0,R=1)
0 | § (set) 0 1 1|0 0 (forbidden)
(a) Logic diagram (b) Function table

e The latch has two useful states. When output Q = 1 and Q’= O, the latch is said
to be in the set state. When Q = 0 and Q’ = 1, it is in the reset state.

e Outputs Q and Q’ are normally the complement of each other.

e However, when both inputs are equal to 1 at the same time, a condition in which
both outputs are equal to O (rather than be mutually complementary) occurs.

e If both inputs are then switched to O simultaneously, the device will enter an
unpredictable or undefined state or a metastable state. Consequently, in
practical applications, setting both inputs to 1 is forbidden.

SR Flip-Flop: (Dec-14,15, May-12, 18)

Q.—_.

—

cP—

oV »

Qb—

Logic symbol

3

Gated SR latch

S§— S—
Positive Positive
L :
edge iU edge)
P detector |A detector
circuit - circuit
R— R
(a) SR flip-flop using NAND gates (b) SR flip-flop using NOR gates

] -

EP

-
.

Figure 3.2: Input and Output waveform of SR Flip-Flop

D Flip-Flop: (Dec-12)

CP D Qn+1ﬂ
— — T % o
cp—e 1 1
- v] x Q,
Legic symbol ' Truth table of D flip-flop

Figure 3.3: Input and output waveform of D Flip-Flop

JK Flip-Flop: (May-08, 18, Dec-12)

D" J K {‘}uli —
e K Q,
u “ U D J = . (1!
—Y Q 0o 0 1 0 o 0 Q,
Y 0o 1 0 1 —
Ci > B o 1 1 1 =] 1 o
— |k al— 1 0 0 1 10 1
1 0 1 0 ~—u
1 1 0 1 11 Q,
1 1 1 0
Logic symbol Truth Table

-

o i1 i1

(Resel) :

K ;
@ | | {Toggle) itNo change)] +{Set) |{Togg!&':| I{Tu-g-:je]

Input and output waveforms for positive edge triggered JK flip-flop

I
Su 25 a
J
SR Ju _| Fse
| = —] st .
'(—[—_Dmm fredin l ” <P oy
K D,i- z }-‘ # [+
5=40 ._3:-;_3
R KD R=k

5=10 Beig
Figure 3.4: JK flip-flop using NAND gates

6. What is race around condition and how is it overcome? (May-06)

Race-around condition:

e In JK flip-flop, when J = K = 1, the output toggles (output changes either from O
to 1 or from 1 to 0).

e Consider that initially Q=0 and J = K = 1. After the time interval At equal to the
propagation delay through two NAND gates in series, the output will change to
Q=1 and after another time interval of At the output will change back to Q=0.

e This toggling will continue until the flip-flop is enabled and J = K = 1.

e At the end of clock pulse the flip-flop is disabled and the value of Q is uncertain.
This situation is referred to as the race-around condition.

751 11 4

: ;'/ag“/;b

: ? 2 ¢ id fe
Q . ' / H / s /
L',m_-n—Ju—Propagationdelay "| U “”””uuuuu
L

Figure 3.5: Input and output waveform for clocked JK flip-flop

7. Explain the working operation of master-slave JK Flip-flop.

(Dec-2018)(Dec-08, 10,

May-15)

Master-Slave JK Flip-flop:

e It consists of clocked JK flip-flop as a master and clocked JK flip-flop as a slave.

e The output of the master flip-flop is fed as an input to the slave flip-flop.

e As shown in figure, the clock signal is connected directly to the master flip-flop,
but it is connected through inverter to the slave flip-flop.

1

CLK —¢— 7? Master

Q

4 J O =
o> Slave
al—

Figure 3.6: Master-Slave JK Flip-flop

e Therefore, the information present at the J and K inputs is transmitted to the
output of master flip-flop on the positive clock pulse and it is held there until the
negative clock pulse occurs, after which it is allowed to pass through to the

output of slave flip-flop.

PR
CLk J K Qe i
———
JL 0 o0 @ (Nochange) — 4 —Q
1. o 1 0 (Reset) — CLK
FL 1+ 0 1 (sey — K T—a
JL 1 1 Q, (Togge) T
{a) Truth table {b) g;—::lbﬂl
T Flip-Flop: (May-18) (Dec-2018)
T Flip-flop is also known as Toggle flip-flop.
L T a
—_7 0 0 0 0 . o+l
CP—3pr 0 1 1 =10 Q
al— 0 Q|
1 1 0
(a) Logic symbol (b) Truth table

8. Explain various Realization of one Flip-Flop using other Flip-Flop.
(May-12, 15, Dec-08, 10, 15)

1. Design of JK Flip-flop using SR Flip-Flop.

5-R Flip Flop to J-K Flip Flap

Canversion Table

J-K 1nputs Outputs 5-R lnputs
] K Op Qp+: 5 K
a 1] a a 1] X
0 1 1 1 X 0
vl 1 vl vl 0 X
vl 1 1 v} a 1
1 a a 1 1 a
1 1] 1 1 X a

(-

=

2. Design of SR Flip-flop using JK Flip-Flop.

J-K Flip Flop to 5-R Flip Flop

Conversion lahble

S-R 1lnputs | Qutputs J-K Inputs
5 R Op Op+1 J K
g 0 a 4] 4] ¥
o] y] 1 1 x 0
a1 0 0 0 X
0 1 1 0 b4 1
1 0 0 1 1 “
1 0 1 1 x 0
101 [nvalid Dant care
1 1 [nvalid Lont care

3. Design of D Flip-flop using SR Flip-Flop.

Conversion Table

S-R Flip Flop to D Flip Flop

L Input | Outputs | S-R Inputs
Qp Qp+l 5 R
1] o 0 0 X
i 1 0 0 1
1 o0 1 1 0
1 1 1 Xx 0

K-maps
DQPD 1 DQPD 1
o 1
o| 0| o o al
] = 2 3
11X o| o
&= R=D

Logic Diagram

5

— C

QI

KQp
N 00 01 11 10
o 1 z
Logic Diagram 0 a * 0 0
_] 4 5 B
o e N I N
Qp } -
i { 5= 1Gp
K
X0 o on 10
—c
0 1] z
0 X] 1 st
R T q 5 B
1 0 4] 1 4]
H = K[n
Laogic Diagram
g p I:lp .
e L
H K ap
R R
“oar 01 11 10 A F oo 01 11 10
0 1 3 2 0 1 2
4] 0 ® x 0 0 X 0 1 x
q 5 7 5 i) z
1] |1 X X ¥ 1] % a X X
J=5 K-raps K=H

4. Design of SR Flip-flop using D Flip-Flop.

Dutputs

|5— Inputs

Qe Qp+l

l O Input |

Canwverzion Table

R
5
o
o
0
o

R
2]
o]

1

Q
[a]
1
1

o
1

o
1

Inwvalid

Invalid

[s]
1
Q
Q
1

1

1
o
o
1

1

Cront care

Cont care

D Flip Flop to S-R Flip Flop

5. Design of T Flip-flop using JK Flip-Flop.

Conversion Table

T Input Cutputs J-K Inputs
G Qpsl J [
Q a i 0 X
Q 1 1 X 0
1 0 1 1 X
1 1] L 1

H-map Lagic Criagram
an” 00 a1 11 10 <
[n} 1 3 4
ol o | [1]] o a e Qr
El i T & -
i| o 1l % |
- R Qe
D = S+RQn
(Dec-16)
J-K Flip Flop ta T Flip Flop
K-maps Lagic Diagram
ar .y TQn o 1 :
] 1 a 1 1 Qp ——
0 X ol X 0
— C
™| B
1=T K=T K Qp pb—

6. Design of D Flip-flop using JK Flip-Flop.

Conversion Table

D Input Cutputs J-K Inputs
Qp Qo+l 1 K
o o [} o X
o] 1 u] X 1
1 0 1 1 x
1 1 0 X 0O

J-K Flip Flop to D Flip Flop

K-maps Logic Diagram
Dq” o 1 qu o 1 . : N
o| o] x' 0 I:‘i__ﬂ'jl1
i |1__L j i z Da —
i=D K=D K Qp —

7. Design of JK Flip-flop using D Flip-Flop.

Conversion Table

| J-K Input Qutputs O [nput

1 K Co Qp+l

L]] 0 a a

a 1] 1 1 1

a 1 0 a a

Lo | 1 Q Q

1 Q u] 1 1

1 L] 1 1 1

1 1 0 1 1

1 1 1 a a

D Flip Flop te 1-K Flip Flop

K-rmap
23
%0 o1 11 10
1] 1 3 2
1] o |T| o | o
— 4 & El
S| L] o7 B

b = J0p + KQp

9. Explain clocked sequential circuits.

Dec 2009,11

Logic Diagram

Clocked sequential circuits:

The states of the output of the flip-flop in the sequential circuit give the state of the
sequential circuit.

Present state: The status of all state variables, at some time t, before the next clock
edge, represents condition called present state.

Next state: The status of all state variables, at some time, t+1, represents a
condition called next state.

The synchronous or clocked sequential circuits are represented by two models.

Moore model: The output depends only on the present state of the flip-flops.
Mealy model: The output depends on both the present state of the flip-flop and on
the input.

10. Draw and explain the operation of Moore and M ealy model.
Moore Model:

When the output of the sequential circuit depends only on the present state of the
flip-flop, the sequential circuit is referred to as Moore model.

Excitation
variables
—_ =2 —05
> ——1—
Input .
i . Next . Output
variables state . Memory | . variables
S . elements| .
~| decoder

!
;' ! State variables
|

Moore model
xl:—} L Lo I o' 1A QBJ
cP *T-——<>> @ R @
| 1— Kga s 0 {Kg 687_1
l v

Example of Moore model

Mealy Model:

When the output of the sequential circuits depends on both the present stateof flip-
flop and on the inputs, the sequential circuit is referred to Mealy model.

Exeitation

I
Input |

|
| |
el
variables|]

.

Next
slate

decoder

yarahbles

-

Memary
elements

Qutput
decoder

Slate vanables

nd

\

— |

Mealy circuit model

cP

I

J, Q@
> (®
KA

A
%

EE—

Jg Qg
T
Kg Qg

Qutput
variables

:)_ g

Example of Mealy model

11. Compare Moore and Mealy circuit Models.

(May-05)

S.NO Moore model Mealy model
) Its output is a function of present | Its output is a function of present
" | state only. state as well as present input.
9 Input changes does not affect the | Input changes may affect the output
" | output. of the circuit.
Moore model requires - more | requires less number of states for
3. | number of states for implementing

same function.

implementing same function.

10

12. What is counter? State the types of counter. (Dec-08)

Counters:

e A counter is a register capable of counting the number of clock pulse arriving at
its clock input.

e Count represents the number of clock pluses arrived.

e On arrival of each clock pulse, the counter is incremented by one.

§ n-bit ! n-bit
LK P> counter LI P> counter
ol B
I
~— D
n-bit output n-bit output
(a) Positive edge triggered (b) Negative edge trigger
n-bit counter n-bit counter

Figure 3.2: Logic symbol of counter
Types of counters
» Synchronous Counter
» Asynchronous Counter / Ripple Counter

Synchronous Counter:

e When counter is clocked such that each flip-flop in the counter is triggered at the
same time, the counter is called Synchronous Counter.

Asynchronous Counter / Ripple Counter:

e A binary asynchronous/ ripple counter consists of a series connection of
complementing flip-flop, with the output of each flip-flop connected to a clock
inputs of the next higher order flip-flop.

o The flip-flop holding the least significant bit receives the incoming clock pulses.

What is MOD counter?

Module of counter

e The total number of counts or stable states a counter can indicate is called
‘Modulus’.

e The modulus of a four-stage counter would be 1610, since it is capable of
indicating 00002 to11112.

e The term ‘modulo’ is used to describe the count capability of counters.

13. Explain in detail about ripple counter. (Dec-09, 14)

Ripple/Asynchronous counters:

e A binary ripple/asynchronous counter consist of a series connection of
complementing flip-flops, with the output of each flip-flop connected to the clock
input of the next higher-order flip-flop.

e The flip-flop holding the least significant bit receives the incoming clock pulses.

e A complementing flip-flop can be obtained from a JK flip-flop with the J and K
inputs tied together as shown in figure 3.3

11

e A third alternate is to use a D flip-flop with the complement output connected to
the D input.

e The D input is always the complement of the present state and the next clock
pulse will cause the flip-flop to complement.

HIGH I:—
Ja Qq Jg Qg™

Cp.nﬂm-l___c>® >
K

Ka

B

Figure 3.3: A two-bit asynchronous binary counter

e The clock signal is connected to the clock input of only first stage flip-flop.

Cp_] 1 2 3 4

0 1 0 1
LB 0, e

MSB Qg

Count
stage

0

00

01

10

0

1

2

Figure 3.4: Timing diagram for the counter of two-bit asynchronous counter

e [t illustrates the changes in the state of the flip-flop outputs in response to the
clock.

e J and K input of JK flip-flops are tied to logic HIGH hence output will toggle for
each negative edge of the clock input.

14. Extend the 2-bit asynchronous binary counter for 3-stages, and draw output
waveforms.

3-bit asynchronous counter:

Solution:
HIGH T —
ce + B > B > ©
s Ty o O Ke Qcl—

Figure 3.5: Logic diagram

12

15.

o] 2 3 4 5 5 L L
Q = 1 0 1 0 1 0 L
Qg = 0 10 0 0 1 L
QO 0 P 0 i o B
Count{ 000 | 00t | o010 | o011 -] 100 | 101 110 111
stage | -0 - g 3 1 4] 5 6 7

Figure 3.6: Output waveform for 3-bit asynchronous counter

In timing diagram for 3-bit asynchronous counter, we have not considered the
propagation delays of flip-flops, for simplification.

If we consider the propagation delay, we see that the propagation delay of the
first stage is added in the propagation delay of second stage to decide the
transition time of the third stage.

This cumulative delay of the asynchronous counter is the major disadvantage in
many applications because it limits the rate at which the counter can be clocked
and creates decoding problems.

Draw the logic diagram for 4-stage asynchronous counter with positive edge
triggered flip-flops. Also draw necessary timing diagram. Is there any
frequency division concept in it. (Dec-09)

4-stage asynchronous counter with positive edge triggered:

When flip-flops are positive edge triggered, the Qoutput of previous stage is
connected to the clock input of the next stage.

Figure 3.7 shows the 4-stage asynchronous counter with positive edge triggered
flip-flops.

HIGH —# *
12 Qu 1= Qg e Qe b O
co—— @ i > > © > (©

Figure 3.7: Logic diagram of 4-stage positive edge triggered ripple counter.

The figure 3.8Shows the timing diagram for 4-bit ripple up counter using positive
edge triggered JK-FFs.

13

L L L L L e LT

—ll_J_']_JULJL_li.||1|

il
(SR~

0 q 0 0 o i i a 1 1 ' 1 1 1 1 1 1
I

[e0a0 [oom [cara] o 1 [oo [ero] o o] oo [roca Troar T oo T oo T oo Tosa] anas

.....

Figure 3.8: Timing diagram of the 4-bit counter

From the timing diagram we can observe that

e Frequency at output Q, F';“"

e Frequency at output Qg = Qz“’* T

e Frequency at output Q. = QT = % = F':—S“"

e Frequency at output Qp = % = r‘;—B = % = ?ﬁ

o In general we say that the frequency at the MSB output of counter is —k&

e where N represent number of stages/bits of the counter.

16. Design an asynchronous down counter using JK flip-flop. (Dec-14)
Asynchronous/Ripple down counter:
e The down counter will count downward from a maximum count to zero.

4IGH 9 —
*12® |19 | 7@ | 17@
Ka Qa f—- Kg Qg L Ke Qg LKy Qp—

Figure 3.9: 4-bit asynchronous down counter using JK flip-flop

e The clock signal is connected to the clock input of only first flip-flop.
e The clock input of the remaining flip-flop is triggered by the Q, output of the

previous stage instead of Q4 output of the previous stage.

14

e The figure 3.10 shows the timing diagram for 4-bit asynchronous down counter.
It illustrates the changes in the state of the flip-flop outputs in response to the
clock.

Count 1111JT1‘JOJ‘1107J1100 1011]1010{1001{1000 0111|0110 0101

0100{0011 {0010]0001 0005'

Figure 3.10: Timing diagram of the 4-bit asynchronous down counter.

e The J and K inputs of JK flip-flops are tied to logic HIGH hence output will toggle
for each negative edge of the clock input.

17. Design and explain the working of an up-down ripple counter. (May-03)

Asynchronous Up/Down counters:

e To form an asynchronous up/down counter one control input say M is necessary
to control the operation of the up/down counter.

e When M=0, the counter will count up and when M=1, the counter will count
down.

e To achieve this M input should be used to control whether the normal flip-flop
output (Q) or the inverted flip-flop output (Q) is fed to drive the clock signal of
the successive stage flip-flop, as shown in the figure 3.11

15

Mode control
(M)

Q— y
Comb_ina?ional] To CLK
circut of next flip-flop

Outputs of
previous flip-flop
Q—

(a) The block diagram of
combinational circuit

o ForY
QQ
M 00 01 11 10 __
P R = .’/»—/ M Q
o] o 1 11170
11 o | o 1 -------- %"_e- MQ
Y =MQ +MQ

a) K-map simplification

Inputs Output
M Y
0 0
_ 0 ! Y=Q
M=0 0 0 for dowr
0 1 countinc
) ! J Y=Q
M=1 1 0 for up
1 counting
1 1
(b) Truth table
M Q
M]
] a—
;.; - Y
Q™ Ma

b) Logic diagram

Figure 3.11: Asynchronous up/down counter.

e Figure 3.12 shows the 3-bit up/down counter that will count from 000 up to
111. When mode control input M is 1 and from 111 down to 000 when mode

control input M is O.

M T o
; D M
High —
Tg——JA Q] Jg Qg 2 Jo Qcf—
cLk ——> (@ —o> @ S NG)
LKA Ql—1 3 Kg Qg 4 e .

Figure 3.12: 3-bit asynchronous up/down counter

e Logic 1 on M enables AND gates 1 and 2 and disables AND gates 3 and 4. This
allows the Qa and QB outputs to drive the clock inputs of their respective next

stages. So the counter will count up.

e When M is logic O, AND gates 1 and 2 are disabled and AND gate 3 and 4 are
enabled. This allows the Q, andQg outputs to drive the clock inputs of their

respective next stages so that counter will count down.

UP/DOWN =1

16

I 1 2 3 4 5 # 6 | } 7 ‘ ; 8
0 1 o 1 0 1 0
Qa L—
0 0 1 1 0 0 1
Qs -
Q. 0 0 0 0 1 1 1
Count 000 | 001 010 011 100 101 110 11

UP/DOWN = 0

SN SN T e N e AP e e Y e A2 e

o 1 0 0

Count l olele} I 111 | 110 I 101 I 100] 011 i 010 ‘ 001 ‘ a]els] ‘

Figure 3.13: Timing diagram for 3-bit up/down ripple counter.

18. Design a 4-bit up/down ripple counter with a control for up/down counting.
Solution:

The 4-bit counter needs four flip-flops. The circuit for 4-bit up/down ripple

counter is similar to 3-bit up/down ripple counter except that 4-bit counter has
one more flip-flop and its clock driving circuiting.

bt | Jg O b Qg = Qp-

‘

5, 0,

ek ——a () 1 > @_ - @_ 230
LKy 6;:D" Ke QB e KC Qc 1 KD GD

ks’

Figure 3.14: 4-bit asynchronous up/down counter.

17

Design of Ripple (asynchronous) counters:
Steps involved in the design of asynchronous counter
1. Determine the number of flip-flops needed.

2. Choose the type of flip-flops to be used: T or JK. If T flip-flops are used

connect T input of all flip-flops to logic 1. If JK flip-flops are used connect
both J and K inputs of all flip flops to logic 1.

Such connection toggles the flip-flop output on each clock transition.
Write the truth table for the counter.

Derive the reset logic by K-map simplification.
. Draw the logic diagram.

o w

19. Design BCD ripple counter using JK flip-flop. (May-10,11)
Solution:

Step 1: Determine the number of flip-flops needed. The BCD counter goes through

states 0-9, i.e. total 10 states. Thus, N=10 and for 2» > N, we need n=4, i.e. 4 flip-
flops required.

Step 2: Type of flip-flops to be used : JK

Step 3: Write the truth table for the counter.

cak A B Cc 0 oohyl
0 0 0 0 0 1 i
1 o 0 O 1 1 ?
2 0 0 1 0 1
3 0 0 1 1 1
< 0 1 0 0 1 | Valid
5 0 1 0 1 1 i stales
5 0 1 1 0 1
7 0 1 11 1
i 1 0 o0 o 1
| 9 1 0 0 1 1
| - 1 o 1 0 O
L= i 0 1 1 B
- 1 1 0o 0 0 Invalid
;. — ;—’ 1 —— -0 1 0 states
I - 1 1 1 o o
b= 1 T 1 1 0

Truth table for BCD counter

Step 4: Derive reset logic

18

R " S—— BC
14 0|0
|
Step 5: Draw logic diagram
bget—p—— — 1 - (Lse)
—iJ. py ALLLELL S 8 —{Jo cl 1o ol—
| g R R
cx—r> @ P G® i © B
K Al YH¥e [Ke [—{ %o 5]
CLR CLR CLR h\ CLR
7 7 i g i
Y J
Reselleogic

20. Define synchronous counter and various types of synchronous counter.
Synchronous counters:
e When counter is clocked such that each flip-flop in the counter is triggered at the

same time, the counter is called as synchronous counter.

2-bit synchronous Binary Up counter:
e Clock signal is connected in parallel to clock inputs of both the flip-flops.

HICH

IR e &

| g Qo
j i Ky Opl—
cP

Figure 3.15: A two-bit synchronous binary counter

e The Qa output of the first stage is used to drive the J and K inputs of the second

stage.
e Initially, we assume that the Qa = Qs = 0.
19

When positive edge of the first clock pulse is applied, flip-flop A will toggle
because Ja = Ka = 1, whereas flip-flop B output will remain zero, because JB =
KB = 0.

After first clock pulse Qa = 1 and Qs = 0.

At negative going edge of the second clock pulse both flip-flops will toggle
because they both have a toggle condition on their J and K inputs (Ja = Ka = JB =
Kg = 1). Thus after second clock pulse, Qa = 0 and Qs = 1.

At negative going edge of the third clock pulse flip-flop A toggles making Qa = 1,
but flip-flop B remains seti.e. Qs = 1.

Finally, at the leading edge of the fourth clock pulse both flip-flops toggle as their
JK inputs are at logic 1. This results Qa = Qs = 0 and counter recycled back to its
original state.

r
- | ¢ 0 0O,
K 2 :
v | : o {'\
| ! | -I
' F 1 0 i
:' | 3 |
U e} i | — | 2 1 0
| | ! \
o0 .0 ! Li* 1 1

Figure 3. 16: Timing diagram and state sequence for the 2-bit synchronous counter.

21. Explain the working of 3-bit synchronous binary up counter. (May-08)
3-bit synchronous Binary Up counter:
HIGH
S ey B O e Bl S o O
@ | & ©
cP

Figure 3.17: A three-bit synchronous binary counter

We see that Qa changes on each clock pulse as we progress from its original state
to its original state to its final state and then back to its original state.

Flip-flop A is held in the toggle mode by connecting J and K inputs to HIGH.
Flip-flop B toggles, when Qa is 1.

When Qa is O, flip-flop B is in the no-change mode and remains in its present
state.

20

cpd T L2 LI I4LJ5>M
i ==l e B e

Figure 3.18: Timing diagram

e Looking at the table we can notice that flip-flop C has to change its state only
when Qs and Qa both are at logic 1.

e This condition is detected by AND gate and applied to the J and K inputs of flip-
flop C. whenever both Qa and Qs are HIGH, the output of the AND gate makes
the J and K inputs of flip-flop C HIGH and flip-flop C toggles on the following
clock pulse.

e At all other times, the J and K inputs of flip-flop C are held LOW by the AND gate
output and flip-flop does not change state.

ce Q Qg Qu
0 0 0 0=
| 0 0 1 {
2 | 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 -
State sequence
4-bit synchronous Binary up counter:
HIGH
*
G; ; G,
>® | (o ® > © >

CP
Figure 3.19: Logic diagram for 4-bit synchronous binary counter.

e As counter is implemented with negative edge triggered flip-flops, the transitions
occur at the negative edge of the clock pulse.

e In this circuit, first three flip-flops work same as 3-bit counter discussed
previously.

e For the fourth stage, flip-flop has to change the state when Qa = Qs = Qc = 1.
This condition is decoded by 3-input AND gate Go.

21

e Therefore, when Qa = QB = Qc = 1, flip-flop D toggles and for all other times it is
in no change condition.

Qe 7 B L

QD:::::..J b

Figure 3.20: A four bit synchronous binary counter and timing diagram

22. Explain synchronous up/down counters.
Synchronous Down and up/down counters:

e A parallel/synchronous down counter can be constructed by using the inverted
FF outputs to drive the following JK inputs.

e For example, the parallel up counter can be converted to a down counter by
connecting the Q,, Qz, Q- and Qp outputs in place of Qa, QB, Qc and Qp
respectively.

e The counter will then proceed through the following sequence as input pulses
are applied:

e To form a parallel up/down counter the control input (UP/DOWN) is used to

control whether the normal flip-flop outputs or the inverted flip-flop outputs are
fed to the J and K inputs of the following flip-flops.

e A logic 1 on the UP/DOWN enables AND gates 1 and 2 and disables AND gates 3

and 4. This allows the QA and QB outputs through to the J and K inputs of the
next flip-flops so that the counter will count up as pulses are applied.
e When UP/DOWN line is logic O, AND gates 1 and 2 are disables and AND gates 3

and 4 are enabled. This allows the Q, andQy outputs through to the J and K

inputs of the next flip-flops so that the counter will count down as pulses are
applied.

Up/ Down 4
Logic 1 |>

|
I‘J Qp i J Qg 2 J o
r¢>® b —p> (B) D—c>©

CP

Figure 3.21: 3-bit synchronous/parallel up/down counter

22

1 2 3 4 5 6 7 8 9 - 2 3 4 5 6 7 8
: |
Clock —J‘ L1 L_!—LJ—I_J—!.J_}.J_!_F: o UL LTI L
I : : : : : — e it ot el
‘: :Q,’“‘J _r T : : : : : :] \.)DDO\NN‘ﬁ : : : : : : |l |l
Qp S i 0 i ¢ i 0 i) i 031 i

o

w ' LDt H i i (| | | | I
O 0 000 11T 1 Qoo 0o [T
I |

Figure 3.22: Timing diagram for 3-bit up-down counter

Design of synchronous counters:

1.

N

Ex.1:

Determine the number of flip-flops needed. If n represents number of flip-
flops 2 > number of states in the counter.

. Choose the type of flip-flops to be used.
. Using excitation table for selected flip-flop determine the excitation table for

the counter.
Use K-map or any other simplification method to derive the flip-flop input
functions.

. Draw the logic diagram.

Design a MOD-5 synchronous counter using JK flip-flops and implement

it. Also draw the timing diagram.

(May-15)

Solution:

Step 1: Determine the number of flip-flop needed
Flip-flops required are 2n > N.
Hence, N=5 - n=3i.e. three flip-flops are required.

Step 2: Type of flip-flop to be used : JK

Step 3: Determine the excitation table for the counter.

P:te:f o t | Next state Flip-flop inputs
A|B|C|A*|B*|C*|Ja|Ka|Js | Kg| Jc | Kc
olojoflofo|1|lo|X|o|X]|1]|X
ojlo|1]o|1]1|O0|X|1|[X]|X]|O
0| 1|0 |X|X|X|X|X|X]|X]|X]|X
o111 |1]|1]1|X|X]|O0|X]|oO
1|{ojlo|o|o]o|x|1|0]|x]|o0]|X
101 |X|X|X|X|X|X]|X|X]|X
1|1|o]1]o|O0|X|O0|X]|X]|O0]|X

23

Step 4: K-Map simplification

%QA Fi:lr JC BQA Fﬂr KC QBQA For JE
Q. 00 01 1110 Qe 00 01 11 10 Qen_ 00 01 11 10
olo | o1} 0 of (XXX of o |17 x
| x | x Exil x i [x x| x 1| o Jix | x| x
S5 AT D [N WA . 0 o V. DY N VAT 1.2
“IC: QBQA KC =1 JE = Oﬁx
Qa0 For KB BQA For J, 50 For K,
Qe 00 01 11 10 Qe 00 01 1110 Qe 00 01 11 10
1| x Eix | x| x o | x|x|x fix | x | x | x/
Kg=Qp Jp=Qp K =1
Step 5: Draw the logic diagram
A Qs s Op l‘-’c Q¢
—>® —>® >©
K. &, Kg &, Ke O
HIGH ["KGH
CP O~ o :
QA(LSS] OU O~ MSB)
OU!:‘J:S
Synchronous counter
cP 1 2 3 4 5 |6|
|]] 1 I]
|}
Qu 0 I 1 l 0 I 1 l 0+ 0 l
: ' I I I '
Q0 017 1]0.:0"
i r T
Lot ol o [
O¢ 0O+ 04+ 0+ 0 1 0
Count| 000 | 001] 010 [011 [100 | 000 |
Timing diagram
Ex:2: Design a counter with the sequence 0,1,3,7,6,4,0 (Dec-10,11)

Solution:

24

Step 1: Determine the number of flip-flops needed. Here, counter should count
maximum count = 7 = (111)2 which is 3-bit. Thus, we need 3-flip-flops.

Step 2: Flip-flops to be used : JK.

Step 3: Determine the excitation table for counter. Here, the next state for each
present state is written according to given sequence. For example, the next state for
the present state 3 (001) is 7 (111). The counts which are not in sequence are
treated as don’t cares.

Qn Qn+1 J K
0 0 0 X
0 1 X
1 0 X 1
Excitation table of JK flip-flop
P:::::t Next state Flip-flop inputs
A | B|C |A"|B*|C"|Ja|Ka|Js | Ks| Jc | Kc
OO0 O0O|O0]|O 1 O | X |0 |[|X]|1]|X
O] O 1 |0 1 1 O | X |1 |X|X|O
0 1 0 [X [X[X | X|X[|X|X]|X|[X
0 1 1 1 1 1 1 | X | X | 0| X]| O
1 oloflo0|j]O0O|O0X]|]1]0|X]|]O0]|X
1 0 1 [X [X[X | X | X [X | X]| X |[X
1 1|0 1 O]l 0| X]|]O|X|X]|O0]X
1 1 1 1 1[0 (X |0 |X|X]|X]|1

Step 4: K-Map simplification

25

ForJg

Fch;‘ FDF[’{A _ —
o e — = BC BC BC BC
so5C B¢ 8C BC acBC BC BC BC BC o 01 11 10
ANTo0 01 1110 AN_ 00 01 11 10 AN
Ao!alcl'vllxi Aolix | =i x| X AOL O T X
I ! H : —] : :
;u‘xl'xl]xij atfa]x]olo A1 C'Ji__?‘:Jx__Jx
For Kﬂ- Far "'IC For KC
ac BC BC BC BC cBC BC BC BT scBC BC BC BC
A0 01 1110 A0 01 1110 AC00 01 1110
_ Pt _ e T T - _
Ro| x| x|olfx rofi x| x{x] Aolxlololx
A1 xJ xi 0 |1 A1l o X | x|o a1l x I x T 17T
KB:C JC_—.A Kr=A
Step 5: Draw logic diagram.
R A Ja B A— Jo ot
> ® > 3+ ©
CP—= l
A (MSB) B

C (LSB)

_______\\,—r—___________—’

Ex:3: Design and implement a synchronous decade counter using T flip-flop.

Draw the timing diagram.

Solution:

Oulput

Step 1: Since N=10, n=4 i.e. flip-flops needed = 4.

Step 2: Flip-flops to be used : T

Step 3: determine excitation table for counter

(May-08,10,11, Dec-15)

| Present state

Next state

| Flip-flop inputs |

26

Ta

10

Ts

11

Tc

X | X | X[X
X | X[XX
X X | X[X
X | X | X[X
X X | X[X
X | X | X[X
For T,

Tb

QA Qg

00 01

X
X
X
X
X
X

Tc

Qa+1

QpQp

OB+1
QpQe

Qc+1
10

27

11

Qb+1

Qa
ForTg

00 01

QB

Qc
QpQe

Qb

Step 4: K-Map simplification

o R BV
m : Qlo (o | X[X
T _
)
) Xu X B B b Lt
v gL - nadisnsannheennsshannat
: G
M1 B _.w Sle o[X} e
; {
"aml - x.o.”ﬂ.\. Au.n.ﬂm o o V_A o
o - - (@) w0 = p— — =
]
0
(&)
......... o olo|o| x| x
.-\1! 1'—. x X —Q
m < T e
1 Q _|D ﬂ o |i— [ix} Yﬁm
.;‘.I...- .-4.1...\.. X o __B w .“ m..
b= S Slo|e F.X ..,..um
O o) 2 | E
[
o ~— . o o /.A o
o (e ” m A..a_r_.J

=CQ-OD-PC¥\OB(QC

Step 5: Logic diagram

Q,(LSE)

Qs

Qg

23. What is register?
REGISTER:
e A group of flip-flop can be used to store a word, which is called register.

e A flip-flop can store 1-bit information. So an n-bit register has a group of n flip-
flops and is capable of storing any binary information /number containing n-bits.

24. What is buffer register?

Buffer Register:

e Figure 3.23 shows the simplest register constructed with four D flip-flops. This
register is also called buffer register.

o Each D flip-flop is
triggered with a common negative edge clock pulse.

e The input bits set up the flip-flops for loading.

e When the first negative clock edge arrives, the stored binary information
becomes QaQBQcQp = ABCD.

A B C D

DA QA e D Dc QC e DD QD —

8 Qg
.—c>@ —c} —aD> —c>@

- . s + <

Figure 3.23: Buffer Register

e In this register, four D flip-flops are used. So it can store 4-bit binary
information.
e The number of flip-flop stages in a register determines its total storage capacity.

28

25. Controlled Buffer Register:

e We can control input and output of the register by connecting tri-state devices at
the input and output sides of register, so this register is called controlled buffer
register.

e Hence the tri-state switches are used to control the operation.

e When you want to store data in the register, you have to make LOAD or WR signal
low to activate the tri-state buffers.

e When you want the data at the output, you have to make RD signal low to active
the buffers.

e Controlled buffer registers are commonly used for temporary storage of data

within a digital system.
Dt Y
Dec Q¢ T

L
,CP r>® fo ® r>© I—>®
O

QA QB Q¢ QD

A

B W
- []

Da Qa7

Dg Qg

Figure 3.24: Controlled buffer register

26. What is shift register? Explain its types. (May-06, 15, Dec-06, 17)

Shift registers:

e The binary information in the register can be moved from stage to stage within
the register or into or out of the register upon application of clock pulses.

e This type of bit movement or shifting is essential for certain arithmetic and logic
operations used in microprocessors. This gives rise to a group of registers called

>+Jr<|> ~|-4 -s- -4~ |=— Data bits

(a) Serial shift right, then out (b) Serial shift left, then out

shift registers.

Data bits —»

Data bits

113 Ly G733

BB

\-———v-——"/
Data bits

i tate left
(c) Parallel shift in (d) Parallel shift out (e) Rotate right B (f) Rotate le

29

Figure 3.25: Basic data movement in registers.
e They are very important in applications involving the storage and transfer of data
in digital systems.
e The figure 3.25 shows the symbolical representation of the different types of data
movement in shift register operation.

Types of shift registers:
e According to data movement there are different types of shift registers, they are
» Serial In Serial Out (SISO)
» Serial In Parallel Out(SIPO)
» Parallel In Parallel Out(PIPO)
» Parallel In Serial Out(PISO)

Series In series Out (SISO) shift register:
e Figure 3.26 shows the SISO shift left registers.

Dot —JQ D, Q, D, Q D, Q, Do~ Dp

3
(Serial data output) Serial data |
®< < ©< ®< (Serial data input)
JUUL

CP

Figure 3.26: shift-left register

o We will illustrate the entry of the four bit binary number 1111 into the register,
beginning with the right-most bit. Initially, register is cleared.

e So Q30Q2Q1Q0 = 0000

e The table summarizes the shift left operation.

cpP Q, Q, Q, Q, Dy,
Initially 0 L0 0 0 1
"‘./ ,l}t{’ & a d“’
). ', ‘%’ ’.’
2R S (Y R | !
U ,o’é - "_y g 0”
» » » »"
* 2”(‘ 0 ’0) ' ;'l {
4 » » Y
 F A M Rt
MRV L7 R . R
a1 1 1 1 1

shift left operation

30

‘l)lﬂl
Q 1 ({ 1 ,
=i |
-~ Q 0 I |
- |
_q, 0 0 1 1 i
_}Qal | Jol lol o [L
’ y Tk
‘ ‘oooo 1000 | 1100 | 1110 [1111 | Data in register

Figure 3.27: waveform for the shift left register

Shift Right Mode:
e Figure 3.28 shows SISO shift right register.
D=0 @ D @ Br Q Do Qo™ O
> ® @ | PO | PO

cP
Figure 3.28: shift right register.

e We will illustrate the entry of the four bit binary number 1111 into the register,
beginning with the left-most bit. Initially, register is cleared. So Q3Q2Q1Qo0 =
0000.

e Table summarizes the shift right operation

.;cP- . Din, Q, Q, a, o

Initially 1. . 0 . 0. 5 § Om‘

p 1 1. h 1 \"‘.0\ ‘\O\ ‘\(;'””
. X . - |

* 2nd 1\ RN 1.\ N 1\ \\0\ \\0

‘ 3rd oy \:'\ 1 \: N 1\“\ 1“\5_&0

Shift right operation

31

1 Poq i 2 a | 4 1 i l i
TE T J | | | 1 I
— ~m : i i f i | | i

N |41 d1a0 a1 B4 I | l
BREEEEENEEE | 1|
e 'of J1t Y4l bal | |
Pt iol §o 1 b1l |
AT I
[_%' | tol kol 1ol }1)

b r b | | 1

i Hfﬂ 1A 1160 | 110 | 1111 | Dwla fn regleter

Figure 3.29: waveform for shift right register

Series In Parallel Out (SIPO) shift register: (Dec-16)

e The data bit are entered serially into the register but the output is taken in
parallel.

e Once the data are stored, each bit appears on its respective output line and all
bits are available simultaneously as shown in figure 3.30.

Data
inpuat Uy Qyf-¢—0y Qy]-9— Dy O '?—' Dy Qo[

> 1NO SO, O]

-~

cp

Figure 3.30: A Serial In Parallel Out (SIPO) shift register

CP| Q3| Q2 | Q1 | Qo
- NC | NC | NC | NC

! D3 D)) D1 Do
Truth Table

Parallel In Serial Out (PISO) Shift Register:

e In this type, the bits are entered in parallel i.e simultaneously into their
respective stages on parallel lines.

e Figure 3.31 illustrates a four-bit parallel in series out register.

32

CHIFT S ['FI}}]_T__DO

fo,
’

Qp — Serial
data

’_¢> @ out
CcP *

Figure 3.31: Parallel in Serial Out (PISO) Shift Register

There are four input lines Az, A2, A1, Ao for entering data in parallel into the
register.

SHIFT/LOAD is the control input which allows shift or loading data operation of
the register.

When SHIFT/LOAD is low, gates Gi1, G2, Gz are enabled, allowing each input data
bit to be applied to D input of its respective flip-flop.

When a clock pulse is applied, the flip-flops with D=1 will SET and those with
D=0 will RESET.

All four bits are stored simultaneously.

When SHIFT/LOAD is high, gates G1, Gz, G3 are disabled and gates G4, Gs, Ges are
enabled. This allows the data bits to shift right from one stage to the next.

The OR gates at the D-inputs of the flip-flops allow either the parallel data entry
operation or shift operation, depending on which AND gates are enabled by the
level on the SHIFT/LOAD input.

Parallel In Parallel Out (PIPO) Shift Register:

In parallel in parallel out register, there is simultaneous entry of all data bits and
the bits appear on parallel outputs simultaneously.
Figure 3.32 shows this type of register.

Parallel data inputs

Az Ao Aq Ao
—1°: Qs D2 Q Dy Q Do Qo
r> ® f> @ f> Q) — ©
CP <
Q3 Q2 Q1 QO

Parallel data outputs

33

Figure 3.32: Parallel In Parallel Out (PIPO) Shift Register

27. Explain bidirectional shift register. (May -15)(Dec-2018)
Bidirectional Shift Register:

This type of register allows shifting of data either to the left or to the right side. It
can be implemented by using logic gate circuitry that enables the transfer of data
from one stage to the next stage to the right or to the left, depending on the level
of a control line.

Figure 3.33 illustrate a four-bit bidirectional register.

——

RIGHT / LEFT
‘ ‘ Serial data in
Serial data in
for right-shift Gl G, for left-shift

0,

>A®

[«

(WY - -
Figure 3.33: 4-bit bidirectional shift register

The RIGHT/LEFT is the control input signal which allows data shifting either
towards right or towards left.

A high on this line enables the shifting of data towards right and a low enables it
towards left.

When RIGHT/LEFT signal is high, gates G1, G2, Gs, G4 are enabled.

The state of the Q output of each flip-flop is passed through the D input of the
following flip-flop.

When a clock pulse arrives, the data are shifted one place to the right.

When the RIGHT/LEFT signal is low, gates G5, G6, G7, G8 are enabled.

The Q output of each flip-flop is passed through the D input of the preceding flip-
flop.

When clock pulse arrives, the data are shifted one place to the left.

Bidirectional Shift Register with Parallel Load:

When parallel load capability is added to the shift register, the data entered in
parallel can be taken out in serial fashion by shifting the data stored in the
register.
Such a register is called bidirectional shift register with parallel load.
Figure 3.34 showsbidirectional shift register with parallel load.

34

Parallel inputs

Qp
Parallel outputs

Figure 3.34: 4-bit bidirectional shift register with parallel load.

The decoder select lines select the one source out of three as shown in the table.

SL1 SLo Selected source
0 0 Parallel input
Output of right adjacent
0 1
FF
Output of left adjacent
1 0 FF

Shift Register using JK Flip-flops:

28. Explain the operation of universal shift register.

By applying complement inputs to J and K we can construct serial-in serial-out
shift right register using JK flip-flops.

QO ’“A[

D> D> s
>K3 Qs l—q Ky @ '—q K, Q Ko Qg
cP l L

Figure 3.35: Shift right register using JK flip-flops

D

n

(Dec-08, 10, May-09, 10)

Universal Shift Register:

A register capable of shifting in one direction only is a unidirectional shift
register.
A register capable of shifting in both directions is a bidirectional shift register.

If the register has both shifts (right shift and left shift) and parallel load
capabilities, it is referred to as universal shift register.
Figure 3.36 shows the 4-bit universal shift register.

35

Trrallel et

i L L) i

i

[AF.N J.

o 1 41 4 ’ 1
MUN |oaex | osmex) | osex

A2 10 21 on

22 0n
H|| S ‘

Sernal
Nt b
shilt-ripht

Rorial
input for
shilt-1c 0l

Iaralbel inpuats

Figure 3.36:4-bit universal shift register

It consists of four flip-flops and four multiplexers.

The four multiplexers have two common selection inputs S1 and SO, and they
select appropriate input of D flip-flop.

The table shows the register operation depending on the selection inputs of
multiplexers.

Mode control Register operation
S1 So

0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

When S1So = 00, input O is selected and the present value of the register is
applied to the D inputs of the flip-flops. This results no change in the register
value.

When S1So = 01, input 1 is selected and the circuit connections are such that it
operates as a right shift register.

When S1So = 10, input 2 is selected and the circuit connections are such that it
operates as a left shift register.

Finally, when S1So = 11, the binary information on the parallel input lines is
transferred into the register simultaneously and it is a parallel load operation.

29. What are the applications of shift register?

Applications of Shift Registers:

Primary use of shift register is temporary data storage and bit manipulations.

Some of the common applications of shift registers are
36

Delay line:
e A Serial-In-Serial-Out (SISO) shift register can be used to introduce time delay At
in digital signals. The time delay can be given as

1
At=NX —
fe

e Where N is the number of stages (i.e. flip-flops) and fc is the clock frequency.

e An input pulse train appears at the output delayed by At.

e The amount of delay can be controlled by the clock frequency or by the number
of flip-flop in the shift register.

Serial-to-parallel converter:
e A Serial-In-Parallel-Out (SIPO) shift register can be used to convert data in the
serial form to the parallel form.

Parallel-to-serial converter:
e A Parallel-In-Serial-Out (PISO) shift register can be used to convert data in the
parallel form to the serial form.

Shift register counters:

e A shift register with the serial output connected back to the serial input is called
shift register counter.

e The most common shift register counters are the ring counter and the Johnson
counter.

Pseudo-Random Binary sequence (PRBS) generator:

e A shift register can be used as a pseudo-random binary sequence generator.

e A suitable feedback is used to generate pseudo-random sequence.

e The term random here means that the outputs do not cycle through a normal
binary count sequence.

e The term pseudo here refers to the fact that the sequence is not truly random
because it does cycle through all possible combinations once every 2n — 1 clock
cycles, where n represents the number of shift register stages (number of flip-
flops).

Sequence Generator:

e The shift register can be used to generate a particular bit pattern respectively.

e Left most flip-flop input accepts the serial input and the right most flip-flop gives
serial data output.

e The serial data output signal is connected as a serial data in.

e On every clock pulse the data shift operation takes place.

e The loaded bit pattern at the serial output is in a sequence.

37

Same bit pattern is again loaded in the register since serial output is connected
serial in of the register. Thus, the circuit generates a particular bit pattern
respectively.

Sequence Detector:

The shift register can be used to detect the desired sequence.

The detection process requires two registers: one register stores the bit pattern to
be detected i.e. R1 and other register accepts the input data stream i.e. Ro.

Input data stream enters a shift register as serial data in and leaves as serial
out.

In every clock cycle, bit-wise comparisons of these two registers are done using
EX-NOR gates as shown in figure 3.37.

R
Serial 1 o Serial
data in 0 l 1 | 1 I data out
> L
‘ Dy
Y
>
]
1
>
]
Ry [1

o

1 | o [

Bit-pattern to be detected

Figure 3.37: 4-bit sequence detector

The two-input EX-NOR gate gives logic high output when both inputs are either
low or high, i.e. when both the inputs are equal.

When outputs of all the EX-NORs gates are logic high we can say that all bits are
matched and hence the desired bit pattern is detected.

The final output which indicates that the pattern is detected is taken from four-
input AND gate.

The 4-bit sequence detector can be made programmable by loading the desired
4-bit data in the register Ro.

30. Explain the operation of 4-bit ring counter. (Dec-04, 05)

Ring counters:

The figure 3.38 shows the logic diagram for four-bit ring counter.

38

Bh_e—_—l J

Dpn Q, Dg Qg Dg Q¢ Dp Qp

CLR
CcP

Figure 3.38: Four-bit ring counter

The Q output of each stage is connected to the D input of the next stage and the
output of the last stage is fed back to the input of first stage.

The CLR followed by PRE makes the output of first stage to’l’ and remaining
outputs are zero, i.e. Qa is one and Qs, Qc, Qb are zero.

The first clock pulse produces Qs = land remaining outputs are zero.

According to the clock pulses applied at the clock input CP, a sequence of four
states is produced. These states are listed in table.

 Clock pulse Qp Qg QC Q D

0 1 0 0 o0
1 0 1 0 0
S
2 0 0 1 o |
3 0 0 o 1
4 1 0 0 0 |

Ring counter sequence 4-bits

1 is always retained in the counter and simply shifted around the ring advancing
one stage for each clock pulse. In this case four stages of flip-flops are used. So a
sequence of four states is produced and repeated.

Figure 3.39 gives the timing sequence for a four-bit ring counter.

1 2 3 -+ 5 L
|
|

-

Figure 3.39: Timing sequence for a four-bit ring counter.
39

The ring counter can be used for counting the number of pulses.

The number of pulses counted is read by noting which flip-flop is in state 1.

No decoding circuitry is required.

Since there is one pulse at the output for each of the N clock pulses, this circuit
is also referred to as a divide-by-N-counter or an N:1 scalar.

Ring counters can be instructed for any desired MOD number, that is MOD-N
ring counter requires N flip-flops.

31. Explain the operation of Johnson counter. (Dec-05, 06, 11)

Johnson or Twisting Ring or Switch Tail Counter:

In a Johnson counter, the Q output of each stage of flip-flop is connected to the
D input of the next stage.

The single exception is that the complement output of the last flip-flop is
connected back to the D-input of the first flip-flop .

Johnson counter can be implemented with SR or JK flip-flops as well.

As shown in figure 3.40 there is a feedback from the rightmost flip-flop
complement output to the leftmost flip-flop input. This arrangement produces a
unique sequence of states.

DA QA DB QB DC QC DD OD
> () > >0 b 0)
&

CP

Figure 3.40: Four-bit Johnson counter.

Initially, the register (all flip-flops) is cleared. So all the outputs, Qa, Qs, Qc, Qb
are zero.
The output of last stage, Qb is zero. Therefore complement output of last stage,

Qp is one. This is connected back to the D input of first stage. So Da is one.

The first falling clock edge produces Qa = 1 and Qs = 0, Qc = 0, Qb = O since Ds,
D¢, Dp are zero.

The next clock pulse produces Qa=1,Qs=1,Qc =0, Qp = 0.

The sequence of states is summarized in table.

40

Clock pulse Q) Qg Q¢

0
1

-~ 2 2 2 00 0 o}

0
0
0
1
1
1
1
¢

OO A A a0 o

~N o O bW N
O O O A A e aD

Four-bit Johnson sequence

After 8 states the same sequence is repeated.

In this case, four-bit register is used. So the four-bit sequence has a total of eight
states.

Figure 3.41 gives the timing sequence for a four-bit Johnson counter.

cp 1 2 3 4 b 6 7 8

. | 1

Figure 3.41: timing sequence for a four-bit Johnson counter

If we design a counter of five-bit sequence, it has a total of ten states.

An n-stage Johnson counter will produce a modulus of 2Xn, where n is the
number of stages (i.e. flip-flops) in the counter.

Johnson counter requires only half the number of flip-flops compared to the
standard ring counter. However, it requires more flip-flop than binary counter.

Ex.1:Draw a 5 flip-flop shift (Johnson) counter, its truth table and waveforms.
Explain its operation as a decade counter. (Dec-05)

Solution:The figure shows the 5-bit shift (Johnson) counter. Since this counter goes
through 10 states, the frequency at the output of last flip-flop is 1/10% of the clock
frequency and hence it is a decade counter.

41

2o @ o G e
> FF2 ~b FF3 >
- g . a Ke Q4
"2 0™ IeR ‘eR
=] T

Figure 3.42: Flip-flop shift (Johnson counter)

The table shows the truth table for the 5 flip-flop shift counter and illustrate its
operation.

CIR | CLK state | Decimal
equivalent

0
1
3
7
15
31
30
28
24
16
0

Q
N
Q
EN
Q
N
Q
N
QO
N

el el e) e e e e e

— | Je— [[¢—|¢—|e—|—[«—|«—]| 1
el il el o] (o] (o] je)
OIO|r||H|H| R[OOI
ellellelig i idlelle] e
ollelleoliel il el e
OIO|O0|O0|O| |~ O
=0 o|Nfo v B wfof -

Truth table

- -

O
S

——— b - - -

R T LT Sy S

-l - -

- - -

Figure 3.43: Waveform for 5 flip-flop shift counter

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT

42

Design and analyze of clocked sequential circuit with an example.
The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of

inputs, outputs and internal states.

%
' D 1
I Clk
D D B—
Clk
—
Clock
| >—)
>

Fig: Example of sequential circuit

Consider the sequential circuit is shown in figure. It consists of two D flip-flops A and B, an input x
and anoutput y.
A state equation specifies the next state as function of the present state and inputs.

A(n+1)= A(n)x(n)+B(n)x(n)

B(n +1)= A(n)x(n)
They can be written in simplified formas,

A(n+1) =Ax+Bx
B(n +1) = Ax
The present state value of the output can be expressed algebraically as,

y(n)=(A+B) x

DESIGN OF SYNCHRONOUS COUNTERS

Design and analyze of clocked sequential circuit with an example.
43

The procedure for designing synchronous sequential circuit is given below,

1
2
3.
4

o

From the given specification, Draw the state diagram.
Plot the state table.

Reduce the number of states if possible.

. Assign binary values to the states and plot the transition table by choosing the type of Flip-

Flop.
Derive the Flip flop input equations and output equations by using K-map.

Draw the logic diagram.

State Diagram:

> State diagram is the graphical representation of the information available in a state table.

> In state diagram, a state is represented by a circle and the transitions between states are indicated

by directed lines connecting the circles.
State Table:

>

>

A state table gives the time sequence of inputs, outputs ad flip flops states. The table consists of
four sections labeled present state, next state, input and output.

The present state section shows the states of flip flops A and B at any given time ‘n’. The input
section gives a value of x for each possible present state.

The next state section shows the states of flip flops one clock cycle later, at time n+1.

The state table for the circuit is shown. This is derived using state equations.

Present Next
State Input State Output
A B X A B Y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0] 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

The above state table can also be expressed in different forms as follows.

Next State Output

Present

State x=0 x=1 x=0 x=1
A B A B A B y ¥
0 0 o 0o 0 1 0 0
0 1 o o 1 1 | 0
1 0 o 0 1 0 1 0
1 1 o 0 1 0 1 0

The state diagram for the logic circuit in below figure.

(/0 0/1 /0

()

@ " ®

Flip-Flop Input Equations:
The part of the circuit that generates the inputs to flip flops is described algebraically by a set of
Boolean functions called flip flop input equations.

The flip flop input equations for the circuit is given by,
D, =Ax +Bx
Dg =AX

B R e R e R e R e R e R e R e R R T R R e e

khkhhhhhkhkhkkhkhkhkhrrhhhhkhkhhkhkhiihihhhkhkhhkhhiiiix

Design of a Synchronous Decade Counter Using JK Flip- Flop (Apr 2018, Nov 2018)
A synchronous decade counter will count from zero to nine and repeat thesequence.
State diagram:

The state diagram of this counter is shown in Fig.

45

O
/
e

/
~@-0®

Excitation table:

K,

l

l

Jo

1

1

1

1

Ky

X | X

1

X

X | X

Jy

l

0

l

Qurtput

K;

X | X

l

J

1

0] X |0 X

0 X |0 XX

K;

XX
0

1

T3

01 X0 X]0]|X

01X |0 X |X]|0

01 XX 0

01 X X0]X]0

l

X
X

Qo

l

0101 X|0 X

l

010X

l

010X |X|0

l

0

Q

1
1

0

1
1

Next State

-+

Q

Qs

Qo

Q

Q,

Present State

Qs

K-Map:

Q&Y
QQ,

QQ,
0,

10

1

01

00

X

00

01

1

10

10

1"

01

00

01

1

10

Kg=1

46

o 0 om0 oo o om0
QQ, QQ,
00 1 X X 00 X X 1
01 1 X X 01 X X 1
1| X X X X 1| X X X X
10 X X 10 X X X X
QQy QQy
00 01 1 10 00 01 11 10
QQ, QQ,
00 1 00 X X X X
01 X X X X 01 1
11| X X X X TR X X X
10 X X 10 X X
J; =Q:Q, Ky, =Q;Q,
3 01 1M 10 % M 1M 10
00 00
QQ, QQ,
00 00 X X X X
01 1 01 X X X X
11 X X X X 11 X X X X
10| X X X X 10 1 X X

J; =0, +0;0,Q,

47

K; = @;Q,+ Q;Q;Q,

Logic Diagram:

L
II1I —L
\
mkl ‘\,-' h Q Imab Q;
Flip-Flop Flip-Flop Flip-Flop
fun > CLK P CLK CLK
% & o
— K“ — K| — Kz

—J

3

Flip-Flop
> CLK

K3

khkhkhkhkhhhkhkhkkkhkhkhhrhhkhkhkhhkhiiiihhhkhhhiiikx

Design of an Asynchronous Decade Counter Using JK Flip- Flop.

An asynchronous decade counter will count from zero to nine and repeat thesequence. Since

the JK inputs are fed from the output of previous flip-flop,therefore, the design will not be as

complicated as the synchronous version.

At the ninth count, the counter is reset to begin counting at zero. The NAND gateis used to

reset the counter at the ninth count. At the ninth count the outputs offlip-flop Q3 and Q1 will be high
simultaneously. This will cause the output ofNAND to go to logic “0” that would reset the flip-flip.

The logic design of thecounter is shown in Fig.

II1 n

Jo

—1-O»CLK

K
’ CLR

Flip-Flop

£

I

B '_|

Jq

Flip-Flop
—Cp> CLK

Ky
CLR

i

I

Q| Y G 1
Flip-Flop
B CLK o
e Q7
— Kz ||
CLR

Jy
Flip-Flop
> CLK

Kz
CLR

A

=

s

khkhhhhkhkhkkhkkhkhihhhhhkhkhhkhiirhikihkhkhhhiiiix

48

Design of a Synchronous Modulus-Six Counter Using SR Flip-Flop(Nov 2017)

The modulus six counters will count 0, 2, 3, 6, 5, and 1 and repeat the sequence. This modulus

six counter requires three SR flip-flops for the design.

O

State diagram:

4

L

() « @D

Truth table:
[Present State | Next State Output
Q Q1 Q[Q2 A |[R[S[R [S5 [R|S
0 O[O0 O 1 0 O X|]1/]0|0 X
0 1 0 0 | | 0O | X| X[O0 1 |10
0 1 1 1 1 0 1 O X [0 |01
| 1 |0 1 0 1 | X0 0 1 1 |0
I O(1/[0|0 1 Oj1]0([X[X]|0
0 O[1[O0O||O0O] O 0O | X0 [X|0]1
K-Map:
w0 1 10 G 01
Q, Q, 00 1 10
0 0 0 0 | 1 | 0 X |1 1| 0
1| X X X | 1 | 1| x 0 X 0
RD = Q’l.QO So - 62.00
Q,Qq QQ,
00 01 1 10 00 01 11 10
QZ Qz
0 | 1 | 0 X X o © X 0 0
1 l X I 0 X 0 1 X X X 1]
R, = 61'60 S, =Q;

49

-
>
o
d
>
-
(I
g
»
o

R2 = Q1‘QO 82 =EI
Logic Diagram:
L
_‘)7 So Qo —1S4 Q) [S, Qy
Flip-Flop Flip-Flop Flip-Flop
J-I'I-I'n—o—}\(.}LK —> CLK —> CLK
Qq Q4 Q2
T Y e [T)k Y r,
|/ i/ -/
&

MEALY AND MOORE MODELS

Write short notes on Mealy and Moore models in sequential circuits.

> Insynchronous sequential circuit the outputs depend upon the order in which its input variables
change and can be affected at discrete instances of time.
General Models:
» There are two models in sequential circuits. They are:
1. Mealy model
2. Moore model

Moore machine:

> In the Moore model, the outputs are a function of present state only.

50

_...)) }
Inputs Next Excitation State Outout
State [| Memory | Loéic B
Logic (B/F) pluent g Outputs
Sthte
CLOCK

Mealy machine:

> In the Mealy model, the outputs are a function of present state and external inputs.

Inputs Next Excitation State Outout
State [Memory | Logpic E—
Logic (F/F) Current g Outputs

STte

CLOCK

Difference between Moore model and Mealy model.

SLNo Moore model Mealy model

1 Its output is a function of present Its output is a function of present state
state only. as well as present input.

2 Input changes does not affect the Input changes may affect the cutput of
output. the circuit.

3 It requires more number of states It requires less number of states for
for implementing same function. implementing same function.

Example:

A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one output (y).

The Flip-Flop input functions are:

Da= Ax+ Bx

De= A’xand

the circuit output function is, Y= (A+ B) x’.

(a) Draw the logic diagram of the circuit, (b) Tabulate the state table, (c) Draw the state diagram.

Solution:

51

J

State table:

CLE

Present state | Input

Flip-Flop Inputs

Next state

Output

i
=]

F

Da= .
Ax+Bx LR

A(t+l) | B(t+l)

Y= (A+B)x"

0 0

0 0

Ll o o ol = T T T
=D Do D

H o= O|l= 9RO

[l T e I e T e
oo o ol o

[l =T e =] e e

=T R = T) e e i

Next state

Present state

x=0 x=1

= =1
o =o|lm

oo o o B

oo o ol m
=1 -
=S = =

o = O

State diagram:
040

Second form of state table

52

UNIT 4 * Asynchronous sequential circuits

Asynchronous sequential logic circuits-Transition tability, flow tability-race conditions, hazards &errors in
digital circuits; analysis of asynchronous sequential logic circuitsi ntroduction to Programmability Logic Devices:
PROM — PLA —PAL, CPLD-FPGA.

1. Write short notes on types of Asynchronous sequential circuits.
(Dec-12, 15)
ASYNCHRONOUS SEQUENTIAL CIRCUITS
e Sequential circuits without clock pulses are called Asynchronous Sequential

Circuits. They are classified into 2 types:
1. Fundamental mode circuits
2. Pulse mode circuits

Fundamental Mode Circuits:

It assumes that:
» The input variables should change only when the circuit is stable.

» Only one input variable can change at a given time.
» Inputs and outputs are represented by levels.

Pulse Mode Circuits:

It assumes that:
» Inputs and outputs are represented by pulses.
» The width of the pulse is long enough for the circuit to respond to the input.
» The pulse width must not be so long that it is still present after the new state

is reached.

Block diagram of Asynchronous Sequential circuits

Ky ——— F——m 1
itinput %2 g = L2 aroutput
variablos wvariables
Xy — " Zu
Combinational
circut
¥1 | ¥y
k secondary A excitation
variables Yz Y2 variables
[present - . {next state)
state) i :
Yk) © Y
- —_—

e 11—

I Delay Iﬂ.
L 1

II Delay II

The communication oftwo units, with each unithavingits own independent

1

clock, must be donewith asynchronous circuits.

Stable state:
e If the circuit reaches a steady state condition with present state yi = next
state Yi for i=1,2,3...K then the circuit is said to be stable state.
e A transition from one stable to another occurs only in response to a change
in an input variable.
Unstable state:
e In acircuit, if present state yi # next state Yi for i=1,2,3...K then the circuit
is said to be unstable state.
e The circuit will be in continuous transition till it reached a stable state.

2. Explain in detail about analysis procedure of fundamental mode
sequential circuits.

ANALYSIS PROCEDURE OF FUNDAMENTAL MODE SEQUENTIAL CIRCUITS:
e The analysis of asynchronous sequential circuits consists of obtaining a table

or a diagram that described the sequence of internal states and outputs as a
function of changes in the input variables.

e Let us consider the synchronous sequential circuit is shown in figure.

MR
1 —1>"

e The analysis of the circuit starts by considering the excitation variables (Y1 and
Y2) as outputs and the secondary variables (y1 and y2) as inputs.
Stepl:
e The Boolean expressions are,
Yi= Xy + XY,
Yo = Xxyi+ XY,
Step 2:
e Thenext step is to plottheYi1and Yofunctions in amap

Y1)z iz

0n 0 0 00 1] 1

01 | 0 (1 I 1

11 1 1 11 1 0

10 0 1 10 0 0

Map for Map for
Yi=xyi+x'va Yo=xy'1+x'va
e Combiningthe binaryvalues in correspondingsquares the followingtransition
table is obtained
e ThetransitiontableshowsthevalueofY=Y:Yzinsideeachsquare.ThoseentrieswhereY
=yarecircled to indicateastable condition.
e The circuit has four stable total states, y1y2x=000,011,110, and 101 and four
unstable total states-001, 010, 111 and 100.
e The state table of the circuit is shown below:

Present MNext State
State x=0 x=1
0 0 O 0 0]
] 1 1 | (1
| 0] 0 | 0

|

I I 0

e This table provides thesame information as the transition table.

Step 3:
Transition table
e The transition table is obtained by combining the maps for Yiand Ya.

X

v 1

00 01
01| 1
11 | (D] 10
10| 00

e The transition table is a table which gives the relation between present state, input
and next state. If the secondary variables yi1 y2 is same as excitation variables Y1 Yo,
the state is said to be stable.

e The stable states are indicated by circles. An uncircled entry represents an
unstable state.

e In a transition table, usually there will be at least one stable state in each row.
Otherwise, all the states in that row will be unstable.

Step 4:

Flowtable

e Ina flow table thestatesarenamed bylettersymbols. Examples of flow tables
areas follows:

] C @
1| «

[8 [¢ _F/ i

i) i @

() Four states with
one inpul

e In order to obtain thecircuitdescribed bya flow table, it is necessaryto assign
to each stateadistinct value.

3. Explain in detail about design procedure of asynchronous sequential
circuits. (Dec-11, 12, May-12, 13, 15)
DESIGN PROCEDURE OF ASYNCHRONOUS SEQUENTIAL CIRCUITS
e Thereareanumberofstepsthatmustbecarriedoutinordertominimizethecircuitco
mplexityandto produceastable circuitwithoutcritical races.
e Thedesign steps areas follows:
» Obtain a primitive flow table from thegivenspecification.
» Reducethe flow table bymerging rows inthe primitive flow table.
» Assign binarystates variables to eachrowof the reduced flowtable to
obtain thetransition table.
» Assign outputvalues to thedashes associated with the unstable states
to obtainthe output maps.
» Simplifythe Boolean functions of the excitation and output variables
and draw the logic diagram.
» Thedesign process will be demonstrated bygoingthrough

aspecificexample
Example:
Designagatedlatchcircuitwithtwoinputs,G(gate)andD(data),andoneoutputQ.The
gatedlatchis amemory

elementthatacceptsthevalueofDwhenG=1andretainsthisvalueafterGgoesto0.0n
ce G =0, a change in D does notchangethe valueofthe output Q.
(Or)
Design an asynchronous sequential circuit with two inputs D and G with one

output Z. Whenever G is 1, input D is transferred to Z. When G is O, the
4

output does not change for any change in D. Use SR latch for
implementation of the circuit. (Dec-2018)

PrimitiveFlowTable
e Aprimitiveflowtableisaflowtablewithonlyonestabletotalstateineachrow.Thetotalsta
teconsists ofthe internal statecombined with the input.

e To derivethe primitive flow table, first a tablewithallpossible total states in
thesystem is needed:

Inputs Output
State D G Q Comments
& 0 | 0 D = Obecanse G = |
b ! | 1 D = Obecanse G = |
c 0 0 0 After siaie g or
d I 0 0 After state ¢
¢ 1 { | Afterstte bor f
f ¥ 1]] Alter state ¢

e Eachrowintheabovetablespecifiesatotalstate;theresulting
primitivetableforthegatedlatchis shown below:

Inputs £ 0
00 01 11 100

d o, — @.ﬂ - -.-
B |=-.=]a.- @.I e, -

States

e | Ff.i- |- | 85.- @.1
r @-,1 a,=|=,=-|¢,=

e First fillinonesquareineachrowbelonging tothestablestateinthatrow.

e Nextrecallingthat both inputsarenotallowedtochangeatthesametime.
e Thenenterdashmarksineachrowthatdiffersintwo
ormorevariablesfromtheinputvariablesassociatedwiththestablestate.

Reduction of primitive flow table:

e Two or more rows in the primitive flow table can be merged into one row if there
are non- conflicting states and outputs on each of the columns.

e This can be done by implication table and merger diagram.
e The implication table has all states except the first vertically and all states
except the last across bottom horizontally.

e The tick (Y)mark denotes that the pair (rows) is compatible.

5

e Two states are compatible, if the states are identical with non-conflicting
outputs.

e The cross (X) mark implies non-compatible.

bl v
de
el X
d e
alv |5 | v
d,eXx
el cf ' X
X / c, X
c, X
f r:),(f v X d e X 4
a b c d e
Fig. ' Implication table

e The compatible pairs are
(a,b), (a,0), (a,d), (b,e), (b,f), (c,d), (e,f)

Merger Diagram:

e The maximum compatible sets can be obtained from merger diagram as shown
in figure.

e The merger diagram is a graph in which each state is represented by a dot
placed along the circumference of a circle.

e Lines are drawn between any two corresponding dot that form a compatible pair.

e Based on the geometrical patterns formed by the lines, all the possible
compatibilities can be obtained.

Fig. :MergerDiagram
e An isolated dot represents a state that is not compatible with any other state.
e A line represents a compatible pair.
e A triangle constitutes a compatible with three states.
e An n-state compatible is represented in the merger diagram by an n-sided
polygon with all its diagonal connected.
e So, the maximal compatibilities are
(a,b), (a,c,d) , (b,e,)

Closed covering condition:

e In the above, if only (a,c,d) and (b,e,f) are selected, all the six states are incuded.
6

another row.

This set satisfies the covering condition.
Thus, the rows a,c,d can be merged as one row and b,e,f states can be merged as

e Consider a,c,d =a and b,e,f =b

DG
States 00 01 11 10
acd ©0 | @0 b, — @. 0
be f| @1 a- | ®1 | @1
Fig. : Reduced flow table
DG
STEtEE\\ 00 01 11 10 .
a @. 0 @ 0 b, - (@ 0
b b, 1 a, - (. 1 (6. 1
Fig. : Reduced flow table with common symbol

obtained.a -> 0, b-> 1

DG
:}\ 00 01 11 10
n I ¢ 0 1 0
B
1 1 1) 4 1

Fig. : Transition table

Logic Diagram using SR Latch:

% oo

0 0

0| 11

A race free binary assignment is made and transition table and output map is

Fig. : Output map

Excitation table ot SR flip-flop is used to find expressions for S and R,

Excitation Table of SR Flip-Flop

0, | 0.+1 § K
0 0 0 X
0 l | 0
| 0 0 1
1 1 X 0
~, DG DG
aN_ 00 0f 11 10 Q\ 00 01 M 10
ol o 0 m 0 0| X m 0 | X
1 X 1] lﬂ A 1 l 4y U 0 0
$=DG R=DG
D
G
a— 1
R 1 !
L |
Fig. : Logic diagram using SR latch
4. Explain in detail about race -Free State assignment. (Dec-10, 14)
Explain the problems in asynchronous circuits with examples.
RACE -FREE STATE ASSIGNMENT
e Once areducedflow tablehasbeenderivedfor
anasynchronoussequentialcircuit,thenextstepinthe designistoassignbinary
variablestoeachstablestate.
e Theprimaryobjectiveinchoosing aproperbinary state

assignmentisthepreventionofcriticalraces.
Criticalracescanbeavoidedbymakingabinarystate assignmentinsuchawaythatonly
onevariablechangesatanygiventimewhenastatetransitionoccurs in the flow table.

Cycles

A cycle occurs when an asynchronous circuit makes a transition through a

series of unstable state.

When a state assignment is made so that it introduces cycles, care must be
8

taken that it terminates with a stable state.

Otherwise, the circuit will go from one unstable state to another, until the
inputs are changed.

Examples of cycles are:

‘JEN 0 1 SN 0 1 RN 0 1
yiyz
oo| ()| o 00| (@) | o o0|(@)| o " @_

ju] }

01 11 01 11 0l 11 —
01 i 11 '
o1

E,

11 10 11 @ 11 10

(n
10 10 @ 10 ot —

(10 201

{a) State transition: (b) State transition: {c) Unstable
00— 01—>11—>10 00—>01—11 > 01—-11—>10-
{c) Unstable
Fig: Examples ofcycles
Race Conditions
e Araceconditionexistsinanasynchronouscircuitwhentwoormorebinary state
variableschangevalue inresponsetoachangeinaninputvariable.

e Whenunequaldelaysare encountered,araceconditionmay cause

thestatevariableto changein an unpredictable manner.

Ifthe final stable statethat the circuitreachesdoes not depend on the orderin
which thestatevariables change, theraceis calledanoncritical race.

Ifthe final stable statethat the circuitreachesdepends on the orderin which
thestatevariables change, theraceis calleda critical race.

Examples of noncritical racesareillustratedin the transition tables below:

X X
Yive 1] 1 vz 4] 1

() 11 8] @ i1
(1] 11 01 @
i1 @ 11 01

10 11 10 11

(a) Possible transitions: (b)) Possible transitions:
00 — 11 00 — 11 — 01
) — 01 —= 11 o) —= 01
) —»= 10 —= 11 00 — 10 —= 11 — 01

Initial stable state is y1y2x = 000 and then input changes from O to 1.
The state variables yi1y2 must change from 00 to 11,(race condition).

Possible transitions are
00— 11

00— 01(y2 faster) — 11
00— 10(y1 faster) — 11

e In all cases final stable state is same, which results in a non-critical race
condition.
o Examples of critical racesareillustratedin the transition tables below:

X X
Fvz 0 1 Fivz 0]

01

1 11

| ®

11

SlCll6

10 10 @

(a) Possible transitions; (b) Possible transitions:;
00— 11 a0 —= 11
00— (1 00— 01 — 11
00 — 10 O —— 10

Fig: Examples
ofcritical races
o The initial stable state is y1y2 x=000 and let us consider that the input changes
from O to 1. Then, the state variables must change from 00 to 11.
e If they change simultaneously, the final total state is 111.
e Due to unequal propagation delay, if y2 changes to 1 before y:1 does, then the
circuit goes to total stable state y1y2 x=011 and remains there.
e Ify: changes first, then the circuit will be in total stable state is y1y2 x=101.
e Hence the race is critical because the circuit goes to different stable states
depending on the order in which the state variables change.

Three-RowFlow-Table Example
LT
{0 Ji 1] 10

ﬂ@f} r.-'@
IEBIGHOK
e| a @@@ e=11

(a) Flow table (b Transidan diagmm:
Fig: Three rowflowtable
example

e Toavoidcriticalraces,wemustfindabinarystateassignmentsuchthatonly
onebinaryvariable changesduring eachstatetransition.
e Anattempttofindsuchanassignmentisshowninthetransition diagram.
» Statea isassignedbinary 00,
» Statecisassignedbinary 11.
e Thisassignmentwillcausea criticalraceduringthetransitionfromatoc .

10

e Becausetherearetwochangesinthebinary statevariables
andthetransitionfromatocmay occurdirectlyorpassthroughb.

¢ Notethatthetransitionfromctoaalsocausesaracecondition,butitisnoncriticalbecau
sethetransitiondoesnotpassthroughother states

+1%7
L] 1] il 10

it @ b @ r.r=l3ﬂ bh 01
1@
®

o -
OJiO

- d =10 ¢ =11

Y Y

{a} Flow table {b) Transition diagram

Fig:Flowtable with an extrarow

e Arace-freeassignmentcanbeobtainedifweaddanextra rowtotheflow table.

e Theuseofa fourthrow
doesnotincreasethenumberofbinarystatevariables,butitallowstheformationof
cycles betweentwo stablestates.

e Thetransitiontablecorrespondingtotheflowtablewiththeindicatedbinarystateassig
nmentisshown inFig.

e Thetwodashesinrowdrepresentunspecifiedstatesthatcanbeconsidereddon't-care
conditions.

e However,caremustbetakennottoassign10tothesesquares,inordertoavoidthepossib
ility ofan unwanted stablestatebeingestablishedin thefourth row.

X3Ta

0o 1l L1 i0

o= 0 @] 10 @
11

e =1l 10 @ @

d =10 0o =

Fig: Transitiontable

Four-RowFlow-Table

o A flow tablewith four rows requiresaminimum of two statevariables.

e Although arace-freeassignment issometimespossiblewithonly twobinary
statevariables,inmany casestherequirementofextrarows to avoid critical races
willpermit touse of threebinarystate variables

11

o0 01 11 10
@< [:
., 4

O B -

€ c

1] L]

i)

OO,

{a) Flow table (b} ‘Transition diagram

Fig:Four-rowflow-table example

e Thefollowing figureshowsastateassignmentmapthatissuitableforany four-
rowflowtable.Statesa, b,canddaretheoriginalstatesande,fandgareextrastates.

e Thetransitionfromatodmustbe
directedthroughtheextrastateetoproduceacyclesothatonly
onebinaryvariablechangesatatime.

e Similarly,thetransitionfromctoaisdirectedthroughgandthetransitionfromdtocgoest
hroughf.

e Byusingtheassignmentgivenby themap,thefour-rowtablecanbeexpandedtoaseven-
rowtablethat is freeofcritical races.

Miy:
L] 1) 11 10
¥3
U -|-.u o c il E
|
| 7
l ¢ d f
M d =101 [=111 c =011
{a) Binary assignment {b) Transition diagram

Fig: Choosing extrarowsfor theflowtable

e Notethatalthoughtheflowtablehas sevenrowsthereareonlyfourstablestates.

e Theuncircledstatesin the three extra rowsaretheremerelyto providearace-
freetransition between thestablestates.

12

M) = &

00l =& @ af @ a
©

all=¢ £ b @
o0 =g a - -
110 — — — - -
Hi=r c - - €
101 = o f @ @ f
1000 = ¢ - = d -

Fig: Stateassignment to modified flowtable

Multiple-RowMethod

Themethodformakingrace-
freestaleassignmentsbyaddingextrarowsintheflowtableisreferredto asthe shared-
rowmethod.

A second methodcalled themultiple-rowmethodisnotasefficient, butis
easiertoapply.
Inmultiple-rowassignmenteachstateintheoriginalrowtableisreplacedby twoor
more combinationsofstate variables.

B0 ol 11 10
000 =a, | b d @
Ml=ay | &, @ dy @
01 = b, @ ds @ a,
110 = bs @ d @ as
weo [@] = [+ @

PF |
o) =
00 o 11 10 10=e @ a | b | (=)

¥i

1] iy !I‘. L] dl 010 = d.f. €y @ @)

1 Oz s oy Irs 101 = oy &3 @ c3

(a) Binary assignment (b} Flow table
Fig:Multiple
rowassignment
Therearetwobinary
statevariablesforeachstablestate,eachvariablebeingthelogicalcomplementof the
other.

Er e e e e e e e e e e e e e e e R e e et R e e e e b e

13

5. Explain various types of hazards in sequential circuits design and the
methods to eliminate them. (Dec-12, 14, 17) (Dec-2018)

HAZARDS

e Hazardsareunwantedswitchingtransientsthatmay
appearattheoutputofacircuitbecausedifferent
pathsexhibitdifferentpropagationdelays.

e Hazardsoccurincombinationalcircuits,wheretheymay causeatemporary
falseoutputvalue.

e But inasynchronous sequentialcircuits hazardsmay resultin a transitionto
awrongstable state.

Types of Hazards
> Static Hazard
» Dynamic Hazard
> Essential Hazard

Static Hazard

e Static Hazard is a condition which results in a single momentary incorrect
output due to change in a single input variable when the output is expected to
remain in the same state.

e The static hazard may be either static-O or Static -1.

Hazards inCombinational Circuits

e Ahazardisaconditioninwhichachangeinasinglevariableproducesamomentary
changeinoutput when no changein output should occur.

.flzl -r|'=1

l >'—1—>0 1) =1
x2 1=—-0 X 1—Q

2 1 - l
st (D S
—_2>_0—v-1 I‘fz})_l-»o

R A

."3:1 I\=l

(a) AND-OR circuit (b) NAND circuit
Fig: Circuits with Hazards

e Assumethatallthreeinputsareinitially
equaltol.Thiscausestheoutputofgate110bel,thatofgate
2tobeOandthatofthecircuittobe 1.Nowconsiderachangeinx2from1to0.

e Thentheoutputof gate lchangestoOand thatofgate2changestol,leaving
theoutputat 1.

e However,theoutputmay

14

momentarilygotoOifthepropagationdelaythroughtheinverteristakenintoconsi
deration.
e Thedelay in theinvertermaycausetheoutput ofgatel to changeto O beforethe
output of gate2 changes tol.
e Thetwo circuits shown in Figimplement theBoolean function in sum-of-
products form:
YV =x1%5 + X3x5
e This type of implementation may cause the output to go to O when it should
remain a 1. If however, the Circuit is implemented instead in product-of-
sums form namely,
Y = (% +%2)(x2 + x3)
then the output may momentarily go to 1 when it should remain O.
e The first case is referred to a static 1-hazard and the second case as static
0O-hazard.
e Athirdtypeofhazard,knownasdynamichazard,causestheoutputtochangethr
eeormoretimes when itshould changefrom1 to O or from O to 1.

i _Ij | _|_|_ | 1ﬂv
(0)
(2) Static 1-hazard (b) Static 0-hazard (¢} Dynamic hazard

Fig: Types ofhazards

e The change in
x2from1toOmovesthecircuitfromminterm111tominterm101.The hazard
exists because the changein input results in a different product term
coveringthe twominterm.

Xaly <34)
00 0l 11 10 00 0l 1 10
x| ol 1

[e (|
] -l | :..'. ._.. 'E.J
: o Y
{ﬂ]r=.'l']].'3"'.1"=.t:| B Y=nntrn+nn

Fig: Illustrates hazardandits
removal

e Minterm11liscoveredby

theproducttermimplementedingate landminterm10 liscoveredbythe
15

producttermimplementedingate?2.

Theremedy foreliminating ahazardistoenclosethetwominterms
withanotherproducttermthatoverlapsbothgroupings.
Thehazard-freecircuitobtainedbysucha configurationisshowninfigure below.

The extra gate inthecircuitgeneratesthe producttermxix3.

In general hazardsincombinationalcircuitscanberemoved by coveringany
twomintermsthatmay producea hazardwithaproducttermcommontoboth.
Theremovalofhazardsrequirestheadditionof redundantgates to thecircuit.

Hazards in SequentialCircuits:

RE r],.r\"o L

i) —
)

(o} L.omc diaeram

09 il] 10 . &0 01 11 1]

(GO RRIC/ I
1@ 0 @@ 1 3

(b} Transition table {c) Map for ¥

Fig: HazardinanAsynchronous sequential circuit

Innormalcombinational-
circuitdesignassociatedwithsynchronoussequentialcircuits,hazardsareof
16

noconcern,sincemomentaryerroneoussignalsare notgenerallytroublesome.
However,ifamomentary incorrectsignalisfed
backinanasynchronoussequentialcircuit,itmay causethecircuittogotothe
wrongstable state.

Ifthe circuitis in total stable stateyx1x2=111 and inputxecchangesfromlItoO, the
next total stablestate shouldbell0O.However,because ofthehazard,outputYmay
gotoOmomentarily.

Ifthisfalsesignal
feedsbackintogate2beforetheoutputoftheinvertergoestol,theoutputofgate2willrem
ainatO andthecircuitwillswitchtotheincorrecttotalstablestate 010.
Thismalfunctioncanbe eliminatedby adding an extragate.

Essential Hazards

Essentialhazardiscausedby
unequaldelaysalongtwoormorepathsthatoriginatefromthesame input.
Anexcessivedelaythroughaninvertercircuitincomparisontothedelayassociatedwit
hthe feedback path maycausesuchahazard.

Essentialhazards cannotbecorrectedby
addingredundantgatesasinstatichazards.The problemthat they
imposecanbecorrectedbyadjustingtheamountofdelay intheaffectedpath.
Toavoidessential
hazards,eachfeedbackloopmustbehandledwithindividualcaretoensurethatthedel
ayinthe

feedbackpathislongenoughcomparedwithdelaysofothersignalsthatoriginate
fromtheinput terminals.

e R et e e e el e e e e e e e e e R R e e e e e e e o e e e e S e o e e e e e S e e R e R e e S o e L e e o e e R e T

CLASSIFICATION OF MEMORIES

6.

Discuss the classification of ROM and RAM memories.
Amemoryunitisadevicetowhichbinary
informationistransferredforstorageandfromwhich
informationisretrievedwhenneededfor processing.

When data processing takes place, information from memory is transferred to
selected registers in the processing unit.

Amemoryunitisacollectionof cells capableof storingalargequantityof
binaryinformation.

TWO TYPESOFMEMORIES:

Therearetwotypes ofmemoriesthatare usedindigitalsystems:
» Random-accessmemory(RAM)and Read-onlymemory(ROM)
(i) Random-access memory (RAM)
» RAM stores new information for later use.

17

» The process of storing new information into memory is referred to as a
memory “write” operation.
» The process of transferring the stored information out of memory is
referred to as a memory “read” operation.
» RAM can perform both write and read operations.
(ii) Read-only memory (ROM)
» ROM can perform only the read operation.
» This means that suitable binary information is already stored inside
memory and can be retrieved or read at any time.
» However, that information cannot be altered by writing.
e ROM is a programmable logic device (PLD).
e The binary information that is stored within such a device in some fashion and
then embedded within the hardware in a process is referred to as programming
the device.

7. Explain in detail about read-only memory.
READ-ONLY MEMORY(ROM)
e ROM is a non-volatile memory. It can hold data even if power is turned off.
» A ROM is essentiallyamemorydevicein whichpermanent binaryinformation
is stored.
» It is embedded in the unit and cannot be altered.
» It consists of ‘k’ inputs and n’ outputs.

k inputs (address) —|..: ?}'{ (;l\lil ' ,}—woulputsldm)

Fig: ROMblock
diagram
ROM Organization:
e The inputs provide the address for memory, and the outputs give the data bits of
the stored word that is selected by the address.
e Number of words is get from number of address inputs, here it is ‘k’, hence

2Kwords of n bits each is present in the memory.

18

Aq Ay Ay Ay

Fig: Internal logic ofa32x8 ROM

Example:

The five inputs are decoded into 32 distinct outputs by means of a 5x32
decoder. Each output of the decoder represents a memory address.

The 32 outputs of the decoder are connected to each of the eight OR gates.
Each OR gate must be considered as having 32 inputs.

Each output of the decoder is connected to one of the inputs of each OR gate.
Since each OR gate has 32 input connections and there are 8 OR gates, the
ROM contains 32 x 8 = 256 internal connections.

A programmable connection between two lines is logically
equivalenttoaswitchthatcanbealteredto
beeitherclosed(twolinesareconnected)oropen(twolinesare disconnected).
Theprogrammableintersection between two lines issometimes called across
point.

ROM Truth Table (Partial)

Inputs Outputs
PR U PR MR Ay Ay As As A Ay A A
0 0 0o 0 0 | U | | 0 | | 0
o o o 0 |] ¥ 0 1 1 ! 0 l
¢ 0o o 1 0 1 | 0 0 I 0 1
o o o 1 | 1 0 | 1 0 0 [0
l] I 0 0 0 0 0 ¥ 1 0 0 1
l] I | i 1 | ¥ 0 0 1 0
! 1 1 ¥ 0 | 0 0 1 0 1 0
I 1 | [] 0 1 1 0 0 1 1

For anexample,programmingtheROMaccordingtothetruthtablegivenbytable.
EveryOlistedinthe truthtablespecifiestheabsence
ofaconnectionandevery llistedspecifiesapaththatisobtainedby a connection.

19

he=3

1 5
— \',_J (.— -

5%32
decoder

e

SRR
x

Iy —

2
X

— 2

£
X—X

33 ! v K

| |
ll l | \
1‘7 t‘b /15 /‘g t!_\ Ag l‘| Ao

Fig:ProgrammingtheROM according to ROM
truth table

_GI A

TYPES OF ROM

8. Briefly explain EPROM and EEPROM technology.
The required paths in aROM maybeprogrammedin
fourdifferent ways.
e Maskprogramming

» Donebythesemiconductorcompanyduringthe
lastfabricationprocessoftheunit.

» Thisprocedureiscostly becausethevendorchargesthecustomera special fee
forcustommaskingthe particular ROM.

e Programmable read-onlymemory-PROM.

» Economical for small quantity.

» ThefusesinthePROMareblownbytheapplicationofahigh-voltage
pulsetothedevicethroughaspecialpin.

» AblownfusedefinesabinaryOstateandanintactfusegives abinarylstate.

» Theprocedureisirreversibleandonce programmed; the fixed pattern is
permanent and cannot be altered.

e ErasablePROMorEPROM

» This canberestructuredtothe
initialstateeventhoughithasbeenprogrammedpreviously.

> It is erased by placing undera specialultravioletlightfor
agivenlengthoftime.

e ElectricallyerasablePROM(EEPROM)or Electrically Alterable PROM
(EAPROM)
» Electrical signals are used to erase the
previouslyprogrammedconnectionsinsteadof ultravioletlight.
» Theadvantage isthatthe device canbeerasedwithout removingitfrom its
socket.

9. Explain in detail about Random Access Memory.

20

RANDOM ACCESS MEMORY (RAM):

RAM stores new information for later use.

The process of storing new information into memory is referred to as a memory
write operation.

The process of transferring the stored information out of memory is referred to as
a memory read operation.

RAM can perform both write and read operations.

RAM Organization:

A block diagram of a memory unit is shown in Fig.

lrr data input lines

k address lines >)
Memory unit
Read > 2* words

n bit per word

Write ——

lr.‘ data output lines

The n data input lines provide the information to be stored in memory, and the n
data output lines supply the information coming out of memory.

The k address lines specify the particular word chosen among the many
available.

The two control inputs specify the direction of transfer desired: Write input and
Read input.

Amemory unitstoresbinaryinformationingroupsofbitscalledwords.
Eachwordinmemory

isassignedanidentificationnumbercalledanaddressstartingfromOup to2 k.
wherekisthenumberofaddresslines.
Considerforexample,amemoryunitwithacapacityof1K wordsofl6bitseach.Since
Here 1024 x 16 RAM consists of 10 x 1024 decoder (1K=1024bytes=210), where
the decoder inputs are the 10 address lines .

The decoder accepts the address lines and provides the path needed to select
the word specified.

21

Memory address

Binary Decimal Memory content
OOOCOOO000 [‘:lf.)'.l"lul!ll'l'.llﬂl‘]‘
(000000001 ! ‘Llﬂlulnlll'kl'hl'l]‘;
(00COOD010 2 {00001101010001 1u]‘

I

1111111101 1021 {1001110100010100 |

1111111110 1022 i-.nnn“nwmz:;u?]

o e s
SERRREREY 1023 {1101111000100101
| 4

Fig: Contents of a 1024 x 16 memory

Read andwriteoperations:

e Thetwo operations that RAM can perform arethewriteand read operations.

Stepsto Write operation as follows:
» Applythe binaryaddress of thedesired word to the address lines.
> Applythe data bits that must be stored in memoryto thedatainputlines.
> Activate thewrite input.

Stepsto Read operation as follows:
» Applythe binaryaddressof thedesiredword to the address lines.
» Activate thereadinput.

e Thememoryenableorchipselectisusedtoenabletheparticularmemorychipina

multichipimplementationofalargememory.

Contral Inputs to Memory Chip

Memory Enable Read/Write Memory Operation

0 X None
I 0 Write 10 sclected word
l I Read from selected word
e Whenthememory enableisinactive,thememory chipis
notselectedandnooperationisperformed.Whenthememoryenableinputisactive,the
read /write operation to be performed.

TYPES OF RAM

10. Explain the types of RAM with neat diagram.
RAM is classified into two types.

1. Static RAM

2. Dynamic RAM

STATIC RAM (SRAM):
22

e Memories that consist of circuits capable of retaining their state as long as
power is applied are known as static memories.

e Two basic SRAM cell technologies are

e Bipolar and MOS.

o All those types use cross-coupled transistors to make up the basic flip-flop

storage cell.
Bipolar Static RAM cell: (May-18)
e It is implemented using TTL (Transistor-Transistor Logic) multiple emitter

technology.
e [t can store either O or 1 as long as power is applied.
Operation:

e Row and column select lines select a cell.

e The Q1 and Q2 are cross coupled inverters.

e A “l1”is stored in the cell if Q1 is ON and Q2 is OFF.

e A “0”is stored in the cell if Q2 is ON and Q1 is OFF.

e When pulsing HIGH on Q1 emitter (SET), State is changed to ‘0’

e When pulsing HIGH on Q2 emitter (RESET), State is changed to ‘1’

Bit Ve Bit
Qq Q
Row Other
select cells
Other Other
cells cells

a. Bipolar SRAM cell
MOSFET Static RAM Cell:

Bit Voo Bit
Ve
Q I—I——il: Q
Qs QS
o e
Row . Vss Other
select : cells
Other Other
cells cells

b. MOS SRAM cell

Operation:
23

In the basic NMOS cell, Q: and Q2 are always biased to act as a Load Resistor
for Q3 and Q4.

The Data in a cell can be read by setting ROW_SELECT = 1 to turn on Pass
Transistors Qs, Qs.

The Data from cell is then “passed” to the BIT Line and (BIT)' Line.

To store a ‘0’, place a O on the bit line and set ROW_SELECT = 1. This turns
on the Pass Transistors (Qs, Qs) to place a O to Q4 (it is off). Qs is then ON to
store the O.

A ‘1’ can be stored in a similar fashion.

11. Write note on dynamic RAM cell.

Dynamic RAM cell:
Dynamic RAM (DRAM) stores data as a charge on capacitors.

The stored charge on the capacitors tends to discharge with time, and the
capacitors must be periodically recharged by refreshing the dynamic memory.
Refreshing is done by cycling through the words every few milliseconds to
restore the decaying charge.

DRAM offers reduced power consumption and larger storage capacity in a
single memory chip.

Memory units that lose stored information when power is turned off are said

to be volatile.
Bit

Word
select

I
£
i

Comparison of Static and Dynamic RAMS.

S.No Static RAM Dynamic RAM
1 Static RAM contains less Dynamic RAM contains more memory
memory cells per unit area cells as compared to static RAM per
unit area.
2 It has less access time hence Its access time is greater than static
faster memories. RAMs.
3 Static RAM consists of number | Dynamic RAMs store the data as a
of flip flops. Each flip flop stores | charge on the capacitor. It consists of
one bit. MOSFET and the capacitor.
4. Refreshing circuitry is not Refreshing circuitry is required to
required. maintain the charge on the capacitors
after every few milliseconds
S Cost is more Cost is less

PROGRAMMABLE LOGIC DEVICES (PLDs)

24

12. Write brief notes on combinational programmable logic device PLD.

Combinational PLDs

e The PROMisa combinationalprogrammable logicdevice (PLD)-
anintegratedcircuitwith
programmablegatesdividedintoanANDarrayandanORarray toprovideanAND-
ORsumof- product implementation.

e Thereare threemajortypesofcombinational PLDs,differing

intheplacementoftheprogrammable connections in the AND-OR array.
1. PROM- FixedANDarray andaprogrammableORarray.
2. PAL - ProgrammableAND arrayand a fixed OR array.
3. PLA - ProgrammableAND arrayand a programmable OR array.

Fised S
Inputs S AND arrav s [r'réflf}: :T::ﬂhh' C = Chilputs
I {decader) E o v

(4} Programmable read-only memaory (PROM}

Inpuits . Ili:ﬂ};“;f::“}‘:“ - - l’)}?fnﬁ}m ——= Cipuls
(b} Prosrammalle areay logic {I’M;‘.r” T
Inputs S Pﬁi}%m;‘;‘fe - Prﬁfﬁgfﬂt—h Chuputs
{¢] Programmable logic array (PLA) -
13. Write short notes on PLA.
PROGRAMMABLE LOGIC ARRAY (PLA) (Dec-08, 12, 17, May-10, 11)

e Programmablelogicarrays(PLAs) is a type of fixed architecture logic devices with
programmable AND gates followed by programmable OR array.

e PLA is used to implement a complex combinational circuit.

e The AND and OR gates inside the PLA are initially fabricated with fuses among
them.

e The specific Boolean functions are implemented in sum of products (SOP) form
by blowing appropriate fuses and leaving the desired connections.

25

'l
]
(o=+ ad J'El * F'n. - Sn -_'-Fl]
inptsd Ty Input |=={1; AND OR Invert/ Flip-Nopsf E i
: buffer | ¢ | matrix meatrix non-invert| : g‘-";“t C 2N ouputs
: matrix | ufier 1
] N N
[g T""1 Pt - sm-‘l —* '—I-F
il N
— m-1
OE _?
otout enane)

Fig: Block diagram of a PLA

Input Buffer:
e Input buffers are provided in the PLA to limit loading of the sources that drive

the inputs. They also provide inverted and non-inverted form of inputs at its
output.

— e = = -

-

Output Buffer:

e The driving capacity of PLA is increased by providing buffers at the output. They
are usually TTL compatible. The output buffer may provide totem-pole, open
collector or tri-state output.

Spo _t;; ©Fy
™~
5,0 | { | °F,
EH—'I- —-ﬂFN-‘q
OE

Output through Flip-flops:

e For the implementation of sequential circuits we need memory elements, flip-
flops and combinational circuitry for deriving the flip-flop inputs. To satisfy
both the needs some PLAs are provided with flip-flop at each output.

26

S D o > Fa
N hL\
S, D Q > Fy
. H
> y
Clock
Output enable (OE)
For an example, the Boolean expressions are,
F, = AB + AC + ABC
F, = (AC + BC)
a—=
8 — =
e—f5]
—a A Am
- 1 T - - -_:_ o A8C
c : ‘ a

Fig:PLA with threeinputs, fourproduct termsandtwo outputs

e ThefusemapofaPLAcanbespecifiedinatabularform.
Thefirstsectionliststheproductterms numerically.

e The secondsectionspecifies the requiredpathsbetweeninputsandANDgates.

e The third
sectionspecifiesthepathsbetweentheANDandORgates.Foreachoutputvariable ,we
may havea T'(fortrue) orC (for complement) forprogrammingthe XOR gate.

e For eachproductterm,the inputsare markedwith1,0,or- (dash).If avariable inthe
productterm appearsintheforminwhichitistrue,thecorresponding
inputvariableismarkedwithal.

o [fitappears complemented,thecorresponding

27

inputvariableismarkedwithaO.Ifthevariableisabsentfromthe product term, it is

marked with a dash.

PLA Proaramming Table

Outputs
Inputs (N (<)
Product Term A B C F; F3
AB' ! |) — 1 —
AC 2 1 — 1 I |
BC 3 - 1 i — 1
A'BC’ 4 a1 a | —

14. Implement the following two Boolean functions with a PLA: (Dec-13)
Fi(A,B.C) = 2(0,1,2.4)

Fy(A, B, C) = 3(0,5,6,7)

Solution:
Kmap
PLA programming table BC B ne B
Outputs A 0o 01 11 10 A o0 o 11 10
Product Inputs (Cy (T Mo - 3 M iy D iy at,
term ‘:? R ol 1| 1| o | 1 ol 1| oo | o
1 2
1y iy, iy ™ Ay iy Ry [Th
f:g ; : 1 I 1 1 Al1l 1 0 0 i A1l 0 1 1 1
s _
BC 3 -1 1 1 - P P
A'RC 4 0 0 0 - 1 [C

Boolean Expressions:
Fi=(AB + AC+ BC)' [, =AB + AC+ A'B'C’
PLA Diagram:

28

a—3
s—{S
c—{3
v AB
T} AC
3 BC
4 } A'BC
o R B oA A B 1]
UU =
_DiFI
Problems using PROM :

Design a large circuit for the following Boolean expressions using PROM.
Fx,yz)= Y m(1,2,4,7).
F(x, »2)= Zm(3,5, 6, 7).
& Solution :

The Truth Table for the functions F, and F, are given below.

N Inputs Outputs
X y z F, F,
0 0 0 0 0
0 0 1] 0
0 1 0 l 0
0 I I 0]
1 0 0 | 0
I 0 1 0 1
1 1 0 0 I
1 1 1 1 1

29

The PROM implementation is given below.

0
1
(MSB)
2
3to8
1 Decoder 3 S
z 4 >
5
[S) ~
7)
Fy Fa
15. Write short notes on PAL.
PROGRAMMABLE ARRAY LOGIC (PAL): (Dec-05, 17, May-12)

e ThePAL
isaprogrammablelogicdevicewithafixedORarrayandaprogrammableANDarray.

e BecauseonlytheANDgatesareprogrammable,thePALiseasiertoprogramthanbutisn
otasflexible as the PLA.

e The PAL is a programmable logic device with a fixed OR array and a
programmable AND array.

e Below figure shows the logic configuration of a typical PAL with four inputs and
four outputs.

e FEach input has a buffer-inverter gate, and each output is generated by a fixed
OR gate.

e There are four sections in the unit, each composed of an AND-OR array that is
three wide.

e Each AND gate has 10 programmable input connections, shown in the diagram
by 10 vertical lines intersecting each horizontal line.

e The horizontal line symbolizes the multiple-input configuration of the AND gate.

e One of the outputs is connected to a buffer—inverter gate and then fed back into
two inputs of the AND gates.

Example:
Implement the followingBoolean functions, using PAL.
(May 2013)

30

w(A.B.C.D) = 3(2.12,13)

x(A.B.C.D) = S(7.8,9,10, 11,12, 13, 14, 15)
v(A.B.C.D) = X(0.2,3,4,5,6,7,8.10. 11, 15)
A B.C,D) = £(1.2,8,12,13)
Sol:
Simplify the functions using K Map:
W
CD —— _ X
ABS S0 Tp op o5 5P . -
AB| © 0| o] " ~CDh €D €D __CD
D AB | o 0 o| o
— 0 O —
AB °1 © s | o | o [1]] o
1 1
oG] ol o] w0
—| 0 0 ol o _
AB AB | 1 1 1 1J
W =ABC+ABCD X = A+ BCD
Y Z
D - = ” CD —— —
AB~_CD, CD <D ,cCD AB cob c<b <O o0
AB_| 1 0 ERIRL | o | @
— 0 o 0 o
e | [1 1 1] AR
& |G 5 1 o ae | ([1) 0 o
5 : = 1 0 0 o
—_ AB !

Y =AB+CD+BD

PAL Programming Table:

31

PAL Progeamming Table

i

Product AND Inpuls
Term | A 3 C D W Outpuls
i l 1 0 = w= AR
2 0 0 I 0 - +ABCD
3 - -
4 - - - - x=A
3 - I I] - +BCD
6 - _ - - -
7 o [
[- - Y= AB
!
8 - - | ! - «CD
i - |I i _] _ N B"[}’
10 N B - I Te=w
. S +ACD!
!
o L ' +ABCD

PAL Logic Diagram:

32

AA B B' C c D)
D" w w AND :
Product gates inputs
term 1 <

¢ —%——1 | |
S I S —x—|—| ~
3

s B

: | D=

)
) T _
All fuses intact

B—{> l (always = 0)

T % [\

8 ./ — 4

10 L=
11 — D

) ; |)=
12 T

Problem 1: (Dec-11)

33

fmplement the following function using PLA

Al 3, 2) = Y m(l, 2, 4, 6)
B(x, y, 2) = Y m(0, 1, 6, 7)

Clx, y, 2) = Y m(2, 6).

Ans: N 00 01w 10 NP oo o

X

Oo@om

‘\V’- 00 01 11

10

C=yz
PLA Programming Table:
Product Inputs Outputs
Term | x y z A B C
xyz |0 0 1 | 4 0
x z | - 0 | - ey
¥ z -] 0 1 - |
Xy 0 0 c - 1 £
Xy 1 | - - I -

PLA Logic Diagram:

34

|
_—
B M "_‘\le:T:
I
p®
i, [T\ xy
£ | G
)7

vAVAvY

]
1
A B c

16. Write a short note on PROM.
Programmable Read Only Memory (PROM): (May-10, 11, 18)

e It consists of n-input lines and m-output lines. Each bit combination of the input
variables is called an address. Each bit combination that comes out of the
output lines is called word.

e The word available on the output lines at any given time depends on the address
value applied to the input lines.

A1 — " . D1
TPl 2" m]
address PROM : mdata
lines : : lines
An—1 —» Dm

Fig: Block diagram of PROM

35

Ay 0
Ay i 1

2
A 6:64
Ay —={ Decoder
Ay ——
Ay e 63 * 1

L Q¢ <

B4 4 =256 Fuss
Fnl

Fy F2 Fa

Fig: Logic construction of 64 X 4 PROM

Address input
Ay Ag

? ! Minterms

AND |
matrix,
OR
matns
Fy
Fig: 4 X 2 PROM with AND-OR gates
AND M atrix:

e It is used to form product terms. It has m AND gates with 2n-inputs and m-
outputs, one for each AND gate.

L—F

In- 1—E:?

36

OR M atrix:

¢ The OR matrix is provided to produce the logical sum of the product term
outputs of the AND matrix.

Invert/Non-invert Matrix:

e Invert/Non-invert matrix provides output in the complement or uncomplemented
form. The user can program the output in either complement or uncomplement
form as per design requirements.

se i, iD——Sr:JIE Sﬁm‘iﬁurﬁ

17. Write short notes on FPGA.

Field-Programmable Gate Array (FPGA)

o Afield programmablegatearray(FPGA)isaVLSIcircuitthatcanbeprogrammed
attheuser’slocation.

e AtypicalFPGAconsistsofanarray ofmillionsoflogicblocks,
surroundedbyprogrammableinputandoutputblocksandconnectedtogethervi
aprogrammableinterconnections.

e There isawidevarietyofinternalconfigurationswithin thisgroup ofdevices.

e Theperformanceofeachtypeofdevicedependsonthecircuit
containedinitslogicblocksandtheefficiencyofitsprogrammed interconnections.

OO0O0OO0Ooo0oOoooOon
PLD P || PLD PLD oooOooOoOoooooooaog
OO0O0OO0oOooOoooOono
OOO0O0000O000
OO0O0O0O0O0O0OOoogoano
Oo0oOo0Ooooooao
PLD FLD || PLD PLD OoO0oO0OoOoOooOooogao
OO0O0O0O0O0O0OOoogoano

Programmable Interconnect

(a (b [= logic block

Fig: Largeprogrammable-logic-devicescaling approaches: (a)CPLD;(b) FPGA.

37

AtypicalFPGAlogicblock consists oflookuptables, multiplexers,gates,and flip-
flops.

Alookuptableis atruth tablestored inanSRAM andprovides thecombinational
circuitfunctions forthelogicblock.

The
combinationallogicsection,alongwithanumberofprogrammablemultiplexers,
is usedtoconfigurethe input equationsforthe flip-flopand the outputofthe
logic block.

Theadvantageof usingRAMinsteadof ROMtostorethetruthtableisthatthetable
canbeprogrammedbywritingintomemory.

Thedisadvantageisthat thememory is
volatileandpresentstheneedforthelookuptable’scontenttobereloadedintheevent
thatpowerisdisrupted.

Theprogramcanbedownloadedeither fromahostcomputer
orfromanonboard PROM.

TheprogramremainsinSRAM

untilthe FPGAisreprogrammedorthepoweristurnedoff.
Thedevicemustbereprogrammedeverytime poweristurnedon.

Basic Xilinx Architecture:

The basic architecture of Spartan and earlier device families consists of an array
of configurable logic blocks (CLBs), a variety of local and global routing
resources, and input-output (I/O) blocks (IOBs), programmable I/O buffers, and
an SRAM based configuration memory, as shown in Fig.

IOB 108 108 I0OB I0OB
Switch Switch Switch
OB Matrix Matrix Matrix 10B
I1OB CLB CLE I10B
Switch Switch \\ Switch
0B Matrix Matrix \‘\\ Matrix 0B
T
-
™
)
I10OB CLB CLB \IDB
Vertical
4 long line
Switch + Switch Switch
OB Matrix -+ Matrix Matrix 10B
IOB / OB 108 10OB I10OB
Harizonotal
long line

38

18. Write a short note on CPLD?

Complex Programming Logic Devices (CPLD):

PLA and PAL are useful for implementing a wide variety of small digital circuits
like MUX, encoders, counters etc.

These devices have a very low number of inputs and outputs at the range of 32
as a maximum value.

For digital circuits with more number of inputs, (Example: ALU,
Microprocessor), a complex programmable logic device (CPLD), can be used.

A CPLD contains multiple circuit blocks on a single chip with internal wiring
resources connected to the circuit blocks. Each circuit block is similar to PLA
or PAL in their function.

All the PAL like blocks are connected using inter connection wires.

Each block has a subcircuit called as I/O block which is connected to the chips
input and output pins.

A EEE—

ﬁ ¢ g
< b . [=
21 PAL Like PALLike [> 2
o . Block Block O
— 4 b ¢ =
& N F:y F. Y F 3

v v v v v v

> Interconnection Wires <

F:N iy F F Y 'y
y v v v v v v -
3 - ol 138
o > PAL Like PAL Like [¢ " 2
@ Block Block o
Q . =

Fig: Structure of a CPLD

There are several PAL like block in the CPLD. Each PAL like block consists of
some macro cells (about 16), each macro cell consisting of a four input OR gate
from programmable AND gates.

The inputs of programmable AND gates are connected to I/O blocks through
interconnection wires.

The macro cell consists of some more gates, flip-flops and multiplexers.

e
o a Pin
Pregrammable |

AND gate cLs—>

39

EE8351 DIGITAL LOGIC CIRCUITS

UNIT V - VHDL

RTL Design — combinational logic — Sequential circuit — Operators — Introduction to
Packages — Subprograms — Test bench. (Simulation /Tutorial Examples: adders,
counters, flip flops, Multiplexers & De multiplexers).

TWO MARKS

1. Whatis a HDL?

Computer Aided Design (CAD) tools are used in the design of digital systems.
One such tool is a Hardware Description Language (HDL).

2. What are the main components of a VHDL description?
The main components of a VHDL description are:
» Package (optional)
» Entity
» Architecture
» Configuration (optional)

3. What is entity?
Entity gives the specification of input/output signals to external circuitry. It
gives interfacing between device and the other peripherals. An entity usually has
one or more ports, which are analogous to the pins on a schematic symbol. All
information must flow into and out of the entity through the ports. Each port
must contain name, data flow direction and type.

4. Give the syntax for VHDL entity declaration.(April/May 2017)
The syntax of a VHDL entity declaration is as shown below:
Entity entity_ name is
Port (signal_ names: mode signal_ type;
Signal_ name: mode signal_ type;

Signal_ names: mode signal_ type);
end entity_ name;

5. What is architecture?
Architecture specifies behavior, functionality, interconnections or
relationship between inputs and outputs. It is the actual description of the

design. Architecture consists of two portions: architecture declaration and
architecture body.

6. List the internal details of an entity specified by architecture body.
An architecture body specifies the following internal details of an entity:
» As a set of concurrent assignment statements (to represent dataflow)

1

EE8351 DIGITAL LOGIC CIRCUITS

» As a set of interconnected components (to represent structure)
» As a set of sequential assignment statement (to represent behavior)
» As any combination of above three.

7. Give the syntax for VHDL architecture declaration. (April/May 2017)
The syntax for architecture is given below:
Architecture architecture _ name of entity_ name is
Declarations
Begin
Concurrent statement;
Sequential statement;
end architecture_ name;

8. What is the use of configuration declaration?
Configuration declarations may be used to associate particular design
entities to component instances (unique reference to lower-level components) in
a hierarchical design, or to associate a particular architecture to an entity.

9. What is the need of package declaration? (April/May 2015)
There are some declarations which are common across many design units.
A package is a convenient mechanism to store and share such declarations. A
set of declarations contained in a package declaration may be shared by many
design units. It defines items that can be made visible to other design units.

10. How is package represented?
A package is represented by:
» Package declaration
» Package body (optional)

11. What are the various modeling techniques in HDL? (May-10, Dec.-12)
There are three modelling techniques in HDL for describing a module:
» Gate-level modeling/structural modeling
» Dataflow modeling
» Behavioral modeling

12. What is behavioral modeling?

The modeling style which directly describes the behavior or the
functionality of a circuit is called behavioral modeling. It is very similar in syntax
and semantics to that of a high-level programming language (for example: C,
Pascal). A behavioral description models the system as to how the outputs
behave with the inputs.

13. Write HDL behavioral model of D flip flop.
In the previous code, we have used IF-THEN statement. The similar code can be
writing using WAIT-UNTIL statement. This statement has the same effect as IF-
THEN statement. In this case, the sensitively list is omitted. The VHDL code for a

2

14.

15.

16.

17.

EE8351 DIGITAL LOGIC CIRCUITS

positive-edge triggered D flip-flop using a WAIT-UNTIL statement is given below.
The WAIT-UNTIL construct implies that the sensitivity list includes only the clock
signal.

What is data flow modeling?

Data flow describes how the circuit signal flow from the input to the
outputs. There are some concurrent statement which allows describing the
circuit in terms of operations on signals and flow of signals in the circuit. When
such concurrent statement is used in a program, the style is called a dataflow
modeling.

What is structural modeling?
The modeling style which uses components or gates to model the system is
called structural modeling.

List the data objects supported by VHDL.
The data objects supported by VHDL are:

» Signals
» Variables
» Constants
> File

Give the comparison between concurrent and sequential statement.

S.NO CONCURRENT STATEMENT SEQUENTIAL STATEMENT
Concurrent statement in VHDL | Sequential statement is executed in
can refer only to signals.|the order in which they appear

1. | Therefore, the order of the |within the process. Thus, the order
execution of concurrent | of the execution of sequential
statements is not important. statements.

A process block is considered .
] Sequential statements can only

2. |to be a single concurrent ..

appear inside of a process block.
statement.

3. It Cén be anywhere in the It should be in the process.
architecture body.

Examples for concurrent | Examples of sequential statement

4. | statements are: process, | are: if, for, case, sequential signal
component signal assignment. | assignment statement.

18.

States the use of generate statement in VHDL.

A generate statement in VHDL is used to create repetitive structure for repetitive
sub circuits. This concept is similar to use a FOR loop. When generate statement
is used, it is not necessary to write out all of the component instantiations
individually.

19.

20.

21.

22.

23.

24,

25.

EE8351 DIGITAL LOGIC CIRCUITS

What is subprogram?

A subprogram defines a sequential algorithm that performs particular task.
Two types of subprograms are used in VHDL: Procedures and functions.
Procedures and functions in VHDL, are directly analogous to functions and
procedures in a high-level programming language such as C or Pascal.

How procedure differs from function?
A procedure differs from a function in that there is no return value, and the
arguments of the procedure have modes (in, out, or inout).

What do you mean by subprogram overloading?

It is possible to define two or more different subprograms having the same
name but differing in number or type of parameters. The function is said to be
overloaded in this case. The simulator or synthesizer automatically selects the
correct subprogram by looking at the parameters in the call statement.
Overloading is a very convenient mechanism for defining a set of function that
perform the same operation on different data types.

Write HDL for half adder. (May-10, 12)
Module half_ adder (A, B, Sum, C out);

Input A;

Input B;

Output Sum;

Output C out;

reg Sum, C out;

always @(A, B)

begin

#10 Sum = a b;

#10 Cout = a & b;

End

When can RTL be used to represent digital systems?
When digital systems are composed of registers and combinational
function locks, the RTL can be used to represent digital systems.

What is test bench?

Before processing a design by synthesis tool, the designer usually wants to
verify that the design performs according to the specification. This is almost
always done by running a simulation. Simulating a design requires generation of
test data and observation of simulation results. This process is done by used of a
VHDL module that is referred to as test bench.

List the different types of test benches?
The different types of test benches are:

» Stimulus only

» Full test bench

26.

217.

28.

29.

30.

31.

32.

EE8351 DIGITAL LOGIC CIRCUITS

» Simulator specific
» Hybrid test-bench
> Fast test bench

What is the meaning of the following RTL statement?

T1: ACC<- ACC and MDR.

The contents of register ACC are bit wised ANDed with the contents of MDR
register and the result is stored in the ACC register when control signal T1 is
activated.

What is Verilog?

Verilog is a general purpose hardware descriptor language. It is similar in syntax
to the C programming language. It can be used to model a digital system at
many levels of abstraction ranging from the algorithmic level to the switch level.

What are the various modeling used in Verilog?
1. Gate-level modeling

2. Data-flow modeling

3. Switch-level modeling

4. Behavioral modeling

What is the structural gate-level modeling?

Structural modeling describes a digital logic networks in terms of the
components that make up the system. Gate-level modeling is based on using
primitive logic gates and specifying how they are wired together.

What is Switch-level modeling? (May-18)

Verilog allows switch-level modeling that is based on the behavior of MOSFETs.
Digital circuits at the MOS-transistor level are described using the MOSFET
switches.

What are identifiers?

Identifiers are names of modules, variables and other objects that we can
reference in the design. Identifiers consists of upper and lower case letters, digits
0 through 9, the underscore character() and the dollar sign($). It must be a
single group of characters.

Examples: A0O14, a, b, in_o, s_out

What are the value sets in Verilog?
Verilog supports four levels for the values needed to describe hardware referred
to as value sets.

Value levels Condition in hardware circuits
0 Logic zero, false condition
1 Logic one, true condition
X Unknown logic value
Z High impedance, floating state

5

EE8351 DIGITAL LOGIC CIRCUITS

33. What are the types of gate arrays in ASIC?
1) Channeled gate arrays
2) Channel less gate arrays
3) Structured gate arrays

34. Give the classifications of timing control
Methods of timing control:
1. Delay-based timing control
2. Event-based timing control

3. Level-sensitive timing control
Types of delay-based timing control:
1. Regular delay control

2. Intra-assignment delay control

3. Zero delay control

Types of event-based timing control:
1. Regular event control

2. Named event control

3. Event OR control

4. Level-sensitive timing control.

35. What are the advantages of Hardware Description Languages?
» Boolean expressions, logic diagrams and digital circuits can be represented.
» Simulation, modeling, testing, design and documentation of digital circuit can
be easily done by using Hardware Description Languages.

36. Give the different arithmetic operators?

Operator symbol Operation performed Number of operands
* Multiply Two
/ Divide Two
+ Add Two
- Subtract Two
% Modulus Two
o Power (exponent) Two

37. Give the different bitwise operators.

Operator symbol Operation performed Number of operands
~ Bitwise negation One
& Bitwise and Two
| Bitwise or Two
A Bitwise xor Two
A~ or ~N Bitwise xnor Two
~& Bitwise nand Two
~| Bitwise nor Two

38.

39.

40.

41.

EE8351 DIGITAL LOGIC CIRCUITS

What is the meaning of the following RTL statement? (Nov/Dec 2011)

T1 : ACC € ---- ACC and MDR
T1 represents control function,
Colon(:) separates the control function from accumulator (ACC),
Reverse arrow (€ --) indicates transfer of information.
MDR (Memory Data Register) --- Holds contents of memory word.
The information present in Accumulator and Data Register are added and

YV VYV

then stored in the accumulator.

Write HDL for Half adder. (May/June 2012)
module half adder (a, b, sum, cout);
input a;

input b;

output sum;

output cout;

reg sum,cout;

always @ (a,b)

begin

#10 sum = a ” b;

10 cout=a &b ;

end

endmodule

Write HDL behavioural model of D flip-flop. (May/June 2013) (Nov/Dec
2015,2016) (May/June 2015)

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY DFF IS
PORT (D, Clock : IN STD_LOGIC;
Q : OUT STD_LOGIC);
END DFF;
ARCHITECTURE Behaviour OF DFF IS
BEGIN
IF Clock’ EVENT AND Clock = ‘1’ THEN
Q< =D;
END IF;
END PROCESS;
END Behaviour;

What are gate primitives?

Verilog supports basic logic gates as predefined primitives. Primitive logic
function keyword provides the basics for structural modeling at gate level. These
primitives are instantiated like modules except that they are predefined in verilog

7

42.

43.

44,

45.

46.

47.

EE8351 DIGITAL LOGIC CIRCUITS

and do not need a module definition. The important operations are and, nand,
or, xor, xnor, and buf (non-inverting drive buffer).

Give the two blocks in behavioral modeling.

1. An initial block executes once in the simulation and is used to set up initial
conditions
and step-by-step data flow.

2. An always block executes in a loop and repeats during the simulation.

What are the types of conditional statements?
1. No else statement
Syntax: if ([expression]) true — statement;
2. One else statement
Syntax: if ([expression]) true — statement;
else false-statement;
3. Nested if-else-if
Syntax : if ([expression1]) true statement 1;
else if ([expression2]) true-statement 2;
else if ([expression3]) true-statement 3;
else default-statement;
The [expression] is evaluated. If it is true (1 or a non-zero value) true-statement
is executed. If it is false (zero) or ambiguous (x), the false-statement is executed.

Name the types of ports in Verilog

Types of port Keyword
Input port Input
Output port Output

Bidirectional port inout

What is the need for VHDL? (May/June 2013)

HDL describes the hardware of digital systems. This description is in textual
form. The Boolean expressions, logic diagrams and digital circuits can be
represented using HDL. The most prominent modern HDLs in industry are
Verilog and VHDL. It is one of the two major Hardware Description Languages
(HDLs) used by hardware designers in industry and academia.

What are the operators present in VHDL? (Nov/Dec 2011) (Nov/Dec 2015)
VHDL includes the following kinds of operators:

» Logical

» Relational

» Arithmetic

» Shift and Rotate.

What are the types of procedural assignments?
» Blocking assignment
» Non-blocking assignment

EE8351 DIGITAL LOGIC CIRCUITS

PART-B -16marks
RTL Design

Explain in detail about principle of operation of RTL Design.

(Dec-15, May -18)
Register Transfer Level, or RTL design lies between a purely behavioral description of
the desired circuit and a purely structural one. An RTL description de- scribes a
circuit’s registers and the sequence of transfers between these registers but does not
describe the hardware used to carry out these operations.

As a simple example, consider a device that needs to add four numbers. In VHDL,
given signals of the correct type, we can simply write:

s<=a+b+c+d;

This particular description is simple enough that it can be synthesized. However,
the resulting circuit will be a fairly large combinational circuit comprising three
adder circuits as follows:

lng;.ﬁ—

407 B>

A behavioral description, not being concerned with implementation details would
be complete at this point.

However, if we were concerned about the cost of the implementation we might
decide to break down the computation into a sequence of steps, each one involving
only a single addition:

s=0

s=s+a
s=s+b
S=s+cC
s=s+d

Where, each operation is executed sequentially. The logic required is now one
adder, a register to hold the value of sin-between operations, a multiplexer to
select the input to be added on, and a circuit to clear s at the start of the
computation.

Although this approach only needs one adder, the process requires more steps and

9

EE8351 DIGITAL LOGIC CIRCUITS

will take longer. Circuits that divide up a computation into a sequence of
arithmetic and logic operations are quite common and this type of design is called
Register Transfer Level (RTL) or “dataflow” design.

An RTL design is composed of (1) registers and combinational function blocks (e.g.
adders and multiplexers) called the data path and (2) a finite state machine, called
the controller that controls the transfer of data through the function blocks and
between the registers.

In VHDL RTL design the gate-level design and optimization of the data path
(registers, multiplexers, and combinational functions) is done by the synthesizer.
However, the designer must design the state machine and decide which register
transfers are per- formed in which state.

The RTL designer can trade off data path complexity (e.g. using more adders and
thus using more chip area) against speed (e.g. having more adders means fewer
steps are required to obtain the result).

RTL design is well suited for the design of micro- processors and special-purpose
processors such as disk drive controllers, video display cards, network adapter
cards, etc. It gives the designer great flexibility in choosing between processing
speed and circuit complexity.

The diagram below shows a generic component in the data path. Each RTL design
will be composed of from controller clock one of the following building blocks for
each register. The structure allows the contents of each register to be updated at
the end of each clock period with a value selected by the controller.

The widths of the registers, the types of combinational functions and their inputs
will be determined by the application. A typical design will include many of these
components.

——= arithmetic/logic 5

P o function o .
T s g
e [P — < 2
» ——| arithmetic/logic = P
> Ez function = =
= T =
=
2

——={ arithmetic/logic -

E o function

clock

from controller

10

EE8351 DIGITAL LOGIC CIRCUITS

RTL Design Example

To show how an RTL design is described in VHDL and to clarify the concepts
involved, we will design a four-input adder. This design will also demonstrate how to
create packages of components that can be re-used.

The data path shown below can load the register at the start of each clock cycle
with zero, the current value of the register, or the sum of the register and one of

the four inputs.

It includes one 8-bit register, an 8-bit adder and a multiplexer that selects one of
the four inputs as the value to be added to the current value of the register.

o))
—_— = ©
a 2 i 3 5
b — 2 S h7] =
Q = o
c —= = =5 9
¢ — E 7
/(o
[clock

from controller

Exercise: Other data paths could compute the same result. Draw the block
diagram of a data path capable of computing the sum of the four numbers in
three clock cycles.

The first design unit is a package that defines a new type, num, for eight-bit
unsigned numbers and an enumerated type, states, with six possible values.
Nums are defined as a subtype of the unsigned type.

-- subtype used in design

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std logic_arith.all ;

package averager_types is

subtype num is unsigned (7 downto 0) ;

type states is (clr, add_a, add_b, add_c, add_d, hold) ;
end averager_types ;

The first entity defines the data path. In this case the four numbers to be added
are available as inputs to the entity and there is one output for the current sum.
Data path

library ieee ;
11

EE8351 DIGITAL LOGIC CIRCUITS

use ieee.std logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;

entity datapath is port (
a,b,c,d:innum;sum :outnum;
sel :instd_logic_vector (1 downto 0) ;
load, clear, clk : instd_logic) ;

end datapath ;

architecture rtl of datapath is

signal mux_out, sum_reg, next_sum_reg : num
constant sum_zero : num =
conv_unsigned(0,next_sum_reg’length) ;

begin

-- mux to select input to add with sel select mux_out <=
awhen "00", b when "01", ¢ when 10",
d when others ;

-- mux to select register input next_sum_reg <=
sum_reg + mux_out when load = 1’ else
sum_zero whenclear =1’ else

sum_reg ;

-- register sum

process(clk) begin

if clk’event and clk =’1’ then
sum_reg <= next_sum reg;
end if ;

end process ;

-- entity output is register output
sum <=sum reg;

end rtl ;

Program for AND gate (*)
Library IEEE;

Use IEEE.std_logic_1164.all;
Entity\and\is

Port(

a:inSTD_LOGIC;
b:inSTD_LOGIC;

12

c.outSTD_LOGIC,;
)i
End\and\;
Architecture\and\of\and\is
Being

C<=aand b;
End\and\;

Program for OR gate
Library IEEE;
Use IEEE.std_logic_1164.all;
Entity\or\is
Port(
a:inSTD_LOGIC;
b:iinSTD_LOGIC;
c.outSTD_LOGIC;
);
End\or\;
Architecture\on\of\or\is
Being

C<=aorb;
End\or\;

Program for NOT
Library IEEE;
Use IEEE.std_logic_1164.all;
Entity\NOT\is
Port(
a:inSTD_LOGIC;
b:OUTSTD _LOGIC;
)
End\NOT);
Architecture\NOT\oANOT\is
Being

b<=not a;
End\not\;

Program for NAND gate
Library IEEE;

Use IEEE.std_logic_1164.all;
Entity\nand\is

Port(

a:inSTD_LOGIC;
b:inSTD_LOGIC;

EE8351 DIGITAL LOGIC CIRCUITS

13

EE8351 DIGITAL LOGIC CIRCUITS

c.outSTD_LOGIC,;
)i
End\nand\;
Architecture\nand\of\nand\is
Being

C<=anand b;
End\nand\;

Program for NOR gate
Library IEEE;
Use IEEE.std_logic_1164.all;
Entity\nor\is
Port(
a:inSTD_LOGIC;
b:iinSTD_LOGIC;
c.outSTD_LOGIC;
);
End\nor\;
Architecture\nor\of\nor\is
Being

C<=anorb;
End\nor\;

Program for XOR gate
Library IEEE;
Use IEEE.std_logic_1164.all;
Entity\xor\is
Port(
a:inSTD_LOGIC;
b:inSTD_LOGIC;
c.outSTD_LOGIC,;
)i
End\xor\;
Architecture\xor\of\xor\is
Being

C<=axorb;
End\xor\;

Program for XNOR gate
Library IEEE;

Use IEEE.std_logic_1164.all;
Entity\xnor\is

Port(

a:inSTD_LOGIC;

14

EE8351 DIGITAL LOGIC CIRCUITS

b:inSTD_LOGIC;
coutSTD_LOGIC;
)i
End\xnor\;
Architecture\xnor\of\xnor\is
Being

C<=a xnor b;
End\xnor\;

Program for HALF ADDER (**)
Library IEEE;

Use IEEE.std_logic_1164.all;
Entity\half_adder\is

Port(

a:inSTD_LOGIC;

b:in STD_LOGIC;

sum: out STD_LOGIC;

carry:out STD_LOGIC;

)i

End\HALF ADDER),
Architecture\halfadder\of\half adder\is
Being

Sum<=a xor b;

Carry<=a and b;

End\half adder\;

Program for FULL ADDER (May-15, Dec-15, 16)
Library IEEE;

Use IEEE.std_logic_1164.all;

Entity fulladder is

Port(

a:inSTD_LOGIC;

b:in STD_LOGIC;

sum: out STD_LOGIC;

carry:out STD_LOGIC;

)i

End full ADDER ;

Architecture fulladder of fulladder is
Being

Sum<=a xor b xor c;

Carry<=(a and b)or(a and c)or(b and c);
End fulladder;

Program for HALF SUBTRACTER

15

EE8351 DIGITAL LOGIC CIRCUITS

Library IEEE;

Use IEEE.std_logic_1164.all;
Entity half subtractors is
Port(

a:inSTD_LOGIC;

b:in STD_LOGIC;

borrow: out STD_LOGIC,;
difference: out STD_LOGIC;
)i

End half subtractors ;
Architecture half subtractors of half subtractors is
Being

difference<=a xor b ;
borrow<=(not a) and b;

End half subtractors;

Program for full SUBTRACTORS

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity full subtractors is

Port(

a:inSTD_LOGIC;

b:in STD_LOGIC;

difference: out STD_LOGIC;

borrow: out STD_LOGIC;

);

End full subtractors ;

Architecture full subtractors of full subtractors is
Being

difference<=a xor b xor c;

borrow<=(((not a)and b)or((not a)and c)or(b and c));
End fullsubtractors;

Program for MULTIPLEXER (***) (May-17, Dec-16)
Library IEEE;

Use IEEE.std_logic_1164.all;

Entity multi is

Port(
D:inSTD_LOGIC_vector(o to3);
S:in STD_LOGICvector(0 tol);
z.outSTD_LOGIC;

)i

End multi;

16

EE8351 DIGITAL LOGIC CIRCUITS

Architecture multi of multi is
Being
Process(d,s)
Begin
Cases is
When 00 ’=>
Z<=d(0);
When”’01”’=>
Z<=d(1);
When’’10”’=>
Z<=d(2);
When’’11°=>
Z<=d(3);
When other=>
7<="0’;
End case;
End process;
End multi;

Program for DEMULTIPLEXER (***) (Dec-2015)
Library ieee;

use ieee.std logic_1164.all;

entity Demux_4 to 1is

port (

E:instd_logic;

S0,S1 :instd_logic;

D0,D1,D2,D3 : out std_logic);

End Demux_4 to 1;

Architecture Func of Demux_4_to 1 is component and Gate is import AND gate entity
Port(A,B,C :instd_logic;

F :outstd_logic);
End component;

Component not Gate is --import NOT Gate entity
port(inPort : instd_logic;
outPort : out std_logic);
end component;

signal invOutO, invOutl: std_logic;

begin
--Just like the real circuit, there are
--four components : G1 to G4

17

EE8351 DIGITAL LOGIC CIRCUITS

GI1: notGate port map (SO0, invOut0);
GI2: notGate port map(S1, invOutl);

GAL: andGate port map(E, invOutl, invOut0, D0); -- DO
GA2: andGate port map(E, SO, invOutl, D1); -- D1
GA3: andGate port map(E, invOut0, S1, D2); -- D2
GA4: andGate port map(E, SO, S1, D3); -- D3

End Func;
--------—----—-END
Program for T flip Flop
Library IEEE;

Use IEEE.std_logic_1164.all;
Entity tflipflop is

Port(
Qn:inSTD_LOGIC;
CIk:IN std_logic;

T:in STD_LOGIC;
Qnl:outSTD LOGIC

);

End tflipflop;
Architecture flipflopl of tflipflop is
Begin

Process

Begin

Wait until ck="1";
Qnl<=qn xor t;

End process;

End flipflopl;

VHDL description of a D Flip Flop
library ieee;
use ieee.std logic_1164.all;
entity D_FF is
Port(D,CP:in std.logic;
Q,Qbar:buffer std_logic);
end D_FF;
architecture FF of D_FF is
--here Q and Qbar singal are declared as buffer ; however these signals are mapped with inand out
signals. Some simulators may not allow such mapping. In this case, change Il inand out buffer.
Component nand?2
port (i1,i2:in std_logic;
ol:outstd_logic);

18

EE8351 DIGITAL LOGIC CIRCUITS

end component;

for al:NAND2 use entity work.two_input(nand2_7);

signal S1,R,R1:std_logic;

begin

NAL:NAND2 port map (D, CP, S1);

NA2:NAND2 port map (R, CP, R1);

NA3:NAND2 port map (D, D, R); --NAND gate used as inverter
NA4:NAND2 port map (s1, Qbar,Q);

NAS5:NAND2 port map(Q,R1,Qbar);

VHDL description of a JK Flip Flop
library ieee;
use ieee.std_logic_1164.all;
entity JK_FF is
Port(J,K,CP:in std.logic;
Q,Qbar:buffer std_logic);
end JK_FF;
architecture FF of JK_FF is
--here Q and Qbar singal are declared as buffer ; however these signals are mapped with in and out
signals. Some simulators may not allow such mapping. In this case, change Il inand out buffer.
Component NOR2
port (i1,i2:in std_logic;
ol:outstd_logic);
end component;
component and3
port (i1,i2,i3:in std_logic;
ol:outstd_logic);
end component;
for all:NOR2 use entity work.two_input(nor2_7);
for all:NORS3 use entity work.three_input(nor3_7);
signal S,R
begin
NAL1:NOR2 port map (S,Q,Qbar);
NA2:NOR2 port map (R,Qbar,Q);
Al:and3 port map (Q,K,CP,R);
A2:and3 port map (Qbar,J,CP,S);
end FF;

VHDL description of a SR Flip Flop

library ieee;

use ieee.std logic_1164.all;

entity SR_FF is

Port(S,R,CP:in std.logic;
Q,Qbar:buffer std_logic);

19

EE8351 DIGITAL LOGIC CIRCUITS

end SR_FF;

architecture FF of SR_FF is

--here Q and Qbar singal are declared as buffer ; however these signals are mapped with in and out
signals. Some simulators may not allow such mapping. In this case, change Il inand out buffer.
Component nand?2

port (i1,i2:in std_logic;

ol.outstd_logic);

end component;

for all:nand2 use entity work.two_input(nand2_7);

signal S1,R1:std_logic;

begin

NAL:nand2 port map (S1,Qbar,Q);

NA2:nand2 port map (Q,R1,Qbar);

NA3:nand2 port map (S,CP,S11);

NA4:nand2 port map (R,CP,R1);

end latch;

VHDL code for a 4-bit down Counter (*)
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY downctr IS

GENERIC (MOD: INTEGER: =8;

PORT (clock,load,EN :IN STD_LOGIC;

Q:OUT INTEGER RANGE 0 TO MOD-1);

END downctr;
ARCHITECTURE behavior OF downctr IS

SIGNAL count: INTEGER RANGE 0 TO MOD-1,

BEGIN
PROCESS
BEGIN
WAIT UNTIL (clock’ EVENT AND clock="1");
IF EN =’1’THEN
IF LOAD="1" THEN
Count<=MOD-1,;
ELSE
Count<=count-1
END IF;
END IF;
END PROCESS;
Q<=count;
END behavior;

VHDL code for a Four-Bit Up Counter
LIBRARY IEEE;

20

EE8351 DIGITAL LOGIC CIRCUITS

USE IEEE.std logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY upctr IS
PORT (clock,resetn,EN:IN STD_LOGIC;
Q :OUT STD_LOGIC_VECTOR (3 DOWNTO));
END upctr;
ARCHITECTURE behavior OF upctr IS
SIGNAL count : STD_LOGIC_VECTOR(3 DOWNTO);
BEGIN
PROCESS (clock, Resetn)
BEGIN
IF Resetn="0" THEN
Count<=""0000’";
ELSIF(clock’ EVENT AND clock =’1’)THEN
IF EN =’1" THEN
Count<=count+1,
ELSE
Count<=count;
END IF;
END IF;
END PROCESS;
Q<=count;
END Behavior;

VHDL code for synchronous mod-6 counter(******) (May-15, Dec-16)
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_unsigned.ALL;
ENTITY counter3 IS
PORT(

CLK:IN STD_LOGIC;

Resetn : IN STD_LOGIC;

Setn : IN STD_LOGIC;

Q :INOUTSTD_LOGIC_VECTOR (2 DOWNTO 0)

);

END counter3;
ARCHITECTURE Synch_Cntr of Counter3 IS
BEGIN
PROCESS(CLK,Resetn,Sten)
VARIABLE Qtemp: STD_LOGIC_VECTOR (2 DOWNTO 0);
BEGIN
IF Resetn="0" THEN
Qtemp="000";
ELSIF Setn="0" THEN

21

EE8351 DIGITAL LOGIC CIRCUITS

Qtemp="111";
ELSIF CLK="1" AND CLK’EVENT THEN
IF Qtemp<5 THEN
Qtemp:Qtemp +1;
ELSE
Qtemp=""000"";
END IF;

END IF;
Q<=Qtemp;

END PROCESS;
END Synch_Cntr;

VHDL description of n-bit magnitude comparator using gene rate statement
Library ieee;
Use ieee.std_logic_1164.all;
Entity comp_gen is
Generic (N : integer :=3);
Port(A,B :in std_logic_vector(N downto 0);
AgtB,AltB,AegB : buffer std_lodic);
end comp_gen;
Architecture compare of comp_gen is
Component full_adder
Port(11,12,13:in std_logic;01,02:out std_logic);
end component;
Component inv
Port(I11:in std_logic;O1:out std_logic);
end component;
component nor2
port(11,12:in std_logic;O1:.out std_logic);
end component;
component and2
port(11,12:in std_logic;O1:.out std_logic);
end component;
signal Sum,Bbar:std_logic_vector(N downto 0);
signsal C,eq:std_logic_vector(N+1 downto);
for all:full_adder use entity work.bind32(full_add);
for all:inv use entity work.bind1(inv_0);
for all:nor2 use entity work.bind(nor2_7);
for all:and2 use entity work.bind(and2_7);
begin
C(0)<="0";
Eq(0)<="1";
Gl:for1in0 to N generate
V1:inv port map (B(i),Bbar(i));

22

EE8351 DIGITAL LOGIC CIRCUITS

FA:full_adder port map (A(i),Bbar(i),C(i),Sum(i),C(I+1));
Al:and2 port map (eq(i),Sum(i),eq(i+1));
end generate G1,;
AgtB<=C(N+1);
AeqB<=eq(N+1);
nl:nor2 port map (AeqB,AgtB,AltB);
end compare;

Construct a VHDL module listing for a 16:1 MUX that is based on the assignment statement.
Use a 4-bit select word S3,52,S1,S0 to map the selected input Pi(i = 0,15) to the
output. (Multiplexer)(******)
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
entity Mux8 1 is
Port(SEL:in STD_LOGIC_VECTOR(3 downto 0):
PO,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15inSTD LOGIC;
MUX OUT:out STD_LOGIC);
end Mux8_1;
architecture BEHAVIORAL of Mux16_1 is
begin
process(SEL,PO,P1,P2,P3,P4,P5,P6,
P7,P8,P9,P10,P11,P12,P13,P14,P15)

begin

case SEL is
when”0000"=>MUX_ OUT<=PO0;
when”0001”=>MUX OUT<=PI;
when”0010”=>MUX OUT<=P2;
when”0011"=>MUX OUT<=P3;
when”0100”=>MUX OUT<=P4;
when”0101”=>MUX OUT<=P5;
when”0110”=>MUX OUT<=P6;
when”0111"=>MUX OUT<=P7,
when”1000”=>MUX OUT<=PS;
when”1001"=>MUX OUT<=P9;
when”1010”=>MUX OUT<=P10;
when”1011"=>MUX OUT<=PI11;
when”1100”=>MUX OUT<=P12;
when”1101"=>MUX OUT<=P13;
when”11107=>MUX OUT<=P14;
when”1111"=>MUX OUT<=P15;
when others =>null;

end case;

end process;

end BEHAVIORAL

23

